
BOUNDED DISTANCE AND BILIPSCHITZ EQUIVALENCE OF
DELONE SETS

DIRK FRETTLÖH AND ALEXEY GARBER

Abstract. This paper surveys several old and new results on two equivalence relations
between Delone sets, namely bilipschitz equivalence (i.e., there is a bijection between two
Delone sets that is Lipschitz continuous in both directions) and bounded distance equiv-
alence (i.e., there is a bijection between two Delone sets that is a small displacement).
The most interesting cases arise in the realm between crystallographic Delone sets and
chaotic Delone sets. Prominent examples being model sets (aka cut-and-project sets) or
Delone sets arising from substitution tilings.
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1. Introduction

Note on this draft: The two of us started to work on this topic in 2009. Since then
we found out that several tracks we’ve been following have already been followed by other
colleagues, either in the past or simultanuously, and that many of the results we’ve been
proving were already known. Nevertheless, this fact also indicates growing interest in the
subject. So we decided to make our material publicly available. This text can be read as a
survey, or as a scientifc paper (there are a few original results, or at least some alternative
proofs). Anyway, it is still under construction, so there are probably several errors, many
gaps and some strange formulations.
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2 DIRK FRETTLÖH AND ALEXEY GARBER

In this paper we study geometric properties of Delone sets in d-dimensional Euclidean
space Rd. The notion of Delone set was introduced by B. Delone who called them (r, R)-
systems.

In the following, let Cr(x) denote the cube of side length r centered in x with edges
parallel to the coordinate axes. I.e.,

Cr(x) = {(y1, . . . , yd) |xi −
r

2
≤ yi ≤ xi +

r

2
(i = 1, . . . , d)}.

Definition 1.1. A set Λ ⊂ Rd is a Delone set, if there are R > r > 0, such that

(1) For all x ∈ Rd, CR(x) contains at least one element of Λ (Λ is relatively dense),
and

(2) For all x ∈ Rd, Cr(x) contains at most one element of Λ (Λ is uniformly discrete).

In the initial definition of Delone d-dimensional cubes were replaced by Euclidean balls,
but it is clear that these two definitions are equivalent and using metric with “cubical
balls” could simplify our argumentation.

In particular, Delone sets are infinite countable sets. Sometimes Delone sets are also
called separated nets. A Delone set Λ in Rd is called k-periodic, if it has k linearly
independent periods. I.e., there are t1, . . . tk linearly independent vectors such that Λ+ti =
Λ for 1 ≤ i ≤ k.

Definition 1.2. A discrete point set Λ ⊂ Rd is bilipschitz equivalent to Λ′ (short: Λ
bil∼ Λ′),

if there is a bijective map f : Λ → Λ′ which is Lipschitz in both directions. This is
equivalent to

∃C > c > 0 : c|x− y| ≤ |f(x)− f(y)| ≤ C|x− y|
for all x, y ∈ Λ.

The following definition formulates a relation between Delone sets which is stronger
than bilipschitz equivalence.

Definition 1.3. A discrete point set Λ ⊂ Rd is bounded distance equivalent to Λ′ (short:

Λ
bd∼ Λ′), if there is C > 0 and an invertible map g : Λ→ Λ′ such that |x− g(x)| < C for

all x ∈ Λ.
Such a map g is called a bounded distance bijection.

Lemma 1.4. Bilipschitz equivalence and bounded distance equivalence are equivalence
relations.

The proof is straightforward. Trivially all lattices in Rd are bilipschitz equivalent to Zd,
since they are images of Zd under some linear bijection. Hence it is clear that a Delone
set is bilipschitz equivalent to some lattice in Rd, if and only if it is bilipschitz equivalent
to Zd.

Lemma 1.5. Let Λ,Λ′ be Delone sets in Rd. If Λ
bd∼ Λ′, then Λ

bil∼ Λ′.

