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Abstract.

1. Intro

xxx some introductory text

TODO [12, 25, 30, 37, 46] [1] [9] [34, Chapters 6 & 9]

Let N denote the positive integers, An = {1, 2, . . . , n} an alphabet with n letters, Fn
the free group with n generators, and let A∗n be the free monoid with n generators; i.e.,

A∗n =
⋃∞
k=0 (An)k is the set of all words over An, with concatenation as binary operator.

In this paper we consider only the case n = 2. We denote the two letters by a and b,
hence A2 = {a, b}, and A∗2 contains all words consisting of letters a and b, together with
the empty word ∅ (of length 0).

A word substitution (or short simply substitution) over A∗2 is a map σ : A∗2 → A∗2 with
σ(uv) = σ(u)σ(v) for all u, v ∈ A∗2. A substitution is uniquely defined by the image of the
letters a and b. Therefore we denote a substitution σ by σ = (σ(a), σ(b)).

A substitution σ can be extended uniquely to an endomorphism of the free group F2

by σ(a−1) = (σ(a))−1 and σ(b−1) = (σ(b))−1. A substitution is called invertible, if it
is invertible as an endomorphism of F2. In other words, σ is invertible if σ ∈ Aut(F2)
where Aut(F2) denotes the automorphism group of F2. We denote the set of invertible
substitutions over A∗2 by Aut(A∗2).
It is useful to consider the substitution matrix Mσ of a substitution σ defined by

Mσ =

(
|σ(a)|a |σ(b)|a
|σ(a)|b |σ(b)|b

)
,

where |w|a denotes the number of a’s in w ∈ A∗2, and |w|b denotes the number of b’s in w.
Moreover, we denote by |w| the length of a word w ∈ A∗2, i.e., the number of letters of w.

Remark 1.1. If σ is invertible then Mσ ∈ GL(2,Z). In particular, if σ is invertible then
det(Mσ) = ±1. Hence Mσ is also called the Abelianisation of σ.

Example 1.1. The silver mean substitution σ1 is given by σ1(a) = aba, σ1(b) = a. So
we write shortly σ1 = (aba, a). The substitution matrix is Mσ1 =

(
2 1
1 0

)
. Applying σ1
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repeatedly on a single letter yields longer and longer words:

σ1(a) = aba, σ2
1(a) = abaaaba, σ3

1(a) = abaaabaabaabaaaba,

σ4
1(a) = abaaabaabaabaaabaabaaabaabaaabaabaabaaaba, etc.

This substitution is invertible, one has σ−11 = (b, b−1ab−1). For this note that σ−11 (a) = b
is immediate from σ1(b) = a, and we then have a = σ−11 (aba) = σ−11 (a)σ−11 (b)σ−11 (a) =
bσ−11 (b)b.

A substitution σ is called primitive if the corresponding substitution matrix is primitive,
i.e., if there is k ∈ N such that Mk

σ contains positive entries only. While a primitive
substitution yields arbitrary long words if applied repeatedly on any single letter, non-
primitive substitutions might produce only short words — or even empty words — in this
way. Furthermore, a primitive substitution applied repeatedly on any single letter will
eventually produce words that contain all letters of the alphabet. The substitution matrix
Mσ of a primitive substitution σ yields information on the words generated by σ. This is
made precise in the following lemma, which is essentially the Perron-Frobenius Theorem
[32] applied to substitutions, see [4].

Lemma 1.1. If σ is a primitive substitution over A∗n, then Mσ has a unique eigenvalue
λ that is larger in modulus than the other eigenvalues of σ. Moreover, λ ∈ R and λ > 1.
Furthermore λ is the average growth of the words σn(x), i.e.,

λ = lim
n→∞

|σn+1(x)|
|σn(x)|

, (x ∈ An).

Hence, in our context, this eigenvalue λ is called the substitution factor of Mσ. In a more
general context λ is called Perron-Frobenius eigenvalue of Mσ.

The normalised eigenvector of Mσ corresponding to λ contains the relative frequencies of
letters. In particular, it contains positive entries only. I.e., if (v1, . . . , vn) with v1+· · ·+vn =
1 is an eigenvector of Mσ corresponding to λ then

vk = lim
n→∞

|σn(x)|xk
|σn(x)|

(xk ∈ An),

i.e., vk is the relative frequency of the k-th letter xk.

Example 1.1 (continued). The eigenvalues of the substitution matrix Mσ1 =
(
2 1
1 0

)
of the

silver mean substitution σ1 are 1+
√

2 and 1−
√

2. So the substitution factor is λ = 1+
√

2.
The normalised eigenvector for λ is (1

2

√
2, 1− 1

2

√
2)T . Thus a word σn(a) is of approximate

length c(
√

2 + 1)n (for some c ∈ R) and the ratio of the number of as and the number of
bs in this word tends to (1 +

√
2) : 1 for large n.

