Fair partitions and normal tilings

Dirk Frettlöh

Joint work with Christian Richter, Alexey Glazyrin, Zsolt Lángi

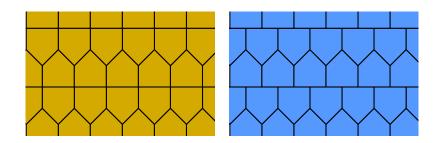
Technische Fakultät Universität Bielefeld

Bielefeld, 7th February 2020

Part 0

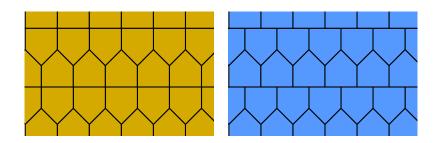
Introduction

A *tiling* is a covering of the plane which is a packing of the plane as well.



Here all tiles are convex polygons.

A *tiling* is a covering of the plane which is a packing of the plane as well.



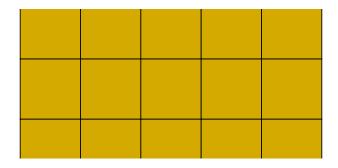
Here all tiles are convex polygons.

A tiling is called *vertex-to-vertex* if the intersection of any two tiles is a full edge, or a vertex, or empty.

(Left tiling: yes, right tiling: no)

A tiling is called *normal* if there are r > 0, R > 0 such that

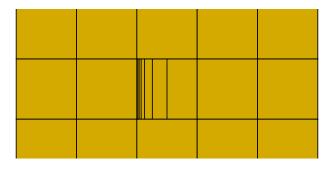
- Each tile contains in a disk of radius r
- Each tile is contained in a disk of radius R



Normal.

A tiling is called *normal* if there are r > 0, R > 0 such that

- Each tile contains in a disk of radius r
- Each tile is contained in a disk of radius R



Not normal.

Discrete geoemtry provides some (seemingly) elementary problems that sometimes can (only?) be solved by heavy machinery.

Read Cannons at Sparrows by Günter Ziegler:

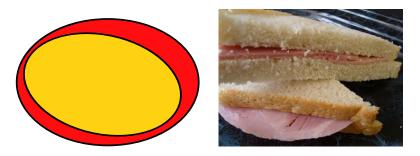
https://www.ems-ph.org/journals/newsletter/pdf/2015-03-95.pdf

For instance:

- Ham Sandwich Theorem
- Spicy chicken Theorem

Ham Sandwich Problem:

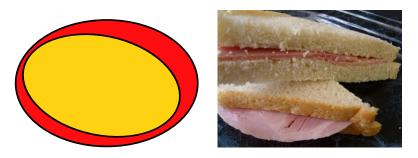
Can we divide two convex sets in \mathbb{R}^2 by one line into equal halves each?



Can we divide d convex sets in \mathbb{R}^d by one line hyperplane into equal halves each?

Ham Sandwich-Problem Theorem:

Can we divide two convex sets in \mathbb{R}^2 by one line into equal halves each?

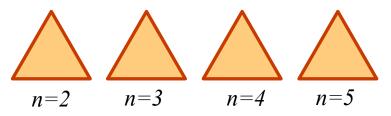


Can we divide d convex sets in \mathbb{R}^d by one line hyperplane into equal halves each?

Proof via the Borsuk-Ulam Theorem

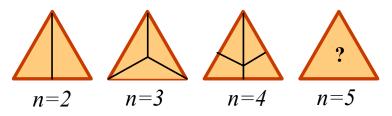
Spicy Chicken Theorem

Can we divide any convex set in \mathbb{R}^2 into n convex sets of the same area and the same perimeter?



Spicy Chicken Theorem

Can we divide any convex set in \mathbb{R}^2 into n convex sets of the same area and the same perimeter?



Part 1

(with Christian Richter)

nandacumar.blogspot.com

Question: Is there a tiling of the plane by pairwise noncongruent triangles of equal area and equal perimeter?