Proof. Let r (r′) denote the constant of uniform discreteness of Λ (Λ′), compare Definition
1.1. We show that g−1 is a bilipschitz map from g(Λ) to Λ. Let x, y ∈ g(Λ). Then

|g−1(x)− g−1(y)| = |g−1(x)− x+ x− y − g−1(y) + y| ≤ |x− y|+ 2C

= r′(|x− y|/r′ + 2C/r′) ≤ r′(2C/r′ + 1)|x− y|/r′ = (2C/r′ + 1)|x− y|,
where we used the fact t+ C ′ ≤ (C ′ + 1)t for t ≥ 1 and C ′ > 0. Furthermore,

|x− y| ≤ |g−1(x)− g−1(y)|+ 2C = r(|g−1(x)− g−1(y)|/r + 2C/r)

≤ r(2C/r + 1)|g−1(x)− g−1(y)|/r = (2C/r + 1)|g−1(x)− g−1(y)|,
which proves the claim. �
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In this paper we will review results on bounded distance and bilipschitz equivalence
of arbitrary Delone sets but we will be mostly focused equivalence of model sets. The
model sets are usual mathematical representatives for quasicrystals. See the Appendix A
for more details. Similar questions on two mentioned equivalencies can be asked about
Delone sets in arbitrary metric spaces. We restrict our attention to the Euclidean case
apart from mentioning two results in Subsection 2.4.

2. Bounded distance equivalence

2.1. Dimension one. It is easy to see that all Delone sets in R are bilipschitzequivalent
to Z: the fact that two points do not come arbitrarily close corresponds to the slope
of the bijection being not too steep, and the fact that there are no arbitrary large gaps
corresponds to the slope of the bijection being not too small. Thus, by Lemma 1.4 follows:

Lemma 2.1. Let Λ,Λ′ be Delone sets in R. Then Λ
bil∼ Λ′.

Proof. We show that for any Delone set Λ ∈ R holds Λ
bil∼ Z. Wlog, let Λ = . . . λ−1, λ0 =

0, λ1, λ2 . . . be a Delone set with parameters r, R. Note that the smallest possible distance
of two points in Λ is r, and the largest possible distance of two consecutive points is
2R. Let f : Λ → Z, f(λn) = n. Then, r|n − m| ≤ |λn − λm| ≤ 2R|n − m|, thus f is
bilipschitz. �

For bounded distance equivalence the situation is more complicated. As a first example,
consider Z and 2Z. These two sets cannot be bounded distance equivalent. (An easy way
to see this is to consider the 2n + 1 points in A := Z ∩ [−n, n] and the 2n points in
B := 2Z ∩ [−2n, 2n − 1]. One of the points in A has to be mapped by g to some point
not in B, thus to some point of distance larger than n− 1 from A.)

The reason for Z 6bd∼ 2Z in the example above is obviously that the two sets have different
densities. There are also examples of point sets with the same density being not bounded
distance equivalent, as we will see later in this section.

In fact, the definition of the density of an infinite point set is a subtle point. It is clear
how to define the density of a point set contained in some finite set, or the density of a
periodic point set (e.g., a point lattice). For instance, if Λ is a periodic set in R, then let

(1) dens(Λ) = lim
r→∞

1

2r
#(Λ ∩ [−r, r]).

Lemma 2.2. Let Λ ⊂ R be some periodic Delone set. Then Λ
bd∼ 1

dens(Λ)
Z.

Proof. Let t be the smallest period of Λ: Λ = Λ+t. Since Λ is uniformly discrete, any half-
open interval [a, a+ t[ contains the same number of points, say, m. Then dens(Λ) = m/t.
Wlog, let Λ = . . . λ−1, λ0 = 0, λ1, λ2 . . .. The map λn 7→ t

m
n gives the desired bounded

distance equivalence. �

Consider the following nonperiodic example: Let Λ contain all integer points, together
with those half integer points (n s.t. n+ 1

2
∈ Z) that lie between 4n and 2 ·4n and between

−4n and −2 · 4n. A simple computation of the terms in Equation (1) yields that the limit
does not exist: the sequence oscillates between 4

3
and 5

3
.

Later we want to give results for certain nonperiodic sets in Rd. A relevant theorem for
this is the following theorem by Kesten for point sets in R.

Theorem 2.3 ([18]). Let ξ ∈ [0, 1], 0 ≤ a < b ≤ 1 and define

Λ := {k ∈ Z | a ≤
(
kξ mod 1

)
< b}.
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1

b

Figure 1. The points of L (circular dots) and of Λ (small black rectangles).
White points in L correspond to points of Λ.

Then D(n) := #(Λ ∩ [1, n]) − n(b − a) is bounded, if and only if b − a = kξ mod 1 for
some k ∈ Z.

If ξ is rational, then Λ is periodic. This case is covered already by Lemma 2.2, thus we
consider only irrational values of ξ.