Lemma 1.2. Let σ, τ ∈ Aut(A∗2) be primitive. (In fact, σ and τ may be arbitrary primitve
substitutions on two letters). If σ ◦ τ and τ ◦ σ are both primitive, then they have the same
substitution factor.
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Proof. We have det(MσMτ ) = det(Mσ) det(Mτ ) = det(MτMσ) and tr(MσMτ ) = tr(MτMσ),
hence the eigenvalues coincide. �

A common object of study in the context of substitutions is the collection of all biinfinite
words generated by a substitution, the (symbolic) hull Xσ of a substitution σ. In the
context of symbolical dynamical systems this yields a “shift space” (or “subshift”) (Xσ, S),
where S is the shift operator S(u) = v where vn = un+1. One way to define the hull is via
legal words.

Definition 1.1. The hull of a primitive substitution σ is the set

{u ∈ AZ | each subword of uissubwordofσk(x) for some k ∈ N, x ∈ A}

For primitive substitutions this definition coincides with others in the literature, see for
instance [4, Remark 4.2]. In the sequel we will consider two substitutions as equivalent if
they define the same hull.

This paper was motivated by the question about what happens if we consider compositions
of substitutions. Let us illustrate this with some examples. It is easy to see that the square
σ2 = σ ◦ σ — or more generally any power σn for n ∈ N — yields the same hull as the
substitution σ. Thus we will consider products of different substitutions only. For the
composition σ ◦ τ we write shortly στ .

Example 1.2. Besides the silver mean substitution σ1 from Example 1.1 there is another
invertible substitution with the same substitution factor 1 +

√
2: σ2 = (abb, ab). Let us

consider products of σ1, σ2 and the well-known Fibonacci substitution τ = (ab, a).

substitution matrix eigenvalues

τσ1 = (abaab, ab)
(
3 1
2 1

)
2±
√

3

τσ2 = (abaa, aba)
(
3 2
1 1

)
2±
√

3

σ1τ = (abaa, aba)
(
3 2
1 1

)
2±
√

3

σ2τ = (abbab, abb)
(
2 1
3 2

)
2±
√

3

σ2σ1 = (abbababb, abb)
(
3 1
5 2

)
5
2
±
√
21
2

σ1σ2 = (abaaa, abaa)
(
4 3
1 1

)
5
2
±
√
21
2

The silver mean substitutions σ1 and σ2 combined with the Fibonacci (or golden mean)
substitution yield three different substitutions, all with PF eigenvalue 2 +

√
3. The two

combinations of different silver mean substitutions yield two different subtitutions with PF

eigenvalue 5
2

+
√
21
2

.

These observations can be done systematically within the framework described in the next
section. A key result is the following.

Theorem 1.1 ([45]). Let ε = (b, a), π1 = (ab, b), π2 = (ba, b). Then

Aut(A∗2) = 〈ε, π1, π2〉.

Note that ε2 = ε ◦ ε is the identity, and that bπ1(·)b−1 = π2(·).
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Corollary 1.1. Let E = Mε =
(
0 1
1 0

)
, P = Mπ1 = Mπ2 =

(
1 0
1 1

)
. If σ ∈ Aut(A∗2) then

Mσ = P n0EP n2EP n3 · · ·EP nk , n0, nk ≥ 0, ni ∈ N (1 ≤ i ≤ k − 1) .

Example 1.2 (continued). The Fibonacci substitution has the representation τ = επ2. The
silver mean substitutions have representations σ1 = επ2π1 and σ2 = π1επ2. Thus it is easy
to see that

τσ2 = (επ2)(π1επ2) = (επ2π1)(επ2) = σ1τ.

Note that a representation is not necessarily unique. TODO Is that a problem/issue?
TODO For instance,

σ1 = επ1π2 = επ2π1 = (aba, a).

Furthermore, in view of Lemma 1.2, it is clear that σ1σ2 and σ2σ1 have the same substitu-
tion factor.

2. Substitutions as automorphisms of F2

In the sequel we assume that a substitution σ is always in reduced form with respect to
the generators ε, π1 and π2; i.e., we assume that a representation of σ does not contain εn

for n ≥ 2.

Lemma 2.1. The non-primitive substitutions in Aut(A∗2) are exactly the ones of the form

ε, πn1
1 π

n2
2 π

n3
1 · · · π

nk
2 , επn1

1 π
n2
2 π

n3
1 · · · π

nk
2 ε,

where k ≥ 1 and ni ≥ 0 for 1 ≤ i ≤ k.

Proof. For the substitution matrices we have Mπ1 = Mπ2 =
(
1 0
1 1

)
= P , thus we just need

to show that

(a) that E = Mε, P
n and EP nE (n ≥ 0) are not primitive, and

(b) that all other products of E and P are primitive.

Regarding (a) we observe that En = E for odd n and En is the identity matrix for even
n. Moreover, P n =

(
1 0
n 1

)
for all n ∈ N, so no power of P (and of P n) is primitive. Since

EP nE =
(
1 n
0 1

)
we have

(EP nE)k = EP nE2P nE2P nE2 · · ·P nE = EP knE

and part (a) follows.

