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Abstract. The third-kind boundary-value problem for an elliptic equa-
tion of second order with variable coefficients and mixed as well as first-
order terms on a domain that is the union of rectangles is approximated
by a linear finite element method with first-order accurate quadrature.
The scheme is equivalent to a standard finite difference method.
Although the discretisation is in general only first-order consistent, supra-
convergence, i.e. convergence of higher order, is shown to take place even
on non-uniform grids. Local error estimates of optimal order min(s, 3/2)
in the H1(Ω)-norm can be derived for s ∈ [1, 2] if the exact solution is in
the Sobolev-Slobodetskij space H1+s(Ω). If no mixed derivatives occur
then optimal order s can be achieved. The supraconvergence also implies
the supercloseness of the gradient.
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1 Introduction

We consider the discretisation of the differential equation

Au := −(aux)x−(bux)y−(buy)x−(cuy)y +dux+euy +fu = g in Ω ⊂ IR2 (1)

with variable coefficients subject to Robin boundary conditions

Bu := auxηx + buxηy + buyηx + cuyηy + αu = ψ on Γ := ∂Ω , (2)

where the domain Ω is the union of rectangles and (ηx, ηy) denotes the outer
normal on Γ . The coefficients in A and B as well as ψ are assumed to be suffi-
ciently smooth such that all are at least uniformly continuous and g ∈ L2(Ω).
Moreover, A is assumed to be uniformly elliptic and the corresponding homoge-
neous problem is supposed to be uniquely solvable. The corresponding bilinear
form needs not to be strongly positive.



The discretisation is obtained from linear finite elements on a triangulation
TH of Ω, which relies upon a non-uniform rectangular grid ΩH , in combination
with an appropriate quadrature that is of first order.

Although the scheme is in general only first-order consistent, higher-order
convergence can be proven: Let uH denote the discrete solution on ΩH , PH

the piecewise linear interpolation with respect to TH (note that PHuH is the
finite element solution), RH the pointwise restriction on ΩH , and ‖ · ‖1,2 the
usual H1(Ω)-norm. For a quasi-uniform sequence of grids ΩH with a maximum
mesh-size Hmax tending to zero, we derive a local error estimate from which

the global error estimate ‖PHRHu− PHuH‖1,2 = O(H
min(s,3/2)
max ) for s ∈ [1, 2] if

u ∈ H1+s(Ω) follows. In the case of no mixed derivatives, optimal order O(Hs
max)

can be proven. For s ∈ {1, 2}, the estimates even hold without the assumption of

quasi-uniformity. As a consequence, a global estimate of order O(H
(s+1)/2
max ) in the

case of mixed derivatives and of order O(Hs
max) if no mixed derivatives occur

is obtained for s ∈ [1, 2] even for an arbitrary sequence of non-uniform grids.
Note that these supraconvergence results also show the supercloseness property
for the gradient in the context of finite elements. Convergence results of order
O(Hs

max) for s ∈ (1/2, 1) can also be obtained but are not included here.
Super- and supraconvergence of finite element and finite difference solutions

have been considered by many authors; we refer to [1, 2, 7–12] and the references
cited therein. In particular, we continue the work presented in [4–6]. For the
third-kind boundary-value problem (1), (2) on a domain Ω that is the union
of rectangles but without mixed or first-order derivatives (b = d = e = 0),
local error estimates showing supraconvergence of order s for s ∈ (1/2, 2] if u ∈
H1+s(Ω) are proved in [4]. The aim of this paper is to present a generalisation of
the results of [4] that allows mixed and first-order derivatives in the differential
operator A. An essential step in the analysis is the equivalence of the fully
discrete finite element method with quadrature to a finite difference method.

2 Discretisation

The corresponding variational problem reads as

find u ∈ H1(Ω) such that A(u, v) = (g, v) + (ψ, v)Γ for all v ∈ H1(Ω)

with the sesquilinear form

A(v, w) := (avx, wx) + (bvx, wy) + (bvy , wx) + (cvy , wy)

+ (dvx, w) + (evy, w) + (fv, w) + (αv,w)Γ , v, w ∈ H1(Ω) .