Corollary 2.4. Let Λ be as above, ξ irrational. Λ is bounded distance equivalent to some

lattice, if and only if b− a = kξ mod 1 for some k ∈ Z. In this case, Λ
bd∼ 1

(b−a)
Z.

The “if” part was known for a long time. It was shown by Hecke [17] (p 73) for a = 0,
using analytic number theory (Dirichlet series of meromorphic functions). Ostrowski
found a simple argument for generalizing this to arbitrary a [25]. Kesten settled the “only
if” part by “heavy use of continued fraction expansions”. Here we provide a simple proof
of the “if” part, similar arguments were used by Duneau and Oguey [7] for more general
results on Model sets.

Proof. (if part of Theorem 2.3) First we consider the case a = 0. We lift the sequence Λ
of Theorem 2.3 to R2 as follows: Let L := {. . . `−1, `0 = 0, `1, `2, . . .}, where `k := (k, kξ
mod 1) for k ∈ Z. Let π denote the orthogonal projection to the first coordinate. Then
Λ consists of all elements π(`k) of L with a ≤ kξ mod 1 ≤ b; compare Figure 1.

In other words, all points of L lying in the strip {(x, y) | 0 ≤ y ≤ b} are projected to
the line {(x, y) | y = 0}, yielding the set Λ. This is clearly the same set as the following:
Erect on each point in L a vertical length segment of length b. Any point of L whose
line segment is hit by the horizontal line through (b, 0) is projected orthogonally to the x
axis. (Compare Figure 2, left.) Now we change the setting slightly in order to obtain a

periodic point set Γ such that Γ
bd∼ Λ.

Note that b is of the form kξ mod 1 for some k 6= 0 in Z. Since ξ is irrational, k
is unique. (Otherwise: if there are k 6= m in Z \ {0} with kξ = b = mξ mod 1, then
(k −m)ξ = 0 mod 1, thus there is N ∈ Z with (k −m)ξ = N , hence ξ = k−m

N
∈ Q, a

contradiction.)
Let us first assume that the line segment ` from (0, 0) to (k, kξ mod 1) contains no other

point of L. Consider the Z-span 〈L〉Z of L, which is a point lattice G = 〈(1, ξ), (0, 1)〉Z.
Now the line segment ` is a diagonal of some fundamental domain of this lattice, because
of the following fact: If (p, q) ∈ Z2 where p, q are coprime, then there is a fundamental
domain F of Z2 such that the line segment from (0, 0) to (p, q) is the diagonal of F .

(This holds, because if p, q are coprime, there are a, b ∈ Z such that 1 = ap − bq =

det
(
p b
q a

)
. Thus (p, q) and (b, a) are sides of some fundamental domain of Z2. Hence (p, q)

is the diagonal of the fundamental domain with sides (p− b, q − a), (b, a).)
Now we erect on each point of L a line segment (a flagstick) of height b, but with

the direction of the line S through (0, 0) and (k, kξ mod 1). Instead of projecting the
points of L whose flagstick is hit by the horizontal line through (b, 0) orthogonally to the



DISPLACEMENT EQUIVALENCE OF DELONE SETS 5

1

b

Figure 2. Projecting all points in the strip to the x-axis is the same as
projecting each point whose flagstick is hit by the horizontal line Hb through
(0, b) (left). By slanting the flagsticks and projecting the intersection of the
flagstick with Hb we obtain a periodic set Γ (white rectangles, right).

x-axis, we project the intersection of the flagstick with the horizontal line through (b, 0)
orthogonally to the x-axis (compare Figure 2, right). The resulting point set, regarded as
a point set in R, is called Γ.

Note that Γ is a periodic set in R: It is obtained as a section through a set of equidistant
parallel lines. Moreover, each of these parallel lines corresponds to exactly one point of Γ
(with one exception): The fundamental cell F has height b.

The exception being that (0, 0) and (k, kξ mod 1) are mapped to the same point.
In view of Theorem 2.3 we have to consider “half open” flagsticks: those whose lower
endpoint belongs to it, its upper endpoint does not. (Anyway, even if we use closed
flagsticks, we can repair it by moving all points left from 0 one step to the left. This
leaves one empty position one step left from 0, which we use for (k, kξ mod 1).)

