Error Analysis for the Second Order BDF Discretization of the Incompressible Navier-Stokes Problem

Etienne Emmrich

Abstract An overview of some recent results for the temporal discretization of the incompressible Navier-Stokes problem by means of the two-step backward differentiation formula is given. The original nonlinear approximation as well as a variant based upon a linearization of the convective term are considered. After studying solvability and stability, convergence of a piecewise polynomial approximate solution towards a weak solution is shown. Furthermore, smoothing error estimates –under realistic assumptions on the problem's data– are presented for the velocity as well as the pressure.

Keywords Incompressible Navier-Stokes equation, time discretization, backward differentiation formula, stability, convergence, error estimate

MSC (2000) 65M12, 65M15, 76D05

1. Introduction We consider the Navier-Stokes equations describing the non-stationary flow of an incompressible, homogeneous, viscous fluid with constant temperature,

$$u_t - \nu \Delta u + (u \cdot \nabla)u + \nabla p = f, \quad \nabla \cdot u = 0 \quad \text{in } \Omega \times (0, T),$$

 $u = 0 \quad \text{on } \partial \Omega \times (0, T), \quad u(\cdot, 0) = u_0 \quad \text{in } \Omega,$

where $\Omega \subset \mathbb{R}^d$, $d = \dim \Omega \in \{2,3\}$, is a bounded domain with the locally Lipschitz continuous boundary $\partial \Omega$, T > 0 is the time under consideration, $\nu = 1/\text{Re} > 0$ denotes the inverse of the Reynolds number, u = u(x,t) is the d-dimensional velocity vector with the prescribed initial velocity $u_0 = u_0(x)$, p = p(x,t) is the pressure, and f = f(x,t) is an outer force per unit mass.

We introduce the solenoidal function spaces

$$\begin{split} \mathcal{V} := \left\{ v \in \mathcal{C}_0^\infty(\Omega)^d : \nabla \cdot v = 0 \right\}, \ V := \operatorname{clo}_{\|\cdot\|_{1,2}} \mathcal{V} = \left\{ v \in H_0^1(\Omega)^d : \nabla \cdot v = 0 \right\}, \\ H := \operatorname{clo}_{\|\cdot\|_{0,2}} \mathcal{V} = \left\{ v \in L^2(\Omega)^d : \nabla \cdot v = 0 \right\}, \end{split}$$

where γ_n denotes the trace operator in normal direction. Furthermore, by L^p and $W^{m,p}$ ($W^{m,2} \equiv H^m$), we denote the usual Lebesgue and Sobolev spaces with the usual norms $\|\cdot\|_{0,p}$ and $\|\cdot\|_{m,p}$, respectively. With

$$((u,v)):=\sum_{i,j=1}^d\int_\Omega rac{\partial u_i(x)}{\partial x_j}rac{\partial v_i(x)}{\partial x_j}dx\,,\quad \|u\|:=((u,u))^{1/2}\,,\quad u,v\in V\,,$$

$$(u,v) := \sum_{i=1}^d \int_\Omega u_i(x) v_i(x) dx \,, \quad |u| := (u,u)^{1/2} \,, \quad u,v \in H \,,$$

the spaces V and H are Hilbert spaces. The space V is dense and continuously embedded in H. It holds the Poincaré-Friedrichs inequality

$$\exists \alpha > 0 \,\forall v \in V : \quad |v| < \alpha \, ||v||.$$

Note that V, H, and the dual V^* form a Gelfand triple. The dual pairing between V and V^* is denoted by $\langle \cdot, \cdot \rangle$, the dual norm by $\| \cdot \|_*$.

We then consider the weak formulation of the Navier-Stokes problem:

Problem (P) For given $u_0 \in H$ and $f \in L^2(0,T;V^*)$, find $u \in L^2(0,T;V)$ such that for all $v \in V$ and almost everywhere in (0,T)

$$\frac{d}{dt}\left(u(t),v\right) + \nu\left((u(t),v)\right) + b(u(t),u(t),v) = \langle f(t),v\rangle \tag{1}$$

holds with $u(0) = u_0$

Here, $b(u, v, w) := ((u \cdot \nabla)v, w)$ describes the nonlinearity. By $L^p(0, T; X)$, we denote the usual space of Bochner integrable abstract functions $u : [0, T] \to X$, where X is some Banach space. The discrete counterparts are denoted by $l^p(0, T; X)$.

