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Abstract An overview of some recent results for the temporal discretization of the
incompressible Navier-Stokes problem by means of the two-step backward differen-
tiation formula is given. The original nonlinear approximation as well as a variant
based upon a linearization of the convective term are considered. After studying
solvability and stability, convergence of a piecewise polynomial approximate solu-
tion towards a weak solution is shown. Furthermore, smoothing error estimates
—under realistic assumptions on the problem’s data— are presented for the velocity
as well as the pressure.
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1. Introduction We consider the Navier-Stokes equations describing
the non-stationary flow of an incompressible, homogeneous, viscous fluid
with constant temperature,

up—vAu+ (u-Viu+Vp=f, V.-u=0 inQx(0,7),
u=0 ondQx(0,7), wu(-,0)=uy inQ,

where Q C RY, d = dimQ € {2,3}, is a bounded domain with the locally

Lipschitz continuous boundary 02, T' > 0 is the time under consideration,

v = 1/Re > 0 denotes the inverse of the Reynolds number, u = u(z,t) is the

d-dimensional velocity vector with the prescribed initial velocity ug = ug(z),

p = p(z,t) is the pressure, and f = f(z,t) is an outer force per unit mass.
We introduce the solenoidal function spaces

Vi={velPQ):V-v=0}, V= cloj, V= {v € Hy()?:V-v =0},
H:=cloj,, V={v € L*Q)?:V-v=0, v =0},

where 7y, denotes the trace operator in normal direction. Furthermore, by
LP and W™P (W™?2 = H™), we denote the usual Lebesgue and Sobolev
spaces with the usual norms || - ||o, and || - || p, respectively. With

d i\ &L Ui\ T
(o= 3 [ 202D 4y i ), oV,

ij=1



d
(u,v) := Z/ wi(z)vi(z)dz, |u| = (u,u)/?, w,veH,
i=1 79

the spaces V and H are Hilbert spaces. The space V is dense and continu-
ously embedded in H. It holds the Poincaré-Friedrichs inequality

da>0VweV: | <alv].

Note that V', H, and the dual V* form a Gelfand triple. The dual pairing
between V' and V* is denoted by (-,-), the dual norm by || - ||..
We then consider the weak formulation of the Navier-Stokes problem:

Problem (P) For given ug € H and f € L*(0,T;V*), find u € L*(0,T;V)
such that for all v € V and almost everywhere in (0,7T)

% (u(t),0) + v (u(t),v)) + b(u(t), u(t),v) = (f(t),v) (1)

holds with u(0) = uy.

Here, b(u, v, w) := ((u - V)v,w) describes the nonlinearity. By LP(0,7T; X),
we denote the usual space of Bochner integrable abstract functions v :
[0,7] — X, where X is some Banach space. The discrete counterparts
are denoted by I?(0,T; X).

For given N € N, let At = T/N, t, = nAt (n = 0,1,...,N). We
consider the time discretization of Problem (P) by means of the formally
second order two-step backward differentiation formula:

Problem (Pp;) For given u°, u' € H and f € L*(0,T;V*), find u" € V
(n=2,3,..., N) such that for allv e V

(Dau”,v) + v((w"”,v)) + b(u",u", v) = (Ry f,v) . (2)
By
1 3 1
Doy = — [ Sy — 2 n—1 —,n—2
2U N <2u U + 2u ) )

we denote the divided backward difference that satisfies Dou(t,) = u'(t,) +
O((At)?) for smooth u. We also introduce

n 3 tn 1 tn—1
= — t)dt — — .
L / F(t)dt

Note that Rju' = Dyu(t,). Besides, we consider the following linearized
variant of Problem (Pa¢):



Problem (LPa;) For given u®, u' € V and f € L?(0,T;V*), find u™ € V
(n=2,3,..., N) such that for allv e V

(Dou™,v) + v((u™,v)) + b(Eu",u",v) = (Ry f,v). (3)

Here, Eu" := 2u™' — 4" 2 is an extrapolation satisfying Eu(t,) =
u(tn) + O((At)?) for smooth u. The starting values can be obtained by
u? := ug and computing u' from u° using the implicit Euler method.

Solvability and the velocity error e™ := wu(t,) — u™ have been firstly
studied in [2] for Problem (LPa;). However, the optimal second order esti-
mate for the [°°(0,T; H)- and [?(0,T; V)-norm of e" given there relies upon
higher regularity of the exact solution. As it was pointed out in [3] and [8],
higher regularity is equivalent to compatibility conditions on the problem’s
data. In view of the divergence-free constraint, these conditions become
global and, therefore, virtually uncheckable and hardly fulfillable. A more
realistic estimate can be found in [5] where the sub-optimal order 1/4 in
the [*°(0,T;V)-norm has been proven for the two-dimensional case with
autonomous right hand side f.

Yet, the original Problem (Pa¢) has not been considered in the literature.
For both the Problem (Pa;) and (LPa;), error estimates under suitable as-
sumptions on the data, convergence of an approximate solution towards a
weak solution, and the quantification of appearing constants are the ques-
tions to be answered.

