Fair partitions and normal tilings

Dirk Frettlöh

Joint work with Christian Richter, Alexey Glazyrin, Zsolt Lángi

Technische Fakultät
Universität Bielefeld

Bielefeld, 7th February 2020
Part 0

Introduction
A *tiling* is a covering of the plane which is a packing of the plane as well.

Here all tiles are convex polygons.
A *tiling* is a covering of the plane which is a packing of the plane as well.

Here all tiles are convex polygons.

A tiling is called *vertex-to-vertex* if the intersection of any two tiles is a full edge, or a vertex, or empty.

(Left tiling: yes, right tiling: no)
A tiling is called *normal* if there are $r > 0, R > 0$ such that

- Each tile contains in a disk of radius r
- Each tile is contained in a disk of radius R

Normal.
A tiling is called *normal* if there are \(r > 0, R > 0 \) such that

- Each tile contains in a disk of radius \(r \)
- Each tile is contained in a disk of radius \(R \)

Not normal.
Discrete geometry provides some (seemingly) elementary problems that sometimes can (only?) be solved by heavy machinery.

Read *Cannons at Sparrows* by Günter Ziegler:

For instance:

- Ham Sandwich Theorem
- Spicy chicken Theorem
Ham Sandwich Problem:

Can we divide two convex sets in \mathbb{R}^2 by one line into equal halves each?

Can we divide d convex sets in \mathbb{R}^d by one line hyperplane into equal halves each?
Ham Sandwich Problem—Theorem:

Can we divide two convex sets in \mathbb{R}^2 by one line into equal halves each?

Can we divide d convex sets in \mathbb{R}^d by one line hyperplane into equal halves each?

Proof via the Borsuk-Ulam Theorem
Spicy Chicken Theorem

Can we divide any convex set in \mathbb{R}^2 into n convex sets of the same area and the same perimeter?

$n=2$ $n=3$ $n=4$ $n=5$
Spicy Chicken Theorem

Can we divide any convex set in \mathbb{R}^2 into n convex sets of the same area and the same perimeter?

$n=2$ $n=3$ $n=4$ $n=5$
Part 1
(with Christian Richter)
A rich source of interesting problems:

nandacumar.blogspot.com

Question: Is there a tiling of the plane by pairwise noncongruent triangles of equal area and equal perimeter?

(I.e. a spicy chicken theorem for \mathbb{R}^2 where all pieces are triangles)
A rich source of interesting problems:

nandacumar.blogspot.com

Question: Is there a tiling of the plane by pairwise noncongruent triangles of equal area and equal perimeter?

(l.e. a spicy chicken theorem for \mathbb{R}^2 where all pieces are triangles)

Answer: No

A rich source of interesting problems:

nandacumar.blogspot.com

Question: Is there a tiling of the plane by pairwise noncongruent triangles of equal area and equal perimeter?

(I.e. a spicy chicken theorem for \mathbb{R}^2 where all pieces are triangles)

Answer: No

Weaker question: Is there a tiling of the plane by pairwise noncongruent triangles of equal area?
A rich source of interesting problems:

nandacumar.blogspot.com

Question: Is there a tiling of the plane by pairwise noncongruent triangles of equal area and equal perimeter?

(I.e. a spicy chicken theorem for \(\mathbb{R}^2 \) where all pieces are triangles)

Answer: No

Weaker question: Is there a tiling of the plane by pairwise noncongruent triangles of equal area?

Answer: Yes.
...but this tiling is not normal.
...and this tiling is not normal either.
Slightly harder question: Is there a normal tiling of the plane by pairwise noncongruent triangles of equal area?
Slightly harder question: Is there a normal tiling of the plane by pairwise noncongruent triangles of equal area?

Answer: Yes.

Even harder question: Is there a normal vertex-to-vertex tiling of the plane by pairwise noncongruent triangles of the same area?
Even harder question: Is there a normal vertex-to-vertex tiling of the plane by pairwise noncongruent triangles of the same area?

Answer: Yes.

Even harder question: Is there a normal vertex-to-vertex tiling of the plane by pairwise noncongruent triangles of the same area?

Answer: Yes.