For given $N \in \mathbb{N}$, let $\Delta t = T/N$, $t_n = n\Delta t$ (n = 0, 1, ..., N). We consider the time discretization of Problem (P) by means of the formally second order two-step backward differentiation formula:

Problem $(P_{\Delta t})$ For given u^0 , $u^1 \in H$ and $f \in L^2(0,T;V^*)$, find $u^n \in V$ (n = 2, 3, ..., N) such that for all $v \in V$

$$(D_2u^n, v) + \nu((u^n, v)) + b(u^n, u^n, v) = \langle R_2^n f, v \rangle.$$
 (2)

By

$$D_2 u^n := \frac{1}{\Delta t} \left(\frac{3}{2} u^n - 2u^{n-1} + \frac{1}{2} u^{n-2} \right) ,$$

we denote the divided backward difference that satisfies $D_2u(t_n) = u'(t_n) + \mathcal{O}((\Delta t)^2)$ for smooth u. We also introduce

$$R_2^n f := \frac{3}{2\Delta t} \int_{t_{n-1}}^{t_n} f(t)dt - \frac{1}{2\Delta t} \int_{t_{n-2}}^{t_{n-1}} f(t)dt.$$

Note that $R_2^n u' = D_2 u(t_n)$. Besides, we consider the following linearized variant of Problem $(P_{\Delta t})$:

Problem $(LP_{\Delta t})$ For given u^0 , $u^1 \in V$ and $f \in L^2(0,T;V^*)$, find $u^n \in V$ (n = 2, 3, ..., N) such that for all $v \in V$

$$(D_2 u^n, v) + \nu((u^n, v)) + b(E u^n, u^n, v) = \langle R_2^n f, v \rangle.$$
 (3)

Here, $Eu^n := 2u^{n-1} - u^{n-2}$ is an extrapolation satisfying $Eu(t_n) = u(t_n) + \mathcal{O}((\Delta t)^2)$ for smooth u. The starting values can be obtained by $u^0 := u_0$ and computing u^1 from u^0 using the implicit Euler method.

Solvability and the velocity error $e^n := u(t_n) - u^n$ have been firstly studied in [2] for Problem $(LP_{\Delta t})$. However, the optimal second order estimate for the $l^{\infty}(0,T;H)$ - and $l^2(0,T;V)$ -norm of e^n given there relies upon higher regularity of the exact solution. As it was pointed out in [3] and [8], higher regularity is equivalent to compatibility conditions on the problem's data. In view of the divergence-free constraint, these conditions become global and, therefore, virtually uncheckable and hardly fulfillable. A more realistic estimate can be found in [5] where the sub-optimal order 1/4 in the $l^{\infty}(0,T;V)$ -norm has been proven for the two-dimensional case with autonomous right hand side f.

Yet, the original Problem $(P_{\Delta t})$ has not been considered in the literature. For both the Problem $(P_{\Delta t})$ and $(LP_{\Delta t})$, error estimates under suitable assumptions on the data, convergence of an approximate solution towards a weak solution, and the quantification of appearing constants are the questions to be answered.

As higher regularity assumptions are improper but the Navier-Stokes operator possesses a smoothing property, we shall look for so-called smoothing or rough data error estimates. For the Navier-Stokes problem, such estimates are known from [4] for the Crank-Nicolson scheme, from [6] for the fractional-step θ -scheme, and from [7] for projection schemes.