As higher regularity assumptions are improper but the Navier-Stokes op-
erator possesses a smoothing property, we shall look for so-called smoothing
or rough data error estimates. For the Navier-Stokes problem, such esti-
mates are known from [4] for the Crank-Nicolson scheme, from [6] for the
fractional-step -scheme, and from [7] for projection schemes.

For the exact solution to Problem (P), the following results are rather
known from the literature (cf. [9], [4]):

Theorem 1 Let 09 be smooth, ug € D(A) :=V N H*(Q)?, and
ftf 2" e L2(0,T;V),  f,tf" € L*(0,T;V*).
Then there is (for dAimQ = 3 only up to a time T* <T) a unique u with
u € C([0,T);D(A)), v € C([0,T); H) N L*(0,T; V),
Viu' € ¢((0,T]; V) N L®(0,T; V),
u" € L20,T; V™), tu" € L2(0,T;V),
t(f" = ") e L2(0,T;V*), t32(f" —u™) € L*(0,T; H) .



2. Solvability and stability The existence of a solution to (Pa¢) can be
proved applying the main theorem on pseudomonotone operators by Brézis.
For this, we observe that the nonlinearity is a strongly continuous operator
from V into V*. In the case of (LPa¢), we may use the Lax-Milgram lemma.
The stability results from energy type estimates. Note the identity

n n—1
4AtZ(D2Uj,Uj) — |Un|2+|E’Un+1|2+(At)4Z|D21}j|2—|’01|2—|E’U2|2,

where D?u™ := (u™*1 — 2u™ + u"~1)/(At)? is the second divided difference.

Theorem 2 There is at least one solution to Problem (Pa;) and there ez-
ists a unique solution to Problem (LPay). For both, the following stability
estimates hold true (n =2,3,...,N):

n—1 n
[+ [Bu P+ (A)* Y D% P 4 2wAt Y |l |P < C,
j=1 j=2

N . .
) 2 if dimQ =2
At IDwl|P < C, p= /
~ 4/3 if dimQ =3

If, in addition, u®,u' € V and f € L'(0,T; H) then

n . 2 if dimQ =2
(A0S Dwi? <O, q= /
=2 9/4 if dimQ =3

Moreover, if dimQ = 2 and the data are sufficiently small then g = 1.
Here, C denotes a generic constant depending on v, T, norms of u°, u',
and f, as well as on embedding constants.

The boundedness of At} |Dou/|? in the two-dimensional case relies
upon a solution of a nonlinear difference inequality with a quadratic term.
However, in the three-dimensional case, we would have to consider a differ-
ence inequality with a cubic term (analogous to a differential inequality that
appears in the proof of the local existence of a strong solution) which we
cannot resolve.

We shall remark that a solution to Problem (Pa:) is unique for small
data. In the two-dimensional case, it is possible to show further stability
results.



3. Convergence From the discrete values v" (n = 0,1,...,N), com-
puted by solving (Pa;) or (LPa;), we construct piecewise polynomial func-
tions Ua¢, Va¢, defined on [0,T): For ¢t € (t, 1,t,] (n=1, ..., N), let

(u™ + Bu™) + Dou™ (t — t,)  ift >t

UAt(t) = Un , VAt(t) = .

0

1
2
L' + Bu?) + 552 (4 — 1) ift e [0,]

There are other possible constructions we will not consider here. The
construction of Va; reflects the choice of the method: The value u! is thought
to be computed by the implicit Euler method. The slope of Va; in (¢,_1, ]
is Dou™ forn =2,3,...,N.

Proposition 1 Let v’ € V be given, u' be computed by the implicit Eu-

ler method, and u™ (n = 2,3,...,N) be the solution to (Pa:) and (LPay),
respectively. Then for any sequence of step sizes {At}, there exist sub-
sequences {Uay} and {Vap} that are weakly convergent in L?(0,T;V) and
weakly-+ convergent in L>°(0,T; H). Moreover, {Vay} is strongly convergent
in L9(0,T; H), q € [2,00). If {At} is a null sequence and f € L'(0,T; H)
then {Uay } is strongly convergent in L9(0,T; H), q € [2,00), with the same
limit as {Vay }-

Proof The weak convergence in L?(0,7;V) and the weak-* convergence
in L*°(0,T; H) follow from usual compactness arguments because of the
boundedness of {Uat}, {Vat}, which is a direct consequence of Thimn. 2.

Due to the boundedness of {Va;} in L?(0,7;V) and of the derivatives
{V4,} in L*3(0,T; V*), the strong convergence in L?(0,T; H) follows from a
theorem by Lions and Aubin. Hence, the convergence is strong in L2(0,7T; H)
for any g € [2,00). Finally, we observe that

1Uat = Vadllzzo.7.m) <

A At I . At)s = .
1_2t|u1_u0‘2_|_( 6) Z‘D2ug|2+( 8) Z D22
j=2 j=1

which shows, in view of Thm. 2, the strong convergence of {Ua;} in L2(0, T'; H)
if {Vas} converges. Note that |u! —u°| is bounded (independently on At) if
u' is computed by the implicit Euler method. #
Theorem 3 Let u® = ug. The common limit of the subsequences {Unay}
and {Vap} from Prop. 1 is a weak solution to (P). If (P) possesses a
unique solution then the whole sequences {Ua},{Vat} converge to it.



