Exercises to "Average Lattices for Quasicrystals" and "Quasicrystals and Symmetry"

MATHCRYST MANILA 2017

For unknown terms or notations, or useful facts, see the slides of the talks. Exercises marked with (\star) might be hard to solve, or even new results.

Exercise 1:

Consider the following symbolic substitutions:

1. $a \rightarrow ab, b \rightarrow a$ 2. $a \rightarrow ab, b \rightarrow ba$ 3. $a \rightarrow abb, b \rightarrow a$ 4. $a \rightarrow aaba, b \rightarrow a$ 5. $a \rightarrow c, b \rightarrow bc, c \rightarrow abc$ 6. $a \rightarrow c, b \rightarrow abc, c \rightarrow cbc$

These can be turned into tile substitutions in \mathbb{R} . For each of them, compute the substitution factor, the lengths of the prototiles (such that the shortest prototile has length 1) and the relative frequencies of the prototiles.

 (\star) What is the density of the resulting tilings, i.e. the average number of tiles per unit area?

Exercise 2:

Given that the substitution factor of some primitive tile substitution σ is $\lambda = \eta^{1/d}$, where d denotes the dimension, and η is the largest eigenvalue of the substitution matrix M_{σ} . Prove that the left eigenvector corresponding to η contains the length, resp. areas, resp. volume, ... hence the d-dimensional volume, of the prototiles. Prove that the (normed) right eigenvector corresponding to η contains the relative frequencies of the prototiles.

Exercise 3:

(a) Find a tile substitution σ_1 in one dimension such that the substitution factor equals $2 + \sqrt{2}$.

(b) Find two different tile substitutions σ_1, σ_2 in one dimension such that the substitution factor of both equals $1 + \sqrt{2}$, and such that $M_{\sigma_1} \neq M_{\sigma_2}$ (and also $PM_{\sigma_1}P^{-1} \neq M_{\sigma_2}$ for $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$).

(c) Find three different tile substitutions $\sigma_1, \sigma_2, \sigma_3$ in one dimension such that the substitution factor of all three of them equals $2 + \sqrt{3}$, and such that $M_{\sigma_i} \neq M_{\sigma_j}$ for $i \neq j$ (and also $PM_{\sigma_i}P^{-1} \neq M_{\sigma_j}$ for $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$).

Exercise 4:

Find a tile substitution with substitution matrix $M_{\sigma} = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$

- (a) in dimension one
- (b) in dimension two (\star)
- (c) in dimension three (\star)

Exercise 5:

Given a CPS Λ with d = e = 1, lattice $\Gamma = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} \sqrt{2} \\ -\sqrt{2} \end{pmatrix} \rangle_{\mathbb{Z}}$, window $W = \begin{bmatrix} -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \end{bmatrix}$, and π_1 and π_2 the orthogonal projections to the *x*-axis, resp. the *y*-axis.

- (a) Construct the points of Λ that are contained in the interval [-10, 10]. (lengthy)
- (b) Find a tile substitution that generates Λ , too.
- (c) Find a simple algebraic expression for the star map x^* of x.

Exercise 6:

Prove that no power M^k of $M = \frac{1}{5} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix}$ equals $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ for $k \in \mathbb{Z}, k > 0$.

Exercise 7:

Prove that the following tile substitutions generate tilings with DTO: (\star)

Exercise 8:

Construct a tiling with DTO in \mathbb{R}^3 out of Conway's pinwheel's substitution σ_P , by considering $(\sigma_P)^2$ (that has substitution factor 5) and stacking 5 layers of the thickened pinwheel. (At least one $1 \times 1 \times 2$ block of two tiles has to be rotated appropriately).

(a) Show that the resulting tilings have DTO, i.e., the orientations of the tiles are dense on the sphere. (\star)

(b) Show that the orientations of the tiles in the resulting tilings are equidistributed on the sphere. (\star)