For the exact solution to Problem (P), the following results are rather known from the literature (cf. [9], [4]):

Theorem 1 Let $\partial\Omega$ be smooth, $u_0 \in \mathcal{D}(A) := V \cap H^2(\Omega)^d$, and

$$f, tf', t^2 f'' \in L^2(0, T; V), \quad f', tf'' \in L^2(0, T; V^*).$$

Then there is (for dim $\Omega = 3$ only up to a time $T^* \leq T$) a unique u with

$$\begin{split} u &\in \mathcal{C}([0,T];\mathcal{D}(A)) \,, \ u' \in \mathcal{C}([0,T];H) \cap L^2(0,T;V) \,, \\ & \sqrt{t} \, u' \in \mathcal{C}((0,T];V) \cap L^\infty(0,T;V) \,, \\ & u'' \in L^2(0,T;V^*) \,, \ tu'' \in L^2(0,T;V) \,, \\ & t(f''-u''') \in L^2(0,T;V^*) \,, \ t^{3/2}(f''-u''') \in L^2(0,T;H) \,. \end{split}$$

2. Solvability and stability The existence of a solution to $(P_{\Delta t})$ can be proved applying the main theorem on pseudomonotone operators by Brézis. For this, we observe that the nonlinearity is a strongly continuous operator from V into V^* . In the case of $(LP_{\Delta t})$, we may use the Lax-Milgram lemma. The stability results from energy type estimates. Note the identity

$$4\Delta t \sum_{j=2}^{n} (D_2 v^j, v^j) = |v^n|^2 + |Ev^{n+1}|^2 + (\Delta t)^4 \sum_{j=1}^{n-1} |D^2 v^j|^2 - |v^1|^2 - |Ev^2|^2,$$

where $D^2u^n := (u^{n+1} - 2u^n + u^{n-1})/(\Delta t)^2$ is the second divided difference.

Theorem 2 There is at least one solution to Problem $(P_{\Delta t})$ and there exists a unique solution to Problem $(LP_{\Delta t})$. For both, the following stability estimates hold true (n = 2, 3, ..., N):

$$|u^n|^2 + |Eu^{n+1}|^2 + (\Delta t)^4 \sum_{j=1}^{n-1} |D^2 u^j|^2 + 2\nu \Delta t \sum_{j=2}^n ||u^j||^2 \le C$$

$$\Delta t \sum_{j=2}^{N} \|D_2 u^j\|_*^p \le C \,, \quad p = \left\{ egin{array}{ll} 2 & \mbox{if $\dim \Omega = 2$} \\ 4/3 & \mbox{if $\dim \Omega = 3$} \end{array} \right.$$

If, in addition, $u^0, u^1 \in V$ and $f \in L^1(0,T;H)$ then

$$(\Delta t)^q \sum_{j=2}^n |D_2 u^j|^2 \leq C \,, \quad q = \left\{ egin{array}{ll} 2 & ext{ if $\dim\Omega=2$} \ 9/4 & ext{ if $\dim\Omega=3$} \end{array}
ight.$$

Moreover, if $\dim \Omega = 2$ and the data are sufficiently small then q = 1.

Here, C denotes a generic constant depending on ν , T, norms of u^0 , u^1 , and f, as well as on embedding constants.

The boundedness of $\Delta t \sum_j |D_2 u^j|^2$ in the two-dimensional case relies upon a solution of a nonlinear difference inequality with a quadratic term. However, in the three-dimensional case, we would have to consider a difference inequality with a cubic term (analogous to a differential inequality that appears in the proof of the local existence of a strong solution) which we cannot resolve.

We shall remark that a solution to Problem $(P_{\Delta t})$ is unique for small data. In the two-dimensional case, it is possible to show further stability results.

3. Convergence From the discrete values u^n (n = 0, 1, ..., N), computed by solving $(P_{\Delta t})$ or $(LP_{\Delta t})$, we construct piecewise polynomial functions $U_{\Delta t}$, $V_{\Delta t}$, defined on [0, T]: For $t \in (t_{n-1}, t_n]$ (n = 1, ..., N), let

$$U_{\Delta t}(t) = u^n \,, \quad V_{\Delta t}(t) = egin{cases} rac{1}{2} \left(u^n + E u^{n+1}
ight) + D_2 u^n \left(t - t_n
ight) & ext{if } t > t_1 \ rac{1}{2} \left(u^1 + E u^2
ight) + rac{u^1 - u^0}{\Delta t} \left(t - t_1
ight) & ext{if } t \in [0, t_1] \end{cases} \,.$$

There are other possible constructions we will not consider here. The construction of $V_{\Delta t}$ reflects the choice of the method: The value u^1 is thought to be computed by the implicit Euler method. The slope of $V_{\Delta t}$ in $(t_{n-1}, t_n]$ is $D_2 u^n$ for $n = 2, 3, \ldots, N$.