Idea: distort
Even harder question: *Is there a normal vertex-to-vertex tiling of the plane by pairwise noncongruent triangles of the same area?*

Answer: Yes.

Idea: distort

![Diagram of vertex-to-vertex tiling of the plane by pairwise noncongruent triangles of the same area.](image)
Stack sheared copies of the strip tiling:

(7 pages of computation show: all triangles are incongruent)
Variations of the questions for n-gons ($3 \leq n \leq 6$)

Is there a normal equal area tiling by....

<table>
<thead>
<tr>
<th></th>
<th>vtv</th>
<th>not vtv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>equal perimeter</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Quadrangles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>equal perimeter</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Pentagons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>equal perimeter</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Hexagons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>equal perimeter</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Quadrangles, pentagons, hexagons are easier. E.g.:
Quadrangles, pentagons, hexagons are easier. E.g.:

Triangles seem to be the "limiting" case (wrt degrees of freedom)
Current work:

- There are tilings of \mathbb{R}^2 by unit area quadrangles with equal perimeter.
- There are normal triangle tilings of \mathbb{R}^2 by unit area quadrangles which are arbitrarily close to the regular triangle tiling.
- There are tilings of \mathbb{R}^2 by unit area pentagons with equal perimeter.

Paper containing the first two is ready and soon on arXiv.org.
Part 2
(with Alexey Glazyrin and Zsolt Lángi)
Usually "not vertex-to-vertex" is less restrictive than "vertex-to-vertex".
But for hexagons it is the other way around: it is harder to find non-vertex-to-vertex tilings by hexagons than vertex-to-vertex ones.

Here: only two non-vertex-to-vertex situations. This raises the...
Question: How many non-vertex-to-vertex situations can a tiling by convex hexagons have?
Question: How many non-vertex-to-vertex situations can a tiling by convex hexagons have?

Very similar question: How many heptagons can a tiling by convex \(n \)-gons have, if \(n \geq 6 \)?
Question: How many non-vertex-to-vertex situations can a tiling by convex hexagons have?

Very similar question: How many heptagons can a tiling by convex n-gons have, if $n \geq 6$?

Answer: a lot.
Question: How many heptagons can a normal tiling by convex n-gons have, if $n \geq 6$?
Question: How many heptagons can a *normal* tiling by convex n-gons have, if $n \geq 6$?

Problem:
Question: How many heptagons can a *normal* tiling by convex n-gons have, if $n \geq 6$?

Problem:
Question: How many heptagons can a normal tiling by convex n-gons have, if $n \geq 6$?

Problem:
Question: How many heptagons can a normal tiling by convex n-gons have, if $n \geq 6$?

Problem:
Question: How many heptagons can a normal tiling by convex n-gons have, if $n \geq 6$?

Partial answer: at most finitely many.

Question: How many heptagons can a *normal* tiling by convex n-gons have, if $n \geq 6$?

Partial answer: at most finitely many.

Akopyan provides an upper bound:

$$\# \text{ heptagons} \leq \frac{2\pi D}{A} - 6$$

D: maximal diameter, A: minimal area.

(so D/A is a measure for how ”normal” the tiling is)
Answer: Arbitrarily many. (Even of unit area)

D.F., Alexey Glazyrin, Zsolt Lángi: Hexagon tilings of the plane that are not edge-to-edge, submitted, arxiv:1911:xxxxx
Answer: Arbitrarily many. (Even of unit area)

D.F., Alexey Glazyrin, Zsolt Lángi: Hexagon tilings of the plane that are not edge-to-edge, submitted, arxiv:1911:xxxxx

Corollary: A hexagon tiling can have arbitrarily many non-vertex-to-vertex situations (but not infinitely many)
How to obtain "arbitrary many"
We can do the maths in order to compare with Akopyan’s bound: This construction achieves 3/4 of his bound, hence his bound is asymptotically tight (linear in D/A). Thank you!
We can do the maths in order to compare with Akopyan’s bound: This construction achieves 3/4 of his bound, hence his bound is asymptotically tight (linear in \(D/A \)).
We can do the maths in order to compare with Akopyan’s bound: This construction achieves $3/4$ of his bound, hence his bound is asymptotically tight (linear in D/A).

Thank you!