Regarding (b), note that any matrix not of the form above ist either of the form EP n or
P nE, or it is a product of E and P containing PEP somewhere. Since

EP n =
(
n 1
1 0

)
, P nE =

(
0 1
1 n

)
,

we have
(EP n)2 =

(
n2+1 n
n 1

)
> 0 and (P nE)2 =

(
1 n
n n2+1

)
> 0,

where A > 0 means that all entries of the matrix A are positive. Thus EP n or P nE
are primitive for all n ∈ N. All entries of the matrix PEP =

(
1 1
2 1

)
are positive, so
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PEP > 0, in particular PEP is primitive. Multiplication with E interchanges rows (from
left) respectively columns (from right), leaving all entries positive. Multiplication with
P =

(
1 0
0 1

)
+
(
0 0
1 0

)
yields that PA > 0 and AP > 0 if A > 0. �

Different substitutions may generate the same hull. Firstly, it is easy to see that σ and
σ2 generate the same hull if σ is a primitive substitution. More generally, we have the
following result.

TODO exact references?

Lemma 2.2 ([35, 34]). For any primitive substitution σ and for all n ∈ N we have Xσn =
Xσ.

Secondly, there are also substitutions that are not powers of a common substitution that
generate the same hulls.

Example 2.1. The substitutions τ = (ab, a) and τ ′ = (ba, a) both generate the same biinfi-
nite (Fibonacci) words

· · · abaababaabaababaababaabaababaabaababaab · · · ,
hence Xτ = Xτ ′ .

In order to make this precise we need the notion of conjugate substitutions. Recall that
an automorphism γ ∈ Aut(F2) is called inner automorphism, if there exists w ∈ F2 such
that γ(x) = wxw−1 for every x ∈ F2. We let γw denote this inner automorphism.

Definition 2.1. We say that two given substitutions σ and τ are conjugate, if σ = γwτ
for some w ∈ F2. In this case, we will write σ ∼ τ .

Remark 2.1. The use of the term ‘conjugate’ here is sloppy. A correct formulation would
be “τ is obtained from σ by the action of an inner automorphism”. For convenience, we
take the freedom to use the short version. Note that if σ and τ are conjugate then w is a
common prefix (if τ = γwσ) or common suffix of τ(a) and τ(b) (if γwτ = σ). Moreover, in
this case we have Mσ = Mτ .

Theorem 2.1 ([38, 8]). Let σ and τ be two invertible primitive substitutions on two letters.
Then Xσ = Xτ if and only if σk ∼ τm for some k,m ∈ N. In particular, if σ and τ have
the same substitution factor, then Xσ = Xτ if and only if σ ∼ τ .

Example 2.1 (continued). The two Fibonacci substitutions τ = (ab, a) and τ ′ = (ba, a)
above are conjugate, since

γa−1τ(a) = a−1τ(a)a = a−1aba = ba = τ ′(a), and γa−1τ(b) = a−1τ(b)a = a−1aa = a = τ ′(b),

thus their hulls are equal.

As a third — more general — possibility, two substitutions my generate the same biinfinite
words up to switching the letters a and b.
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Example 2.2. The substitutions % = (b, ba) and %′ = (b, ab) are conjugate to each other by
γb−1% = %′. Thus they both generate the same biinfinite (Fibonacci) words

· · · babbababbabbababbababbabbababbabbababba · · · .
Replacing in these words each a by b and vice versa, one obtains the same words as in
Example 2.1. This corresponds to conjugation by an outer automorphism, in this case
ε%ε = %′.

Lemma 2.3. Let σ and τ be two invertible primitive substitutions on two letters. If τ = εσε
then τ and σ have the same hull up to interchanging a and b.

Because of Corollary 1.1, we obtain the following result.

TODO compare the following with results about continued fractions of eigenvectors

Lemma 2.4. Any Mσ for σ ∈ Aut(A∗2) is of one of the four forms listed below. These
forms correspond to the four cases whether a is the more frequent or the less frequent letter,
and whether σ(a) has more or less letters than σ(b).

(a) Mσ = EP kE · · ·P s: a is more frequent, |σ(a)| > |σ(b)|.
(b) Mσ = EP kE · · ·P sE: a is more frequent, |σ(a)| < |σ(b)|.
(c) Mσ = P kE · · ·P s: a is less frequent, |σ(a)| > |σ(b)|.
(d) Mσ = P kE · · ·P sE: a is less frequent, |σ(a)| < |σ(b)|.

This result is well-known, but we are not aware of a proof.

Proof. Since EP n =
(
n 1
1 0

)
point (1) holds for Mσ = EP n. Any compositions of such σs

keep a even more frequent, and |σ| even larger, so (a) holds in general.

Multiplication of the above Mσ by E from the left swaps the rows of Mσ. Hence in EMσ

th sum of the first column is greater thjan teh sum of the second column, but now a is
rarer than b. This yields c.

Since conjugation by ε interchanges a and b, points (b) and (d) are true, too. �

Because of the two preceding results we will focus in the sequel on substitutions σ where a
is always the more frequent letter; i.e., where Mσ = EP kE · · ·P s or Mσ = EP kE · · ·P sE.
Any result on such substitutions transfers immediately to the other two cases by Lemma
2.3.