Let Γ = {. . . γ−1, γ0 = 0, γ1, γ2, . . .} and Λ = {. . . λ−1, λ0 = 0, λ1, λ2, . . .}. Clearly,

Γ
bd∼ Λ, since for any m ∈ Z the maximal distance |γm − λm| is bounded by the width

of the fundamental cell we used. So the result is proved for the special case we have
considered up to now.

We still have to deal with two restriction we have made: (1.) there are no further points
of L in the line segment between (0, 0) and (k, kξ mod 1), and (2.) a = 0.

Regarding (1.): If there are m > 1 points of L contained on the line segment between
(0, 0) and (k, kξ mod 1) we can use the same construction, using m stacked copies of the
fundamental cell F . Then for each parallel line exactly m points are projected to the
x-axis, still yielding a periodic Delone set Γ in R.

Regarding (2.): If a > 0 we cannot longer assume that λ0 = γ0 = 0. But otherwise we
can use the same construction. (If we like, we may define λ0 (γ0) to be that point in Λ
(Γ) which are closest to 0. But this is not essential in the proof.) �

The sets Λ here are first basic examples of model sets, or Meyer sets (see Appendix).
For instance, if we take a = 0, ξ = 1

2
(
√

5 + 1), we obtain the so called Fibonacci sequence.

2.2. Window is (a union of) fundamental domain(s) of sublattice(s). We have
seen already in dimension one that density of point sets plays some role, and that periodic
point sets are simple to handle. This reflects in the following results proven in [7] (Lemma
4.3 and Theorem 5.2).

Theorem 2.5. Let Λ,Λ′ be two point lattices in Rd such that dens(Λ) = dens(Λ′). Then

Λ
bd∼ Λ′. The union of any n lattices in Rd is bounded distance equivalent to some lattice

in Rd.

The density of d-periodic sets can be defined in analogy to (1):

(2) dens(Λ) = lim
r→∞

1

rd
#(Λ ∩ Cr(0)).
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Theorem 2.6. Let Λ and Λ′ be Delone sets with well-defined density. If Λ
bd∼ Λ′, then

dens(Λ) = dens(Λ′).

Proof. The idea is the same as in the example after Lemma 2.1: Essentially the pigeon

hole principle. Let dens(Λ) > dens(Λ′), c :=
(

dens(Λ)/ dens(Λ′)
)1/d

, and fix some ε such
that c > 1 + ε. We show that some point of Λ ∩ C(1+ε)r(0) has to be mapped by any
bijection to a point in Λ′ outside Ccr(0).

By the definition of density, the number `r of points in Λ ∩ C(1+ε)r(0) is

` =
(
(1 + ε)r

)d
dens(Λ) + o(rd) ≥ rd dens(Λ) + εdrd dens(Λ) + o(rd)

and the number `′r of points in Λ′ ∩ Ccr(0) is (cr)d dens(Λ) + o(rd). Thus

`r − `′r ≥ εdrd dens(Λ) + o(rd).

In particular, `r − `′r ≥ 1 for r large enough. Thus any bijection g : Λ → Λ′ maps some
point x ∈ Λ∩C(1+ε)r(0) to the complement of Λ′∩Ccr(0). Hence |g(x)−x| ≥ (c− 1− ε)r
for any r large enough. Thus g cannot be a bounded distance bijection. �

Theorems 2.5 and 2.6 imply immediately the following result.

Theorem 2.7. Let Λ,Λ′ be d-periodic Delone sets in Rd. Then dens(Λ) = dens(Λ′) iff

Λ
bd∼ Λ′.

Proof. The if-part is Theorem 2.6. For the other direction, note that any d-periodic
Delone Λ set is the union of n translates of lattices. Thus, by Theorem 2.5, it is bounded
distance equivalent to some lattice Γ. By Theorem 2.6 we have dens(Γ) = dens(Λ). In

the same way we find a lattice Γ′ with Γ′
bd∼ Λ′ and dens(Γ′) = dens(Λ′) = dens(Λ). Thus

Λ
bd∼ Γ

bd∼ Γ′
bd∼ Λ′. �

Corollary 2.8. Let Λ be a d-periodic Delone sets in Rd. Then Λ
bd∼ 1

dens(Λ)1/d
Zd.

2.3. A criterion by Laczkovich. One kind of problems one can now formulate is illus-
trated by the following questions:

(1) Let Λ1
bil∼ Λ2. Is Λ2

bil∼ Λ1 ∪ Λ2? Under which conditions?