Here and in the following, we employ the usual notation for Lebesgue-,
Sobolev-, Sobolev-Slobodetskij spaces and spaces of continuously differentiable
functions. In particular, we denote by (·, ·) and (·, ·)Γ the inner product on L2(Ω)
and L2(Γ ), respectively, and by ‖ · ‖r,p,D the usual norm on W r,p(D) for a do-
main D (where we omit the subscript D if D = Ω). As the boundary Γ is only



Lipschitz, the norm of Sobolev-Slobodetskij spaces on Γ shall be defined through
summing up over disjoint straight boundary sections.

For the discretisation, let h = {hj}j∈ZZ and k = {k`}`∈ZZ be two sequences

of positive real numbers and consider the two-dimensional grid IRH := IRx
h×IRy

k
,

where
IRx

h := {xj ∈ IR : xj+1 := xj + hj , j ∈ ZZ}

for x0 ∈ IR given; IRy
k

is defined analogously. Moreover, let xj+1/2 := xj +hj/2 =
xj+1 − hj/2 := x(j+1)−1/2 with an analogous notation in the y-direction. We
define

ΩH := Ω ∩ IRH , ΓH := Γ ∩ IRH , ΩH := Ω ∩ IRH = ΩH ∪ ΓH

and consider a sequence {ΩH}H∈Λ of grids with Hmax := max{hj, k` : j, ` ∈ ZZ}
tending to zero. We say that {ΩH}H∈Λ is quasi-uniform if all possible quotients
of mesh sizes of ΩH are bounded independently of H . The vertices of Ω are
assumed to be in ΓH . The triangulation TH is supposed to be a set of open
triangles in which the vertices are the grid points of ΩH . Throughout this paper,
we assume Hmax being sufficiently small.

By WH , we denote the space of grid functions on ΩH . For convenience, we
tacitly assume that a function vH ∈ WH is extended on IRH by zero. We often
write vP instead of vH(P ). For P = (xj , y`) ∈ ΩH , let

2P := (xj−1/2, xj+1/2) × (y`−1/2, y`+1/2) ∩Ω ,

ΓP := (xj−1/2, xj+1/2) × (y`−1/2, y`+1/2) ∩ Γ .

Then

(vH , wH)H :=
∑

P∈ΩH

|2P |vPwP and (φH , χH)Γ,H :=
∑

P∈ΓH

|ΓP |φPχP

defines an inner product on WH and on the space of grid functions on ΓH ,
respectively.

Let AH := aH + bH + cH + dH + eH + fH + αH be the sesquilinear form
defined by

aH(vH , wH) :=
∑

4∈TH

a4,x

∫

4

(PHvH)x(PHwH)xdV ,

dH(vH , wH) :=
∑

4∈TH

(dPHwH)4,x

∫

4

(PHvH)xdV ,

fH(vH , wH) := (RHfvH , wH)H , αH(vH , wH) := (RHαvH , wH)Γ,H ,

and with forms cH and eH defined analogously to aH and dH , respectively.
Here, the subscript 4, x denotes the value at the midpoint of the side of 4 ∈ TH

parallel to the x-axis. The definition of the form bH is based upon two special

triangulations T
(1)

H and T
(2)

H .



Let 4
(⊥)
j,` denote an open triangle having an angle π/2 at (xj , y`) ∈ IRH and

two adjacent grid points as further vertices. We then define

T
(ν)

H :=
{

4
(⊥)
j,` ⊂ Ω : (xj , y`) ∈ IRH with j + `+ ν being odd

}

, ν = 1, 2 ,

and associate the piecewise linear interpolation P
(ν)
H . Then

bH(vH , wH) :=
1

2

(

b
(1)
H (vH , wH) + b

(2)
H (vH , wH)

)

,

where for ν = 1, 2

b
(ν)
H (vH , wH) :=

∑

4∈T
(ν)

H

∫

4

b4

(

(P
(ν)
H vH)x(P

(ν)
H wH)y + (P

(ν)
H vH)y(P

(ν)
H wH)x

)

dV

with b4 being the value of b at the vertex of 4 ∈ T
(ν)

H that corresponds with
the angle π/2.