The proof of the first part of the assertion follows from rewriting the
scheme (Pa;) and (LPay), respectively, in terms of Uay, Vat, and studying
the limit of the appearing terms. The proof of the second part then is clear.

4. Error estimates We commence with the error equation

(Dae™,v) + v ((€",v)) + blu(tn), €*, v) + b(e”, u(tn), v)
—b(e™, e",v) = (p",v) (4)

corresponding to (Pa¢), where p" = Dou(t,) — u'(t,) + f(t,) — RS f is the
consistency error of the linear Stokes problem. With standard arguments,
it follows (with the notation a" := t,a")

Proposition 2 Let t(f" — u"') € L?(0,T;V*). Then there is a constant c
(independent on the data) such that forn=2,3,..., N

n
ALY P12 < (A [i(f" — u") 2oy s 4 € {0,1).
j=2

We are now in the position to prove first order error estimates under
suitable assumptions on the problem’s data.

Theorem 4 Let u € C([0,T]; D(A)), t(f" —u") € L2(0,T;V*), and let At
or the data be sufficiently small such that

a:=1—cw 'PAt max ||u(t)||;1{2?’ >0, (5)

where ¢ depends on embedding constants, only. Then the error " (n =
2,3,...,N) in the solution of (Pat) can be bounded by

n—1 n
|e" 2 + |Ee" 2 + (AR (D2 + 2vAt Y |l
j=1 j=2

<at = (| + B + v (A2 " — u") 20,0 -

Smoothing estimates for the time-weighted error €” can be derived after
multiplying (4) by ¢, and testing with é”. However, this leads to the ad-
ditional term At )", |E€?||? in the error bound. In order to find estimates
for this term, we consider an auxiliary problem that can be interpreted as
the discrete dual to a linearization of Problem (Pa;). Here, A denotes the
Stokes operator.



Problem (P%,) For given ¢"*1 = ¢" = 0 and ¢ := A7/ € V, find
H eV (j=n—-1,...,0) such that for allw € V

(w, D3¢7) + v (w, ¢)) + blu(ty), w, ¢') + b(w, u(t;), ¢’) = (w,¢’),
where D@7 == (3w! — 4w + wI*?) /(2At).

The most difficult part in proving higher order smoothing error estimates
consists in deriving optimal stability estimates for Problem (P%,) in higher
norms. We shall omit this here and refer to [1]. After all, we can show

Theorem 5 Let u € C([0,T];D(A)), ' € L*0,T;V), u", t(f" — u™) €
L?(0,T;V*), and v/tu' € C((0,T);V) N L>®(0,T;V). Let, furthermore, At
or the data be sufficiently small such that (5) and

1= vt (At max [u(t)]| w2 + VAL max [Viu'()]]) > 0

are fulfilled and assume that |[A=%e%'| = O((At)'*) (s € {0,1/2,1}). For
the time-weighted error €" (n = 2,3,...,N) to (Pa¢), the estimate

n—1 n
|e" 2+ |Be" T2 + (An)* D IDXP 4+ 2wAt Y || < C (At
j=1 j=2

then holds true, where C depends, in a highly nonlinear way, on the data of
the problem.

Taking into account the error equation corresponding to (LPa¢),

(Dge™, v) + v (e™,v) + b(Eu(t,),e”,v) + b(Ee™, u(t,),v) — b(Ee™, e, v)
= (p",v) — (A1)*B(D*u(tn-1),u(tn),v), (6)

we may prove " = O(At), é" = O((At)3/?) for Problem (LPa;). It is
worth to mention that the first order result does not require any restriction
on At. However, we are not able to prove an optimal second order estimate
for €™ because of the appearance of additional terms in (6).

Finally, we come to the error in the pressure. We assume that the ap-
proximation p" of p(t,) (n =2,3,...,N) is determined by

(", V - v) = (Dou™,v) + v((u",v)) + b(u",u",v) — (f*,v) (7)

for all v € H}(2)?\ V. A problem in deriving estimates for the error 7" :=
p(tn) — p™ is the strict inclusion V C HE(92)? that leads to H~1(Q)¢ C V*
and || f||« < || fl|=1,2- Nevertheless, because of the LBB condition, we find



Theorem 6 Let t(f” — u") € L*(0,T; H- ()% or let t3/2(f" — ") €
L2(0,T; H). If {u™} is computed by (Pai) or (LPay), and {p"} by (7) then

17" |2 @)m < C AL or [|7"|p2(0)/r < C (At)'/2.

Note that ¢(f” —u") € L?(0,T; H1(92)?%) does not follow from Thm. 1.
In opposite to [4] (Crank-Nicolson scheme), we do not need a higher time
weight since we use the sub-optimal estimate |t,p"| < cAt rather than

1132 7] < ¢ (At)3/2.
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