[ xxx wir brauchen noch: für σ ∈ Aut(A∗2) (mit obigem wlog) ist immer |σ(a)|a ≥ |σ(b)|a
und |σ(a)|b ≥ |σ(b)|b. Das ist wahr, denn in jeder Konjugationsklasse gibt’s einen Vertreter
mit σ(b) ist Präfix von σ(a). ]

Recall the following theorem of Nielsen [29]. Here, the substitution matrix relies on the
Abelianisation map from F2 to Z2, i.e., the substitution matrix for a general element of
Aut(F2) counts the number of occurrences of each a (resp. b) in σ(x) minus the number
of occurrences of each a−1 (resp. b−1) in σ(x) (x ∈ {a, b}).
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Theorem 2.2 ([29]). Let σ, % ∈ Aut(F2). σ and % are conjugate wrt an inner automor-
phism if and only if they have the same substitution matrix.

Together with Theorem 2.1 this implies immediately the following result. For the last point
one needs to recall that the normalised eigenvector to the substitution factor λ equals the
frequencies of the letters; a 2 × 2 matrix with determinant ±1 is uniquely determined by
an eigenvalue λ and its eigenvector. [xxx A,B diagonalisable, same set of eigenvectors,
then A = P−1BP , P a permutation matrix. ]

Corollary 2.1. Let σ, % be primitive invertible substitutions on the alphabet A = {a, b}
with the same inflation factor. Then, the following are equivalent:

(a) σ ∼ %
(b) Mσ = M%

(c) Xσ = X%

(d) The relative frequency of a’s and b’s in Xσ equal the relative frequency of a’s and
b’s in Xτ

3. Substitutions with the same factor

Since conjugate matrices have identical eigenvalues the following result is immediate.

Lemma 3.1. Let σ, τ ∈ Aut(A∗2). If Mσ and Mτ are conjugate wrt E,P , i.e., if there are
ni such that

Mσ = P n1EP n2E · · ·EP nkMτP
−nkE · · ·EP−n1 (ni ≥ 0)

then σ and τ have the same substitution factor. �

The following theorem (Theorem 4 in [16]) allows us to obtain the “if and only if” version
of Theorem 3.2.

TODO include in next section??

TODO also need [16, Theorem 3]: Any matrix in GL(2,Z) is integrally similar to a standard
matrix (as defined in [16, Defininition 4.1]).

Theorem 3.1 ([16]). Let A ∈ GL(2,Z), A =
(
a b
c d

)
∈ GL(2,Z), where a > c > 0,

b ≥ d ≥ 0 and tr(A) > 2. Then A is uniquely defined by its first column and its determinant
(1 or −1). Moreover, A then has the unique expansion

(1) A =

(
c0 1
1 0

)(
c1 1
1 0

)
· · ·
(
cn 1
1 0

)
.

in matrices of the form
(
x 1
1 0

)
such that det(A) = (−1)n+1. The ci are the entries in the

(finite) continued fraction expansion [c0; c1, . . . , cn] of a
c
.

Note that there is an ambiguity in the continued fraction expansion since [c0; c1, . . . , cm, 1] =
[c0; c1, . . . , cm + 1].
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TODO reformulate corollary?

Corollary 3.1. Let σ, % ∈ Aut(A∗2) be primitive. If Mσ = M% then Mσ and M% have the
same factorisation into E and P .

The factorisations here are always to be understood to contain no E2.

Proof. First, let tr(A) > 2. If A = Mσ = M% = EP k0E · · ·EP kn then by Lemma 2.4 a is
the more frequent letter, and |σ(a)| > |σ(b)|, hence the conditions of Thm. 3.1 are fulfilled.
Since EPm =

(
m 1
1 0

)
, any matrix A as above has a unique expansion of the form

(2) A = EP c0EP c1 · · ·EP cn ,

since in this case det(A) = (−1)n+1. If on the other hand

(3) A = Mσ = M% = EP k0E · · ·EP knE,

then det(A) = (−1)n+2, and Theorem 3.1 does not apply. Thus we consider AE, it has a
unique expansion of the form (2), hence A has a unique expansion of the form (3).

The two further cases in Lemma 2.4 have substitution matrices A with a < c and bled.
Considering EAE reduces these cases to the two cases above.

Now let A = Mσ for some primitive σ ∈ Aut(A∗2), where tr(A) ≤ 2,
(
a b
c d

)
, a ≥ c > 0,

b ≥ d ≥ 0. Such a matrix is of the form of one of the following matrices:(
2 b1
1 0

)
,
(
1 b2
1 0

)
, or

(
1 b3
1 1

)
(bi ≥ 0).

Because of det(A) = ±1 we have b1 = 1, b2 = 1, and b3 = 0. The third case is not
primitive, hence impossible. The first case is EP 2, the second case is EP , in both cases is
the expansion unique.

Altogether, if two substitution matrices Mσ and Mτ have different expansions in E,P then
they have different expansions in the form (1). Thus they have different ratio a/c, thus
Mσ 6= Mτ . �

The conjugation class of a substitution σ can be read off explicitly from its representation
in ε, π1 and π2, see [34, Exercise 9.2.5] for one implication (“if σ and % have the same
representation in ε, π1 and π2, then σ ∼ %”). Corollary 3.1 yields now the “if and only if”
version of this result.