Proposition 1 Let $u^0 \in V$ be given, u^1 be computed by the implicit Euler method, and u^n (n = 2, 3, ..., N) be the solution to $(P_{\Delta t})$ and $(LP_{\Delta t})$, respectively. Then for any sequence of step sizes $\{\Delta t\}$, there exist subsequences $\{U_{\Delta t'}\}$ and $\{V_{\Delta t'}\}$ that are weakly convergent in $L^2(0, T; V)$ and weakly-* convergent in $L^\infty(0, T; H)$. Moreover, $\{V_{\Delta t'}\}$ is strongly convergent in $L^q(0, T; H)$, $q \in [2, \infty)$. If $\{\Delta t\}$ is a null sequence and $f \in L^1(0, T; H)$ then $\{U_{\Delta t'}\}$ is strongly convergent in $L^q(0, T; H)$, $q \in [2, \infty)$, with the same limit as $\{V_{\Delta t'}\}$.

Proof The weak convergence in $L^2(0,T;V)$ and the weak-* convergence in $L^{\infty}(0,T;H)$ follow from usual compactness arguments because of the boundedness of $\{U_{\Delta t}\}, \{V_{\Delta t}\}$, which is a direct consequence of Thm. 2.

Due to the boundedness of $\{V_{\Delta t}\}$ in $L^2(0,T;V)$ and of the derivatives $\{V'_{\Delta t}\}$ in $L^{4/3}(0,T;V^*)$, the strong convergence in $L^2(0,T;H)$ follows from a theorem by Lions and Aubin. Hence, the convergence is strong in $L^q(0,T;H)$ for any $q \in [2,\infty)$. Finally, we observe that

$$||U_{\Delta t} - V_{\Delta t}||_{L^{2}(0,T;H)}^{2} \leq \frac{\Delta t}{12}|u^{1} - u^{0}|^{2} + \frac{(\Delta t)^{3}}{6} \sum_{j=2}^{N} |D_{2}u^{j}|^{2} + \frac{(\Delta t)^{5}}{8} \sum_{j=1}^{N-1} |D^{2}u^{j}|^{2},$$

which shows, in view of Thm. 2, the strong convergence of $\{U_{\Delta t}\}$ in $L^2(0, T; H)$ if $\{V_{\Delta t}\}$ converges. Note that $|u^1 - u^0|$ is bounded (independently on Δt) if u^1 is computed by the implicit Euler method.

Theorem 3 Let $u^0 = u_0$. The common limit of the subsequences $\{U_{\Delta t'}\}$ and $\{V_{\Delta t'}\}$ from Prop. 1 is a weak solution to (P). If (P) possesses a unique solution then the whole sequences $\{U_{\Delta t}\}$, $\{V_{\Delta t}\}$ converge to it.

The proof of the first part of the assertion follows from rewriting the scheme $(P_{\Delta t})$ and $(LP_{\Delta t})$, respectively, in terms of $U_{\Delta t}$, $V_{\Delta t}$, and studying the limit of the appearing terms. The proof of the second part then is clear.

4. Error estimates We commence with the error equation

$$(D_2 e^n, v) + \nu ((e^n, v)) + b(u(t_n), e^n, v) + b(e^n, u(t_n), v) -b(e^n, e^n, v) = \langle \rho^n, v \rangle$$
(4)

corresponding to $(P_{\Delta t})$, where $\rho^n = D_2 u(t_n) - u'(t_n) + f(t_n) - R_2^n f$ is the consistency error of the linear Stokes problem. With standard arguments, it follows (with the notation $\tilde{a}^n := t_n a^n$)

Proposition 2 Let $t(f'' - u''') \in L^2(0, T; V^*)$. Then there is a constant c (independent on the data) such that for n = 2, 3, ..., N

$$\Delta t \sum_{j=2}^{n} \|t_{j}^{q} \rho^{j}\|_{*}^{2} \leq c (\Delta t)^{2(1+q)} \|t(f'' - u''')\|_{L^{2}(0,t_{n};V^{*})}^{2}, \quad q \in \{0,1\}.$$

We are now in the position to prove first order error estimates under suitable assumptions on the problem's data.