(2) Let Λ
bd∼ Zd, Λ = Λ1 ·∪Λ2, Λ1

bd∼ Λ2. Is Λ1
bd∼ 2−1/dZd?

In the sequel we answer the second question, see Thm. 2.11 below. It can also been
shown by a result of Laczkovich:

Theorem 2.9 ([19]). Let Λ ⊂ Rd be a Delone set. Then Λ
bd∼ 1

dens(Λ)1/d
Zd if and only if

for every bounded measurable H ∈ Rd there is s > 0 such that

|#(Λ ∩H)− dens(Λ)λ(H)| ≤ sλ(∂H +B1)

Here λ denotes d-dimensional Lebesgue measure, and B1 is the unit ball. Hence ∂H+B1

is the thickened boundary of H. The left hand side of the inequation in the theorem above
can be seen as a d-dimensional version of the deficiencyD(n) in Theorem 2.3. The criterion
is fulfilled if the deficiency (the difference between the actual number of points and the
expected value) does not deviate too much from the volume of the thickened boundary.

However we would like to provide an independent elementary proof of point (2) above
without using Theorem 2.9. We will use the following “infinite” version of the Hall
marriage theorem.
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Lemma 2.10. Consider a bipartite graph G with countable parts V1 and V2 such that any
vertex has finite degree. Assume that for any finite subset X of one vertex part there are
at least #X vertices from another vertex part that are connected with at least one vertex
from X. Then there exists a set of disjoint edges of G that covers all vertices of G.

Proof. Enumerate the vertices of V1 as a1, a2, . . . and the vertices of V2 as b1, b2, . . ..
If there is finite X ⊂ V1 such that a1 ∈ X and vertices of X connected with exactly #X

vertices from V2 (denote this subset of V2 as X ′) then we can apply the usual finite version
of Hall’s theorem to the graph with vertex set X ∪ X ′ and forget about these vertices
(that means that we choose edges between these vertices and we will never change these
edges). It is easy to check that the conditions of this lemma remains true for the graph
with the remaining vertex set.

If there is no such X, let v be some vertex that is connected with a1. Now we will try to
find a similar subset Y of V2 such that v ∈ Y and vertices with Y connected with exactly
#Y vertices from V1 (this set is denoted by Y ′). If there is such an Y then we can apply
Hall’s theorem to the graph with vertex set Y ∪Y ′ and forget about these vertices. Again
the condition of this lemma remains true for the remaining graph.

If there is no such Y then we can delete the edge a1v and the conditions of this lemma
will remain true. We can not delete all edges from a1, so at some step we will find a set
X or Y. In both cases we will fix an edge from a1 because in the first case a1 is in X and
in the second one a1 is in Y ′. So after this algorithm we will obtain a graph that satisfies
the conditions of this lemma, but without vertex a1 and some other vertices.

Now we choose the remaining vertex bi with the smallest i and do the same steps and so
on. Since there is a countable number of vertices we will divide all vertices into pairs. �

Theorem 2.11. Consider a Delone set A in Rd such that A
bd∼ Zd. If A is represented as

A = M1 ·∪M2 ·∪ . . . ·∪Mn in such a way that Mi
bd∼ Mj then Mi

bd∼ n1/dZd.

Proof. Without loss of generality we can assume that A = Zd. It is enough to con-
struct a bounded distance bijection between M1 and the set of all integer points in

T := {(nk1, k2, . . . , kd) | ki ∈ Z}. By Theorem 2.7 we have n1/dZd bd∼ T . Let cij be a
distance in the bounded distance bijection between Mi and Mj and c = max cij.

Consider a bipartite graph with vertex set M1 ∪ T . Two vertices are connected by an
edge if and only if the distance between these vertices is at most c + n. We will show
that this graph satisfies Lemma 2.10. For every k and for any k points from M1 we have
at least kn lattice points covered by c-balls in these points (we have k points from each
Mi), and for every such lattice point we decrease the first coordinate to the closest integer
divisible by n. In this way we will come to some point in T , and we moved for at most
n, so totally we traveled for at most c+ n. For a fixed point in T we came for at most n
times (different remainders modulo n) so we obtained at least k different points from T
in (c+ n)-balls with centers in given k points of M1.