(I.e. a spicy chicken theorem for \mathbb{R}^2 where all pieces are triangles)

nandacumar.blogspot.com

Question: Is there a tiling of the plane by pairwise noncongruent triangles of equal area and equal perimeter?

(l.e. a spicy chicken theorem for \mathbb{R}^2 where all pieces are triangles)

Answer: No

Andrey Kupavskii, János Pach, Gábor Tardos: Tilings with noncongruent triangles, *European J. Combin.* 73 (2018)

nandacumar.blogspot.com

Question: Is there a tiling of the plane by pairwise noncongruent triangles of equal area and equal perimeter?

(I.e. a spicy chicken theorem for \mathbb{R}^2 where all pieces are triangles)

Answer: No

Andrey Kupavskii, János Pach, Gábor Tardos: Tilings with noncongruent triangles, *European J. Combin.* 73 (2018)

Weaker question: *Is there a tiling of the plane by pairwise noncongruent triangles of equal area?*

nandacumar.blogspot.com

Question: Is there a tiling of the plane by pairwise noncongruent triangles of equal area and equal perimeter?

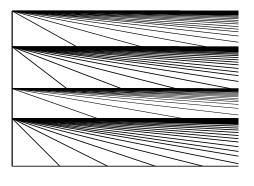
(I.e. a spicy chicken theorem for \mathbb{R}^2 where all pieces are triangles)

Answer: No

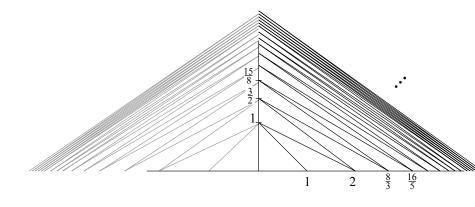
Andrey Kupavskii, János Pach, Gábor Tardos: Tilings with noncongruent triangles, *European J. Combin.* 73 (2018)

Weaker question: *Is there a tiling of the plane by pairwise noncongruent triangles of equal area?*

Answer: Yes.



...but this tiling is not normal.

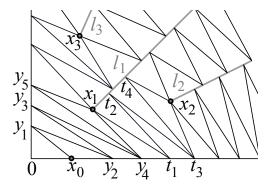


...and this tiling is not normal either.

Slightly harder question: *Is there a normal tiling of the plane by pairwise noncongruent triangles of equal area?*

Slightly harder question: *Is there a normal tiling of the plane by pairwise noncongruent triangles of equal area?*

Answer: Yes.



D.F.: Noncongruent equidissections of the plane, *Discrete Geometry and Symmetry*, Springer (2018)

A. Kupavskii, J. Pach, G. Tardos: Tilings of the plane with unit area triangles of bounded diameter, *Acta Math. Hungar.* 155 (2018)

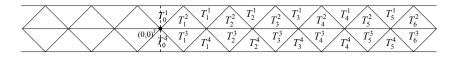
Answer: Yes.

D.F., C. Richter: Incongruent equipartitions of the plane, arxiv:1905.08144

Answer: Yes.

D.F., C. Richter: Incongruent equipartitions of the plane, arxiv:1905.08144

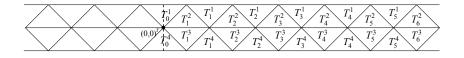
Idea: distort

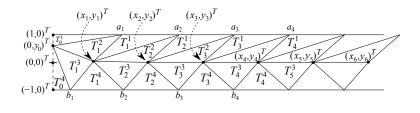


Answer: Yes.

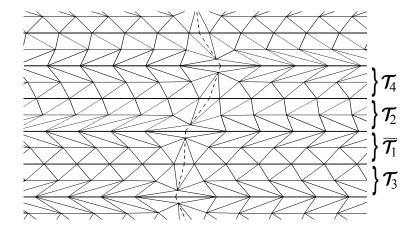
D.F., C. Richter: Incongruent equipartitions of the plane, arxiv:1905.08144

Idea: distort





Stack sheared copies of the strip tiling:



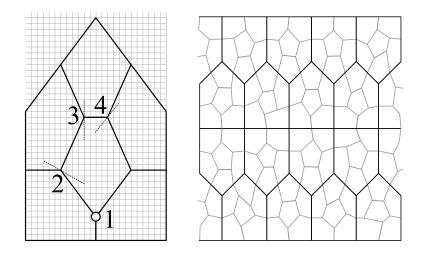
(7 pages of computation show: all triangles are incongruent)

Variations of the questions for n-gons (3 $\leq n \leq$ 6)

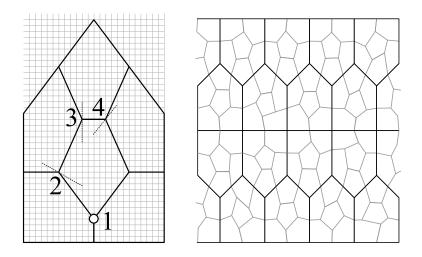
Is there a normal equal area tiling by....

Triangles	vtv	not vtv
normal	Yes	Yes
equal perimeter	No	No
Quadrangles	vtv	not vtv
normal	Yes	Yes
equal perimeter	?	?
Pentagons	vtv	not vtv
Pentagons normal	vtv Yes	not vtv Yes
normal	Yes	
normal equal perimeter	Yes ?	Yes ?
normal equal perimeter Hexagons	Yes ?	Yes ? not vtv

Quadrangles, pentagons, hexagons are easier. E.g.:



Quadrangles, pentagons, hexagons are easier. E.g.:



Triangles seem to be the "limiting" case (wrt degrees of freedom)

Current work:

- ▶ There are tilings of \mathbb{R}^2 by unit area quadrangles with equal perimeter
- There are normal triangle tilings of \mathbb{R}^2 by unit area quadrangles which are arbitrarily close to the regular triangle tiling
- ightharpoonup There are tilings of \mathbb{R}^2 by unit area pentagons with equal perimeter

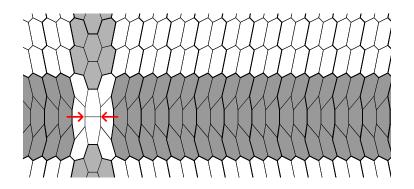
Paper containing the first two is ready and soon on arXiv.org.

Part 2

(with Alexey Glazyrin and Zsolt Lángi)

Usually "not vertex-to-vertex" is less restrictive than "vertex-to-vertex".

But for hexagons it is the other way around: it is harder to find non-vertex-to-vertex tilings by hexagons than vertex-to-vertex ones.

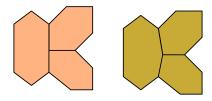


Here: only two non-vertex-to-vertex situations. This raises the...

Question: How many non-vertex-to-vertex situations can a tiling by convex hexagons have?

Question: How many non-vertex-to-vertex situations can a tiling by convex hexagons have?

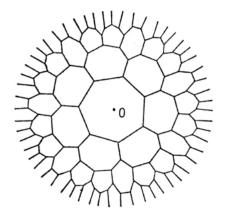
Very similar question: How many heptagons can a tiling by convex n-gons have, if $n \ge 6$?



Question: How many non-vertex-to-vertex situations can a tiling by convex hexagons have?

Very similar question: How many heptagons can a tiling by convex n-gons have, if $n \ge 6$?

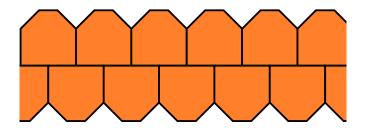
Answer: a lot.



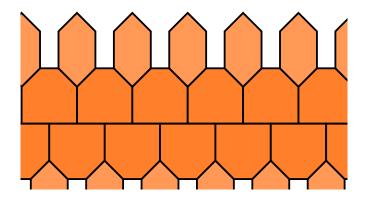
Question: How many heptagons can a *normal* tiling by convex n-gons have, if $n \ge 6$?

Question: How many heptagons can a *normal* tiling by convex n-gons have, if $n \ge 6$?