Theorem 4 Let $u \in \mathcal{C}([0,T];\mathcal{D}(A))$, $t(f''-u''') \in L^2(0,T;V^*)$, and let Δt or the data be sufficiently small such that

$$a := 1 - c\nu^{-1/3} \Delta t \, \max_{t} \|u(t)\|_{2,2}^{4/3} > 0,$$
 (5)

where c depends on embedding constants, only. Then the error e^n (n = 2, 3, ..., N) in the solution of $(P_{\Delta t})$ can be bounded by

$$\begin{split} |e^n|^2 + |Ee^{n+1}|^2 + (\Delta t)^4 \sum_{j=1}^{n-1} |D^2 e^j|^2 + 2\nu \Delta t \sum_{j=2}^n ||e^j||^2 \\ \leq a^{1-n} \left(|e^1|^2 + |Ee^2|^2 + \nu^{-1} (\Delta t)^2 \, ||t(f'' - u''')||_{L^2(0,t_n;V^*)}^2 \right) \, . \end{split}$$

Smoothing estimates for the time-weighted error \tilde{e}^n can be derived after multiplying (4) by t_n and testing with \tilde{e}^n . However, this leads to the additional term $\Delta t \sum_j \|Ee^j\|_*^2$ in the error bound. In order to find estimates for this term, we consider an auxiliary problem that can be interpreted as the discrete dual to a linearization of Problem $(P_{\Delta t})$. Here, A denotes the Stokes operator.

Problem $(P^*_{\Delta t})$ For given $\phi^{n+1}=\phi^n=0$ and $g^j:=A^{-1}e^j\in V$, find $\phi^j\in V$ $(j=n-1,\ldots,0)$ such that for all $w\in V$

$$(w, D_2^*\phi^j) + \nu ((w, \phi^j)) + b(u(t_j), w, \phi^j) + b(w, u(t_j), \phi^j) = (w, g^j),$$

where $D_2^*\phi^j := (3w^j - 4w^{j+1} + w^{j+2})/(2\Delta t).$

The most difficult part in proving higher order smoothing error estimates consists in deriving optimal stability estimates for Problem $(P_{\Delta t}^*)$ in higher norms. We shall omit this here and refer to [1]. After all, we can show

Theorem 5 Let $u \in \mathcal{C}([0,T];\mathcal{D}(A)), u' \in L^2(0,T;V), u'', t(f''-u''') \in L^2(0,T;V^*), and \sqrt{t}u' \in \mathcal{C}((0,T];V) \cap L^{\infty}(0,T;V).$ Let, furthermore, Δt or the data be sufficiently small such that (5) and

$$1 - c\nu^{-1} \left(\Delta t \, \max_{t} \|u(t)\| \|u(t)\|_{2,2} + \sqrt{\Delta t} \, \max_{t} \|\sqrt{t}u'(t)\| \right) > 0$$

are fulfilled and assume that $|A^{-s}e^{0,1}| = \mathcal{O}((\Delta t)^{1+s})$ ($s \in \{0, 1/2, 1\}$). For the time-weighted error \tilde{e}^n (n = 2, 3, ..., N) to $(P_{\Delta t})$, the estimate

$$|\tilde{e}^n|^2 + |E\tilde{e}^{n+1}|^2 + (\Delta t)^4 \sum_{j=1}^{n-1} |D^2\tilde{e}^j|^2 + 2\nu \Delta t \sum_{j=2}^n ||\tilde{e}^j||^2 \le C(\Delta t)^4$$

then holds true, where C depends, in a highly nonlinear way, on the data of the problem.