The same is true for any k points from T : there are kn points in this n×1×. . .×1 bricks
and at least k of them are from one Mi. Thus at least k points from M1 are at distance
c from these bricks and at distance c + n from these points from T. So the conditions of
Lemma 2.10 are fulfilled and we get the desired bounded distance bijection determined
by the edges from lemma 2.10. �

Example 2.12. As an example of application of previous theorem we can consider a
half-Fibonacci sequence (see section 2.1). The Fibonacci sequence F is a one-dimensional

model set with window W =
[
0,
√

5+1
2

)
. We can cut W into two equal interval W1 =
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0,
√

5+1
4

)
and W2 =

[√
5+1
4
,
√

5+1
2

)
then we can construct two half-Fibonacci model sets

F1 and F2 corresponding to these windows.
We will show that F1 and F2 are not bounded distance equivalent though they have

the same density. By theorem 2.3 we know that F1 ·∪F2 is bounded distance equivalent

to some lattice Λ and therefore if F1
bd∼ F2 then by theorem 2.11 both F1 and F2 are

equivalent to lattice 1
2
Λ. But this contradicts with Theorem 2.3 since windows W1 and

W2 can not be represented in desired form.

2.4. Other spaces. In 1997 Bogopolskii proved the following result [4].

Theorem 2.13. Every two Delone sets in hyperbolic space Hd (d ≥ 2) are bounded
distance equivalent.

Consequently all Delone sets in Hd are bilipschitz equivalent. In view of Theorem 2.9
this is probably not too surprising: the deficiency (the expected number of points of Λ
contained in some large ball minus the actual number of points of Λ inside this ball)
should be bounded by the mass of the boundary (measured in some appropriate manner).
Since in Hd the mass of a ball is concentrated on the boundary this is intuitively fulfilled
easily.

In a similar flavour Papasoglu proved the following result in 1995 [26].

Theorem 2.14. Any two infinite regular trees (of valency k ≥ n ≥ 4) are bilipschitz
equivalent.

In fact the author proved even bounded distance equivalence, see Lemma 1 in [26].

3. Bilipschitz equivalence

3.1. Non-equivalence in Euclidean case and number of equivalence classes.
From Theorem 2.7 we have the following

Corollary 3.1. Any two d-periodic Delone sets in Rd are bilipschitzequivalent.

Proof. By Theorem 2.7 any d-periodic Delone set is bounded distance equivalent (thus
b.l.e.) to some lattice. Clearly any two lattices in Rd are b.l.e., since they are bijective
affine images of each other. �

Things became interesting when the following result was proven in 1998 by Burago and
Kleiner and independently by C. McMullen..

Theorem 3.2 ([5, 22]). There are Delone sets in Rd (d ≥ 2) which are not bilipschitze-
quivalent to Zd.

A natural question is now how the set of all Delone sets in Rd is partitioned into

equivalence classe, w.r.t.
bil∼ and

bd∼. A first answer is about the number of these equivalence
classes.

Theorem 3.3 ([21]). For every integer d ≥ 2 the set of biLipschitz equivalence classes in
Rd has cardinality continuum.

Theorem 3.4. For every integer d ≥ 2 the set of bounded distance equivalence classes in
Rd has cardinality continuum; i.e., its cardinality is #R.

Proof. By Theorem 2.6 the cardinality is at least #R, since for every value of density
there is at least one equivalence class.

To see that the cardinality is at most #R we index each equivalence class with two
parameters r ∈ R+, s ∈ {A |A ⊂ Zd}. The value r is the minimal constant of uniform



DISPLACEMENT EQUIVALENCE OF DELONE SETS 9

discreteness as in Definition 1.1. Now we divide Rd into boxes Cr(x), x ∈ rZd. By uniform
discreteness, each such box contains at most on point of Λ. We map Λ to some subset of
rZd by mapping any λ ∈ Λ to the center x of the box containing λ. (In order to make rule
this unique: If λ is contained in more than one box, it is mapped to the x with the lowest
coordinates.) This is clearly a bounded distance bijection. The new set is the desired s.
There are not more than r times s bounded distance equivalence classes, thus at most
#R many. �

The idea of choosing a representative D ⊂ Zd for some bounded distance equivalence
class may prove useful in the future. Thus we state a lemma about this concept here.

Lemma 3.5. [12] Let Λ ⊂ Rd be a Delone set. Then there exists a Delone set D ⊂ Zd
such that Λ and D are biLipschitz equivalent.