Theorem 3.2. Let σ = εα1πn1
i1
εα2πn2

i2
· · · εαsπnsis ε

αs+1 and τ = εβ1πm1
j1
εβ2πm2

j2
· · · εβsπmsjs ε

βs+1,
where αk, βk ∈ {0, 1}, ik, jk ∈ {1, 2} and nk,mk ∈ N. We have ni = mi for 1 ≤ i ≤ s and
αi = βi for 1 ≤ i ≤ s+ 1 if and only if σ ∼ τ .

For instance, the conjugation class of the silver mean substitution σ1 = (aba, a) = επ2π1
consists of all substitutions of the form επi1πi2 (i1, i2 ∈ {1, 2}). These are επ1π1 = (baa, a),
επ1π2 = επ2π1 = (aba, a), and επ2π2 = (aab, a).

The following result states that there are arbitrary many substitutions in Aut(A∗2) with
different hulls and the same substitution factor.
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Theorem 3.3. For any N ∈ N there is a substitution factor λ such that there are more than
N substitutions σi ∈ Aut(A∗2) with the same substitution factor λ that are not conjugate.
I.e., all these substitutions have pairwise different hulls.

Proof. Because of Lemma 3.1 two substitutions σ, τ with substitution matrices Mσ,Mτ

that have different representations in E and P , but that are conjugate wrt E,P , have the
same substitution factor.

Because of Corollary 2.1 substitutions with different matrices are in different conjugation
classes and have different hulls.

Given N ∈ N it is now easy to find N different matrices with the same eigenvalues. For
instance, the followign matrices are all conjugate, hence they have the same eigenvalues.

EPN , PEPN−1, P 2EPN−2, . . . , PN−1EP.

�

Remark 3.1. In this context the number of different words in E,P containing exactly N
P ’s and no EE, up to cyclic permutations, become of interest. They can be seen as cyclic
ordered combinations of integers, or the number of necklaces of sets of beads. By Theorem
4.1 in [24] (see also sequence A008965 in OEIS) the number of cyclic ordered combinations,
hence the number of different words in E,P containing exactly N P ’s and no EE is

N∑
k=1

1

k

∑
n| gcd(N,k)

ϕ(n)

(N
n
− 1

k
n
− 1

)

4. Mutual local derivability

The following results state that all the different substitutions in Aut∗(F2) with the same
substitution factor are strongly related. In particular, the different substitutions of Theo-
rem 3.3 are. To be more precise: if two invertible substitutions have the same substitution
factor then there is a local rule how to obtain one from the other (and vice versa). However,
there are two such concepts, one on the symbolic level and one on a geometric level.

Definition 4.1. A sliding block code is a map Φ : AZ → BZ (where A and B are two
alphabets) such that there is m ∈ N such that in v = Φ(u) each vi depends only on
ui−m, ui−m+1, . . . , ui+m.

An important application of sliding block codes is that by the Curtis-Hedlund-Lyndon
Theorem two shift spaces are topologically conjugate if and only if there is a sliding block
code mapping one to the other (and vice versa).

Example 4.1. By Theorem 3.3 the two silver mean substitutions σ1 = (aba, a) and σ2 =
(abb, ab) have different hulls. In order to distinguish the letters of σ1 and σ2 we use capital
letters for σ2 in this example, so σ2 = (ABA,A). One can easily transform the biinfinite

http://www.oeis.org/A008965
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words from Xσ2 into the ones in Xσ1 in a unique way by a “local” rule: replace each AB
by a, then replace all remaining As by b. This is indicated in the following diagram.

AB B AB AB AB B AB AB B AB AB B AB AB AB B AB AB
a b a a a b a a b a a b a a a b a a

In the other direction it is even simpler: replace each a by AB and each b by B. Never-
theless, this map is not a sliding block code. In order to describe this kind of relation we
need a geometric picture.

A geometric realisation of a primitve symbolic substitution σ, an inflation rule, can be
obtained as follows [4, Section 4]. The word u = . . . u−1, u0, u1 . . . is translated into a tiling
of the real line by intervals. The left eigenvector v = (v1, v2, . . .) of Mσ corresponding to
the PF-eigenvalue λ yields the lengths of tiles: each a is replaced by an interval of length
v1, each b by an interval of length v2 (and so on). Hence any u ∈ Xσ can be translated into
a tiling of the real line by replacing letters with the corresponding intervals (in the same
order). Moreover, the resulting set can be described as the geometric hull of a inflation
rule. An inflation rule consists of a set of different tiles T1, . . . , Tm (here: intervals), an
inflation factor λ and a rule how to dissect each λTi into copies of the Tj.

Example 4.2. For instance the silver mean substitution σ1 of Example 1.1 yields the left
eigenvector v = (1 +

√
2, 1). The inflation rule corresponding to σ1 is

a

b

a

a

ab

where λ = 1 +
√

2, a is an interval of length 1 +
√

2, and b is an interval of length 1.