Taking into account the error equation corresponding to $(LP_{\Delta t})$,

$$(D_2e^n, v) + \nu ((e^n, v)) + b(Eu(t_n), e^n, v) + b(Ee^n, u(t_n), v) - b(Ee^n, e^n, v)$$

= $\langle \rho^n, v \rangle - (\Delta t)^2 b(D^2 u(t_{n-1}), u(t_n), v),$ (6)

we may prove $e^n = \mathcal{O}(\Delta t)$, $\tilde{e}^n = \mathcal{O}((\Delta t)^{3/2})$ for Problem $(LP_{\Delta t})$. It is worth to mention that the first order result does not require any restriction on Δt . However, we are not able to prove an optimal second order estimate for \tilde{e}^n because of the appearance of additional terms in (6).

Finally, we come to the error in the pressure. We assume that the approximation p^n of $p(t_n)$ (n = 2, 3, ..., N) is determined by

$$(p^n, \nabla \cdot v) = (D_2 u^n, v) + \nu((u^n, v)) + b(u^n, u^n, v) - \langle f^n, v \rangle \tag{7}$$

for all $v \in H_0^1(\Omega)^d \setminus V$. A problem in deriving estimates for the error $\pi^n := p(t_n) - p^n$ is the strict inclusion $V \subset H_0^1(\Omega)^d$ that leads to $H^{-1}(\Omega)^d \subset V^*$ and $||f||_* \le ||f||_{-1,2}$. Nevertheless, because of the LBB condition, we find

Theorem 6 Let $t(f'' - u''') \in L^2(0, T; H^{-1}(\Omega)^d)$ or let $t^{3/2}(f'' - u''') \in L^2(0, T; H)$. If $\{u^n\}$ is computed by $(P_{\Delta t})$ or $(LP_{\Delta t})$, and $\{p^n\}$ by (7) then $\|\tilde{\pi}^n\|_{L^2(\Omega)/\mathbb{R}} \leq C \Delta t$ or $\|\tilde{\pi}^n\|_{L^2(\Omega)/\mathbb{R}} \leq C (\Delta t)^{1/2}$.

Note that $t(f''-u''') \in L^2(0,T;H^{-1}(\Omega)^d)$ does not follow from Thm. 1. In opposite to [4] (Crank-Nicolson scheme), we do not need a higher time weight since we use the sub-optimal estimate $|t_n\rho^n| \leq c\,\Delta t$ rather than $|t_n^{3/2}\rho^n| \leq c\,(\Delta t)^{3/2}$.

References

- [1] E. Emmrich. Analysis von Zeitdiskretisierungen des inkompressiblen Navier-Stokes-Problems. In preparation.
- [2] V. Girault and P.-A. Raviart. Finite Element Approximation of the Navier-Stokes Equations. Springer, 1979.
- [3] J. G. Heywood. Classical solution of the Navier-Stokes equations. In: R. Rautmann (Ed.), Approximation Methods for Navier-Stokes Problems. Springer, 1980.
- [4] J. G. Heywood and R. Rannacher. Finite element approximation of the non-stationary Navier-Stokes problem, Part IV. SINUM 27 (1990) 2, 353 384.
- [5] A. T. Hill and E. Süli. Attractors for a second-order approximation of the incompressible Navier-Stokes equations in two space dimensions. Techn. Report No. 95/22, Oxford Univ. Comp. Lab., 1996. To appear in IMA J. Numer. Anal.
- [6] S. Müller-Urbaniak. Eine Analyse des Zwischenschritt- θ -Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen. Preprint 94-01 (SFB 359), Univ. Heidelberg, Januar 1994.
- [7] A. Prohl. Projection and Quasi-compressibility Methods for Solving the Incompressible Navier-Stokes Equations. B. G. Teubner, 1997.
- [8] R. Temam. Behaviour at time t = 0 of the solutions of semi-linear evolution equations. J. Diff. Eqs. 43 (1982), 73 92.
- [9] R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis. CBMS Series, SIAM, 1985.

Etienne Emmrich

Technische Universität Berlin, Fachbereich Mathematik, Sekr. MA 6-4 Straße des 17. Juni 136, 10623 Berlin, Germany eMail: emmrich@math.tu-berlin.de