The fully discrete Galerkin approximation now reads as

find uH ∈ WH such that

AH(uH , vH) = (gH , vH)H + (ψH , vH)Γ,H for all vH ∈ WH (3)

with right-hand side gH and boundary value ψH given by

gP := |2P |
−1

∫

2P

gdV (P ∈ ΩH) , ψP := ψ(P ) (P ∈ ΓH) . (4)

It can be shown that (3) is equivalent to the finite difference approximation

AHuH := −δ(1/2)
x

(

aδ(1/2)
x uH

)

− δy (bδxuH) − δx (bδyuH) − δ(1/2)
y

(

cδ(1/2)
y uH

)

+RHd δxuH +RHe δyuH +RHf uH = gH in ΩH ,

supplemented by an appropriate approximation of the boundary condition (see
also [4]). In particular, we have

AH(vH , wH) = (AHvH , wH)H

for all vH , wH ∈WH with wH = 0 on ΓH . Here, we use the divided differences

δ(1/2)
x vj,` :=

vj+1/2,` − vj−1/2,`

xj+1/2 − xj−1/2
, δ(1/2)

x vj+1/2,` :=
vj+1,` − vj,`

xj+1 − xj
,

δxvj,` :=
vj+1,` − vj−1,`

xj+1 − xj−1

and corresponding differences in the y-direction.
The following stability result can be proven similarly as [5, Thm. 2].



Proposition 1. For ΩH (H ∈ Λ) and vH ∈ WH , the following estimate holds
true:

‖PHvH‖1,2 ≤ C sup
06=wH∈WH

|AH(vH , wH)|

‖PHwH‖1,2
.

By C, we denote a generic constant that is independent of significant quan-
tities such as the grid size. Proposition 1 implies the unique solvability of the
discrete problem.

3 Supraconvergence of the Discretisation

For P = (xj , y`) ∈ Γ y
H , the set of grid points lying on Γ y which is the part of

Γ that is parallel to the y-axis, we define ΓP := {xj} × (y`−1/2, y`+1/2) ∩ Γ .
Moreover, we use the convention that, depending on the location of the domain
Ω, ηx and ηy always take the value +1 or −1 on the sections of the boundary Γ
even at the vertices of the domain.

The main result reads as

Theorem 1. Let u ∈ H2(Ω), a, b, c, d, e, f ∈ W 1,∞(Ω), α ∈ W 1,∞(Γ ), ψ ∈
H1(Γ ) if s = 1 and let u ∈ H1+s(Ω), a, b, c, d, e, f ∈ W 2,2/(2−s)(Ω), α ∈
W 2,1/(2−s)(Γ ), ψ ∈ Hs(Γ ) if s ∈ (1, 2]. Moreover, assume that {ΩH}H∈Λ is
quasi-uniform if s 6∈ {1, 2}. The discretisation error then satisfies the estimate

‖PHRHu− PHuH‖1,2 ≤ C

(

∑

P∈ΩH

(diam 2P )2s‖u‖2
1+s,2,2P

+
∑

P∈ΓH

(

|ΓP |
2 min(s,3/2)‖u‖2

1/2+s,2,ΓP
+ |ΓP |

2s‖ψ‖2
s,2,ΓP

)

)1/2

≤ CHmin(s,3/2)
max

(

‖u‖1+s,2 + ‖u‖1/2+s,2,Γ + ‖ψ‖s,2,Γ

)