Let us denote the inflation obtained from a substitution σ denote by σ,, too. The inflation
can be iterated on the intervals in the same way as the substitution on the letters. The
geometric hull Xσ of an inflation can be defined analogously to the symbolic hull of a
substitution:

Xσ = {T tiling of R | each finite subset of T is a translate of some σk(Ti)}

Definition 4.2. A tiling T of the real line is locally derivable from a tiling S of the real
line if there is an interval K such that S ∩ (x + K) = S ∩ (y + K) for some x, y implies
T ∩ {x} = T ∩ {y}

Here T ∩K means the collection of all tiles T ∈ T with T ∩K 6= ∅.

Definition 4.3. Two tilings S, T are mutually locally derivable (MLD) if S is locally
derivable from T and vice versa.

Two hulls that are mld share several topological and dynamical properties [4].

A very nice property of inflation rules derived from primitive invertible substitutions on
two letters is stated in the following theorem. In order to make sense of it we need to
introduce the concept of canonical projection tilings. We describe it for the simple case of
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Figure 1. A cut-and-project scheme for the silver mean tilings in Xσ1 . Im-
age courtesy of [4].

dimension one, codimension one and two letters. For the general case see for instance [4,
Chapter 7].

A cut-and-project sceme (CPS) is a way to obtain nonperiodic tilings of Rd (or more
general in locally compact abelian groups) by projection from some higher dimensional
point lattice. In general a CPS looks as follows:

G
π1← G×H π2→ H

∪ ∪ ∪
V ← L → W

where G,H are locally compact abelian groups, W ⊂ H is compact (and usually W is
the closure of its interior). Let π1 and π2 be the canonical projections from G × H to G
respectively H. Then

V = {π1(x) |x ∈ L, π2(x) ∈ W}
is a model set, or a cut-and-project set. In the case of a model set on the real line the points
of the model set partition the line into intervals. The resulting tiling by these intervals
is a cut-and-project tiling. Figure 1 shows a CPS for the silver mean tilings. We have
G = H = R, W = [− 1√

2
, 1√

2
].

The following result connects invertible primitive substitutions over two letters with certain
projection tilings. The result as such is stated in [21], which in turn uses results from [23,
38, 45]. A canonical projection tiling is one where W is the projection of some fundamental
cell of the lattice L. [xxx not Voronoi, but fund cell = Delone cell]

Theorem 4.1 ([23, 38, 45, 21]). Let σ be a primitive (nonperiodic) substitution on two
letters. The elements in Xσ are canonical projection tilings if and only if σ ∈ Aut(A∗2).

Theorem 4.2 ([5], see [4] Remark 7.6). Let Λ1,Λ2 be two model sets with the same lattice
L, but different windows W1,W2. Λ1 and Λ2 are MLD if and only if W2 can be expressed
as a finite union of sets each of which is a finite intersection of translates of W1 (or its
complement), with all translations from π2(L), and vice versa.
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Theorem 4.3. Let σ, τ ∈ Aut(A∗2). Let σ and τ have the same substitution factor λ, and
the left eigenvectors v = (`σ, 1) and w = (`τ , 1). If Z[`σ] = Z[`τ ] then the geometric hulls
Xσ and Xτ are MLD.

Proof. This is an application of Theorems 4.1 and 4.2.

For the special case considered here it is known [4] that the following construction (the
Minkowski embedding) yields a correct CPS (if there is a CPS at all). The construction
is quite general, here we describe it for the special case of two letters. The idea is that
the vertex set V of an (appropriately scaled and translated) tiling is contained in the ring
of quadratic integers K[ω] ⊂ Q(λ). Then K[ω] (or a subring of K[ω]) can be lifted to a
lattice in R2.

Let λ = a + b
√
k be the inflation factor of σ (a, b, k ∈ Z, k ≥ 2 square-free). Denote by

Z[ω] the ring of quadratic integers in Q(λ). This is,

ω =

{√
k if k ≡ 2, 3 (mod 4)

1+
√
k

2
if k ≡ 1 (mod 4)

Consider the geometric hull of σ. Since the left PF-eigenvector v = (`σ, 1) yields the lengths
of the tiles, and ` := `σ ∈ Q(λ), there is q ∈ N such that q` ∈ Z[ω]. Thus the lengths of
the tiles can be chosen as q`, q.

xxx argh. Irgendwie brauchen wir doch den ganzen Z-Modul

Let T ∈ Xσ such that 0 is a vertex of T . Since q`, q ∈ Z[ω], all vertices of T are contained

in Z[ω]. Hence the integer span of the vertices of T is contained in Z[ω]. For x = a+b
√
k ∈

Z[ω], let x′ = a− b
√
k denote the algebraic conjugate of x. Let Λ = 〈(1, 1)T , (`, `′)〉.

By Theorem 4.1 the windows W1 = [x1, x2[ and W2 = [y1, y2[ are projections of fundamental
cells of the lattice Λ. Hence x1, x2, y1, y2 ∈ Z[ω] = π2(Λ). It remains to show that Theorem
4.2 applies.