3.2. Sufficient condition for the two-dimensional case. The following theorem was
proved by Burago and Kleiner ([6, Theorem 1.3]), which reads in our framework as follows.

Theorem 3.6. Let Λ ⊂ R2 be a Delone set. For % > 0, define e%(x, r) as

e%(x, r) = max

(
%r2

N(x, r)
,
N(x, r)

%r2

)
,

and let E%(r) = supx∈R2 e%(x, r). If there is % > 0 such that the infinite product
∏

mE%(2
m)

converges, then Λ is bilipschitzequivalent to Z2.

3.3. Arbitrary two-dimensional quasicrystals. The first main theorem of this section
states that each linearly repetitive Delone set in R2 is bilipschitzequivalent to Z2. It is a
consequence of Theorems and 3.6 and 3.8. During preparing this manuscript we learned
that there is a preprint obtaining our main theorem for arbitrary dimension [1]. First we
need a few definitions. A patch in Λ is just a finite subset of Λ. An r-patch in Λ is a patch
in Λ which is contained in some ball of radius r > 0.

Definition 3.7. A Delone set Λ is repetitive, if for each r > 0 there is R > r > 0 such
that each R-patch in Λ contains a translate of each r-patch in Λ.
A Delone set Λ is linearly repetitive, if there are c, a > 0 such that (cr + a)-patch in Λ
contains a translate of each r-patch in Λ.
A Delone set has finite local complexity (short FLC) if for any r > 0 there are only finitely
many pairwise noncongruent r-patches in Λ.

Let NP (x, r) denote the patch counting function

NP (x, r) = #{P ′ ∈ Λ ∩ Cr(x) |P ′ = P + t, t ∈ Rd}.
The following theorem [20, Theorem 5.1] states that for all linearly repetitive Delone sets,
the frequency fP of each patch P are well-defined and exist uniformly in x. Moreover, it
gives an estimate on the rate of convergence of these frequencies.

Theorem 3.8. Let Λ be a linearly repetitive Delone set in Rd. Then Λ has uniform patch
frequencies. Moreover, the frequency fP = limr→∞

1
rd
NP (x, r) of any patch P ⊂ Λ does

not depend on x, and it holds:

| 1
rd
NP (x, r)− fP | ≤ Cr−δ

for some C, δ > 0.

In particular, this result holds for all 1-point patches. Thus the above estimate holds
for the point frequency f = f(Λ) of Λ. In the sequel, denote the point counting function
#{y ∈ (Λ ∩ Cr(x)} just by N(x, r).

Now we can proof the main result of this section.
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Theorem 3.9. Any linearly repetitive Delone set in R2 is bilipschitzequivalent to Z2.

Proof. By setting % = f we obtain by Theorem 3.8 and Theorem 3.6:

Ef (r) = sup
x∈R2

max

(
fr2

N(x, r)
,
N(x, r)

fr2

)
.

From Theorem 3.8 follows |N(x,r)
fr2
− 1| ≤ C

f
r−δ. From this inequality we obtain for r large

enough

1− C

f
r−δ ≤ N(x, r)

fr2
⇒ fr2

N(x, r)
≤ 1

1− C
f
r−δ

= 1 +

C
f
r−δ

1− C
f
r−δ

⇒ fr2

N(x, r)
− 1 ≤ C

f
r−δ

1

1− C
f
r−δ
≤ 2C

f
r−δ.

This yields 0 ≤ Ef (r)−1 ≤ 2C
f
r−δ for r large enough. The product

∏
mEf (2

m) converges

iff
∑

m(Ef (2
m)− 1) converges. Since δ > 0, the sum

0 ≤
∑
m

(Ef (2
m)− 1) ≤

∑
m

2C

f
(2m)−δ =

2C

f

∑
m

(2−δ)m

converges as sum of geometric sequence, and the claim follows. �

Now we can apply this result to the zoo of nonperiodic tilings. There are essentially
two main methods to construct nonperiodic tilings of high local and global order: Tile
substitutions and cut and project methods. See for instance [3] for explanations, examples
and details. Theorems 3.11 and 3.13 give conditions on bounded distance equivalence and
b.l.e. of tilings generated by these two methods.

Theorem 3.10. Let T be a primitive substitution tiling in Rd having FLC. Then T is
linearly repetitive.

This result is proven for the Penrose tiling in [11]. A general proof for substitution
tilings can be found in [27], see also [3]. Together with Theorem 3.9 this immediately
implies the following result.