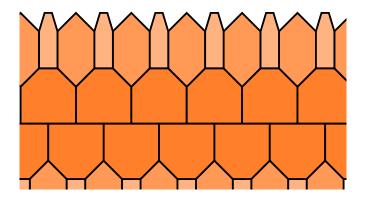
Problem:



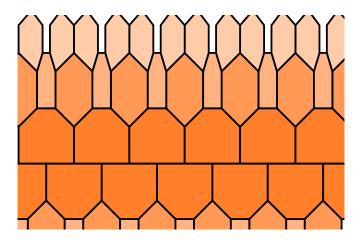
Problem:



Problem:



Problem:



Partial answer: at most finitely many.

Thomas Stehling: Über kombinatorische und graphentheoretische Eigenschaften normaler Pflasterungen, PhD thesis, Dortmund (1989)

A. Akopyan: On the number of non-hexagons in a planar tiling, C. R. Math. Acad. Sci. Paris 356 (2018).

Partial answer: at most finitely many.

Thomas Stehling: Über kombinatorische und graphentheoretische Eigenschaften normaler Pflasterungen, PhD thesis, Dortmund (1989)

A. Akopyan: On the number of non-hexagons in a planar tiling, C. R. Math. Acad. Sci. Paris 356 (2018).

Akopyan provides an upper bound:

heptagons
$$\leq \frac{2\pi D}{A} - 6$$

D: maximal diameter, A: minimal area.

(so D/A is a measure for how "normal" the tiling is)

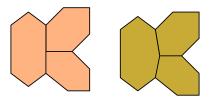
Answer: Arbitrarily many. (Even of unit area)

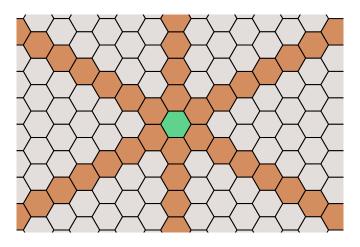
D.F., Alexey Glazyrin, Zsolt Lángi: Hexagon tilings of the plane that are not edge-to-edge, submitted, arxiv:1911:xxxxx

Answer: Arbitrarily many. (Even of unit area)

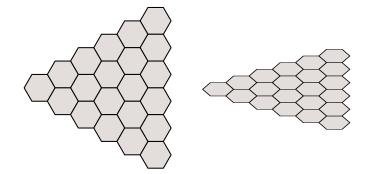
D.F., Alexey Glazyrin, Zsolt Lángi: Hexagon tilings of the plane that are not edge-to-edge, submitted, arxiv:1911:xxxxx

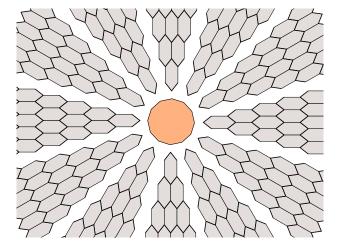
Corollary: A hexagon tiling can have arbitrarily many non-vertex-to-vertex situations (but not infinitely many)

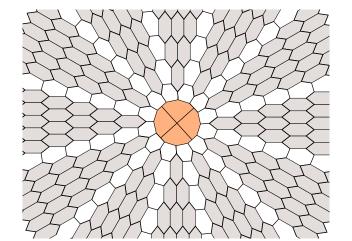


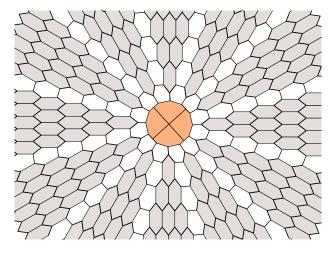


How to obtain "arbitrary many"

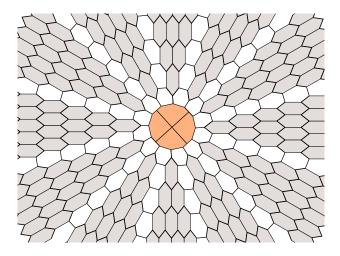








We can do the maths in order to compare with Akopyan's bound: This construction achieves 3/4 of his bound, hence his bound is asymptotically tight (linear in D/A).



We can do the maths in order to compare with Akopyan's bound: This construction achieves 3/4 of his bound, hence his bound is asymptotically tight (linear in D/A).

Thank you!