Wlog let |x2 − x1| ≤ |y2 − y1|. Then

W1 = [x1, x2] = (W2 + x1 − y1) ∩ (W2 + x2 − y2).

For the other direction, take the union of m = d y2−y1
x2−x1 e translates of W1 and intersect with

a further translate W1 + y2 − x1.

W2 = [x1−x1+y1, x2−x1+y1]∪[x1−x1+y1+(x2−x1), x2−x1+y1+(x2−x1)]∪· · ·∪[x1−x1+y1+m(x2−x1), x2−x1+y1+m(x2−x1)]∪[x1−x1+y2, x2−x1+y2] = [y1, y2]

All translations are elements of Z[ω]. Hence the geometric hulls Xσ and Xτ are MLD. �

TODO: CPS (with intervals): [10, 7]???? Symplify after CF-treatment?
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5. Results from the Theory of Continued Fractions

A (regular) continued fraction is a finite or infinite expression of the form

c0 +
1

c1 + 1
c2+

1

...+ 1
cn

or c0 +
1

c1 + 1
c2+

1

...

where c0 ∈ Z and ck ∈ N for k ≥ 1; in the first case we speak of a finite continued
fraction (of length n) and abbreviate it by [c0; c1, c2, . . . , cn], in the latter case of an infinite
continued fraction and we write [c0; c1, c2, . . .].

Obviously, a finite continued fraction yields a rational number. Conversely, every rational
number can be written in a unique way as a finite continued fraction of either odd length or
of even length (see [33, Satz 2.3]), noting that [c0; c1, . . . , cn−1, cn] = [c0; c1, . . . , cn−1, cn −
1, 1] if cn ≥ 2. Given an infinite continued fraction [c0; c1, c2, . . .], we call the rational
number

pk
qk

= [c0; c1, c2, . . . , ck],

where pk, qk ∈ Z, its kth-order convergent ; for a finite continued fraction [c0; c1, c2, . . . , cn]
this concept is defined in the same way, however there are only (n+ 1) many convergents
(of order 0, 1, 2, . . . , n). The numerator pk and denominator qk of the kth-order convergent
can be obtained recursively by

(4) p−1 = 1, p0 = c0, pj = cj pj−1 + pj−2 for j ≥ 1,

q−1 = 0, q0 = 1, qj = cj qj−1 + qj−2 for j ≥ 1.

For an infinite continued fraction [c0; c1, c2, . . .], the sequence of its convergents pk
qk

converges

to an irrational number; conversely, every irrational number has a unique infinite continued
fraction (see [33, Satz 2.6]).

Using mathematical induction, see [43] and [16, Lemma 1], the recursions of Eq. (4) can
be re-written in matrix form as

(5)

(
c0 1
1 0

)(
c1 1
1 0

)
· · ·
(
ck 1
1 0

)
=

(
pk pk−1
qk qk−1

)
.

Note that the sequence of the matrices on the right can be easily obtained from the con-
tinued fraction expansion pk

qk
= [c0; c1, . . . , ck]; also note that pk−1

qk−1
= [c0; c1, . . . , ck−1]. We

observe that

(
c 1
1 0

)
= EP c, and that det(EP c) = −1. Thus, taking the determinant in

Eq. (5) yields pkqk−1 − pk−1qk = (−1)k+1 (compare [33, Eq. §6(1)]). Moreover, the four
pair of integers (pk, qk), (pk−1, qk−1), (pk, pk−1) and (qk, qk−1) are coprime pairs (see [33,
Satz 2.1]); in other words, the two integers in any column or any row of the matrix on the
right in Eq. (5) are coprime. Taking the matrix transpose on both sides of Eq. (5) yields
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(assuming c0 > 0)

[ck; ck−1, . . . , c0] =
pk
pk−1

and [ck; ck−1, . . . , c1] =
qk
qk−1

.

One of the main results in the theory of continued fractions is Langrange’s theorem stating
that the (regular) continued fraction of a real number x is (eventually) periodic if and

only if x is quadratic irrational (see [33, Satz 3.1 & 3.2]), i.e., x =
√
D+b
d

where b ∈ Z,
D, d ∈ N and D is not a complete square. For a (eventually) periodic continued fraction
[a0; a1, a2, . . .], i.e., where there is an n ≥ 1 and an m ≥ 1 such that ak = ak+m for all
k ≥ n, we write

[a0; a1, . . . , an−1, an, . . . , an+m−1, an, . . . , an+m−1, an, . . . , an+m−1, . . .]

= [a0; a1, . . . , an−1, an, . . . , an+m−1],

and call the part a0, . . . , an−1 the pre-period and the part an, . . . , an+m−1 the period (of
length m) of the continued fraction.

We now calculate eigenvalues and eigenvectors of the matrix in Eq. (5).

Lemma 5.1. Let c0 > 0 and denote by A =

(
pk pk−1
qk qk−1

)
the matrix given in Eq. (5). Then

A is primitve, has one real eigenvalue λ > 1 and one real eigenvalue λ′ with |λ′| = 1
λ
< 1.