Theorem 3.11. Let T be a primitive substitution tiling in Rd with FLC. Then T is
bounded distance equivalent to some lattice. Thus T is b.l.e. to Zd.

Clearly any model set is FLC. Therefore we have the following result as a special case
of 3.11.

Corollary 3.12. Any model set which can also be generated by a primitive substitution
is linearly repetitive.

The following result generalises the if-part of Kesten’s Theorem (Thm. 2.3 above) to
arbitrary dimensions. It can be proven by a d-dimensional construction due to Duneau
and Oguey [7] generalising the construction in the proof of the if-part of Thm. 2.3 above.
In particular, one uses that the set of the fundamental parallelepipedes (of which the
window is a projection) belonging to the projected points has the shape of a stepped layer
of exactly the appropriate width. This is the d-dimensional equivalent of the fact that
each fundamental parallelepipede has exactly one predecessor and exactly one successor;
compare Figure 2 right. See also [15] for an alternative proof of this result.

Theorem 3.13. Any canonical projection tiling is bounded distance equivalent to some
lattice; thus b.l.e. to Zd.
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3.4. Arbitrary quasicrystals in any dimension. Aliste-Prieto, Coronel and Gam-
baudo proved the generalisation of Theorem 3.9 above in 2013.

Theorem 3.14 ([1]). Any linearly repetitive Delone set in Rd is bilipschitzequivalent to
Zd.

Appendix A. Model sets, aka cut and project sets

Model sets (or cut-and-project sets) are generalisations of lattices. They were intro-
duced by Meyer in the seventies [23] and became well studied objects in the context of
quasiperiodic structures, see for instance [3], [24]. Any model set Λ shares the following
properties with lattices:

• Λ is a Delone set.
• Λ− Λ is uniformly discrete.
• Λ− Λ ⊆ Λ + F , where F is a finite set.

Model sets are defined as follows.

Definition A.1. Let G,H be locally compact Abelian groups, Γ be a lattice in G × H
(that is, Γ is a cocompact discrete subgroup of G×H), π1 : G×H → G, π2 : G×H → H
be projections, such that π1|Γ is injective, and π2(Γ) is dense in H. Let W ⊂ H be a
compact set — the window — such that the closure of the interior of W equals W . This
is summarised in the following diagram, which is called cut-and-project scheme.

(3)
G

π1←− G×H π2−→ H
∪ ∪ ∪
V Γ W

Then

V := V (G,H,Γ,W ) = {π1(x) |x ∈ Γ, π2(x) ∈ W}
is called a model set.

If µ(∂(W )) = 0, then V is called regular model set.
If ∂(W ) ∩ π2(Γ) = ∅, then V is called generic model set.
If G = Rd, H = Re and if W is the projection of a fundamental parallelepipede of Γ,

then V is called a canonical projection tiling.

In fact, many of the prominent examples of model sets in the literature are canonical
projection tilings. In a certain sense these are the nicest model sets, compare for instance
[8, 13]. Examples are the Fibonacci tilings, the Penrose tilings, the Ammann-Beenker
tilings (see for instance [10]), and the icosahedral tilings in R3 of Kramer, Danzer, Am-
mann and Socolar. To be precise: The tilings themselves are clearly not model sets, since
they are packings rather than Delone sets. But the vertex set (or more general, the set
of some control points coding the tiling) of these tilings form canonical projection tilings,
from which the tilings can be constructed in a unique way. In a similar way, many sub-
stitution tilings living on a integer lattice or hexagonal lattice (like chair tiling, sphinx
tiling...) can be obtained as models sets if we choose H to be the p-adic numbers Qp

(more precisely: (Qp)
e for e ≥ 1).

Furthermore, the point sets in Theorem 2.3 are very close to being models sets (compare
Figure 1). Here G = H = R1, the integer span of the lifted points (k, kξ mod 1) is the
lattice Γ. The interval [0, b) is the window W . The orthogonal projection π1 : G×H → G
is not injective, hence the definition is not fulfilled. Anyway, tilting π1 slightly will make
it injective. And this is a bounded displacement wrt the points projected, so the sets are
very close to being model sets wrt bounded distance equivalence.
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[17] E. Hecke, Über analytische Funktionen und die Verteilung von Zahlen mod. eins (in German), Hamb.

Abh. 1 (1921), 54–76.
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