(5)

in the case of mixed derivatives. If b ≡ 0 then

‖PHRHu− PHuH‖1,2 ≤ C

(

∑

P∈ΩH

(diam 2P )2s‖u‖2
1+s,2,2P

+
∑

P∈ΓH

|ΓP |
2s

(

‖u‖2
s,2,ΓP

+ ‖ψ‖2
s,2,ΓP

)

)1/2

≤ CHs
max

(

‖u‖1+s,2 + ‖u‖s,2,Γ + ‖ψ‖s,2,Γ

)

. (6)

Sketch of Proof In what follows, we sketch the main steps in the proof of
Theorem 1 focussing only on the main part of the differential operator as the
lower-order terms can be dealt with somewhat simpler.

For the discretisation error, we find from Proposition 1

‖PHRHu− PHuH‖1,2 ≤ C sup
06=wH∈WH

|τH(wH)|

‖PHwH‖1,2



with the truncation error

τH(wH) := AH(RHu,wH) −AH(uH , wH)

= τ
(a)
H (wH) + τ

(b)
H (wH) + τ

(c)
H (wH) + τ

(d)
H (wH) + τ

(e)
H (wH) + τ

(f)
H (wH) ,

where

τ
(a)
H (wH) := aH(RHu,wH) +

∑

P∈ΩH

∫

2P

(aux)xdV wP −
∑

P∈ΓH

|ΓP |(auxηx)(P )wP

and the other parts of τH corresponding to bH , . . . , fH are defined analogously.

We commence with the case s = 1. The estimate of τ
(a)
H (wH) relies upon the

decomposition

τ
(a)
H (wH) = τ

(a)
H,1(wH) + τ

(a)
H,2(wH) with

τ
(a)
H,2(wH) :=

∑

P∈ΓH

(
∫

ΓP

auxηxdσ − |ΓP |(auxηx)(P )

)

wP .

Analogous decompositions are at hand for τ
(b)
H (wH) and τ

(c)
H (wH). The terms

τ
(a)
H,1(wH) and τ

(c)
H,1(wH) satisfy the estimate desired as is shown in [4, Sect. 4].

Also τ
(b)
H,1(wH), the truncation error related to mixed derivatives, can be esti-

mated as desired as is shown in the following.
The proof starts with an integration and summation by parts, rewriting

τ
(b)
H,1(wH) in terms of contributions on rectangles 2j+1/2,`+1/2 := (xj , xj+1) ×

(y`, y`+1) ∩Ω, and an application of the Bramble-Hilbert lemma.
We find (see also [4, Lemmata 4.7, 4.8])

|τ
(a)
H,2(wH) + τ

(b)
H,2(wH) + τ

(c)
H,2(wH)|

=

∣

∣

∣

∣

∑

P∈ΓH

(
∫

ΓP

(ψ − αu)dσ − |ΓP |(ψ − αu)(P )

)

wP

∣

∣

∣

∣

≤ C

(

∑

P∈ΓH

|ΓP |
2
(

‖u‖2
1,2,ΓP

+ ‖ψ‖2
1,2,ΓP

)

)1/2

‖PHwH‖1,2 ,

which finally proves the result for s = 1. Note that ‖u‖1,2,ΓP ≤ ‖u‖3/2,2,ΓP
.

We come to the case s ∈ (1, 2]. For P ∈ Γ y
1/2, the set of points (xj , y`+1/2)

lying on parts of Γ parallel to the y-axis, let P− := (xj , y`), P
+ := (xj , y`+1),

and

ΓP := {xj}×(y`, y`+1) , Γ
−
P := {xj}×(y`, y`+1/2) , Γ

+
P := {xj}×(y`+1/2, y`+1) .

The estimates are based upon the decomposition

τ
(a)
H (wH) = τ

(a)
H,3(wH) + τ

(a)
H,4(wH) with



τ
(a)
H,4(wH) := τ

(a)
H,2(wH) −

1

2

∑

P∈Γ y

1/2

|ΓP |

(
∫

Γ+
P

auxηxdσ −
|ΓP |

2
(auxηx)(P+)

−

∫

Γ−

P

auxηxdσ +
|ΓP |

2
(auxηx)(P−)

)

δ(1/2)
y wP

and analogous decompositions for τ
(b)
H (wH) and τ

(c)
H (wH).

The terms τ
(a)
H,3(wH) and τ

(c)
H,3(wH) satisfy local estimates of order s (see [4,

Sect. 5]) and it remains to consider τ
(b)
H,3(wH). With integration and summation

by parts, τ
(b)
H,3(wH) can again be rewritten in terms of contributions on rectangles

2j+1/2,`+1/2. What follows, is a rather intrigued decomposition and multiple
application of the (generalised) Bramble-Hilbert (see [3]) and bilinear lemma.

After all, the boundary contribution

−
∑

P∈Γ y

1/2

|ΓP |
2

4
ηx(P )

(

b(P+)
(

uy(P
+) − uy(P )

)

+ b(P−)
(

uy(P ) − uy(P
−)

)

)

×

× δ(1/2)
y wP (7)

(plus an analogous contribution from parts of Γ parallel to the x-axis) has to
be estimated. Unfortunately, with the aid of the generalised Bramble-Hilbert
lemma, we can only derive an estimate of maximum order 3/2 in terms of
|u|1/2+s,2,Γ . Here, we also employ the continuous embedding H1(Ω) ↪→ H1/2(Γ )
and an identification of |PHwH |1/2,2,Γ in terms of differences of values of w at
the boundary Γ .

Some straightforward calculations finally show that

τ
(a)
H,4(wH) + τ

(b)
H,4(wH) + τ

(c)
H,4(wH) =

∑

P∈Γ x
1/2

(
∫

ΓP

(ψ − αu)dσ −
|ΓP |

2

(

(ψ − αu)(P+) + (ψ − αu)(P−)
)

)

wP+ + wP−

2
+

∑

P∈Γ y

1/2

(
∫

ΓP

(ψ − αu)dσ −
|ΓP |

2

(

(ψ − αu)(P+) + (ψ − αu)(P−)
)

)

wP+ + wP−

2
.

We are thus left with trapezoidal rules that lead to the estimate of order s
(see also [4, Lemma 5.8] and note that ‖u‖s,2,ΓP ≤ C‖u‖1/2+s,2,ΓP

). Here, it is
important to have the assumption ψ ∈ Hs(Γ ). 2

By interpolation using the estimates (5), (6) of Theorem 1 for s = 1 and s = 2,
which is then valid without the assumption of quasi-uniformity, the following
corollary is derived.

Corollary 1. Let s ∈ [1, 2] and assume that u ∈ H1+s(Ω), a, b, c, d, e, f ∈
W 2,∞(Ω), α ∈ W 2,∞(Γ ), and ψ ∈ Hs(Γ ). The discretisation error then sat-
isfies the estimate

‖PHRHu− PHuH‖1,2 ≤ CH(1+s)/2
max

(

‖u‖1+s,2 + ‖u‖1/2+s,2,Γ + ‖ψ‖s,2,Γ

)



in the case of mixed derivatives. If b ≡ 0 then

‖PHRHu− PHuH‖1,2 ≤ CHs
max

(

‖u‖1+s,2 + ‖u‖s,2,Γ + ‖ψ‖s,2,Γ

)

.

As is shown in [4, Remark 5.3, 5.4], the averaged restriction of the right-hand
side g in (4) can be replaced by the pointwise restriction on ΩH if g ∈ Hs(Ω)
for s ∈ (1, 2] retaining the order of convergence. If, however, g is not smooth
enough then the pointwise restriction may destroy the higher order.
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9. M. Kř́ıžek and P. Neittaanmäki, Bibliography on superconvergence, in: M. Kř́ıžek,
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