Moreover, the Perron-Frobenius eigenvalue λ is given by

λ =


1
2

(
γ +

√
γ2 + 4

)
= [γ; γ] if detA = −1 (i.e., if k is even),

1
2

(
γ +

√
γ2 − 4

)
= [γ − 1; 1, γ − 2] if detA = 1 (i.e., if k is odd),

where γ = trA = pk + qk−1 (note that γ ≥ 1 in the first and γ ≥ 3 in the second case),
while for the second eigenvalue λ′ we have

λ′ =


− 1
λ

= 1
2

(
1−
√

5
)

= [−1; 2, 1] if detA = −1 and γ = 1,

− 1
λ

= 1
2

(
γ −

√
γ2 + 4

)
= [−1; 1, γ − 1, γ] if detA = −1 and γ > 1,

1
λ

= 1
2

(
γ −

√
γ2 − 4

)
= [0; γ − 1, 1, γ − 2] if detA = 1.

Proof. If c0 > 0, then the matrix A =

(
pk pk−1
qk qk−1

)
is primitive: If k = 0, then A = EP c0 =(

c0 1
1 0

)
the square of which has positive entries only; if k > 0, then A = EP c0EP c1 . . .

already has positive entries only, as can be seen immediately from the recursion in Eq. (4).
Thus, the Perron-Frobenius theorem applies, compare Lemma 1.1, and A has one real
eigenvalue, the Perron-Frobenius eigenvalue, λ > 1. Since detA = pkqk−1 − pk−1qk =
(−1)k+1, the second eigenvalue λ′ is given by λ′ = detA/λ. and thus |λ′| = 1

λ
< 1.
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The characteristic equation of A is given by

0 = x2 − trA · x+ detA = x2 − (pk + qk−1) · x+ (−1)k+1 = x2 − γ · x+ (−1)k+1

with roots λ = 1
2

(
γ +

√
γ2 + 4 · (−1)k

)
and λ′ = 1

2

(
γ −

√
γ2 + 4 · (−1)k

)
; the condition

λ > 1 implies γ ≥ 1 if k is even and γ ≥ 3 if k is odd.

The continued fraction expansions for λ are obtained as follows: If k is even, we note
that the above characteristic equation can be re-writen as x = γ + 1

x
and thus iteration

yields λ = [γ; γ]. If k is odd, one can show that λ = γ − 1 + 1
y

where y is the solution

y > 1 of the quadratic equation y = 1 + 1
γ−2+ 1

y

, i.e., y2 − y − 1
γ−2 = 0; this establishes

λ = [γ − 1; 1, γ − 2] = 1
2

(
γ +

√
γ2 − 4

)
. From these continued fractions, the continued

fraction of λ′ follows by the following two rules: If x = [a0; a1, a2, . . .] with a0 > 0, then
1
x

= [0; a0, a1, a2, . . .]; and if x = [a0; a1, a2, a3, . . .], then −x = [−a0− 1; 1, a1− 1, a2, a3, . . .]
if a1 > 1 and −x = [−a0 − 1; 1 + a2, a3, . . .] if a1 = 1, see [43, Section 4]. �

We note that the discriminantes γ2 ± 4 of λ can be found as sequence A087475 in OEIS
respectively sequence A028347 in OEIS.

The value of γ = trA = pk + qk−1 can be calculated using the recursion in Eq. (4)
from c0, c1, c2, . . . and get – since det(EP c0EP c1 · · ·EP ck) = det(EP c1 · · ·EP ckEP c0) and
tr(EP c0EP c1 · · ·EP ck) = tr(EP c1 · · ·EP ckEP c0) – the following “cyclic” expressions in
the c′is:

k 0 1 2 3 . . .

pk c0 c0c1 + 1 c0c1c2 + c0 + c2 c0c1c2c3 + c0c1 + c2c3 + c3c0 + 1 . . .
qk−1 0 1 c1 c1c2 + 1 . . .

γ c0 c0c1 + 2 c0c1c2 + c0 + c1 + c2 c0c1c2c3 + c0c1 + c1c2 + c2c3 + c3c0 + 2 . . .

and for k = 4

γ = c0c1c2c3c4 + c0c1c2 + c1c2c3 + c2c3c4 + c3c4c0 + c4c0c1 + c0 + c1 + c2 + c3 + c4.

Next we calculate a right and a left eigenvector of the matrix A for the Perron-Frobenius
eigenvalue λ, also compare [16, Theorem 5] and [17, Lemma 8.12]. TODO Connection to
other stuff in [17]?

Proposition 5.1. Let c0 > 0 and denote by A =

(
pk pk−1
qk qk−1

)
the matrix given in Eq. (5).

Then, a left and right eigenvector of A to its Perron-Frobenius eigenvalue λ are given by

(1, θ) respectively

(
1
`

)
where

θ =
λ− pk
qk

= [0; ck, ck−1, . . . , c1, c0] respectively ` =
λ− pk
pk−1

= [0; c0, c1, . . . , ck−1, ck].

http://www.oeis.org/A087475
http://www.oeis.org/A028347
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Proof. The explicite expressions θ = λ−pk
qk

respectively ` = λ−pk
pk−1

are immediate from the

eigenvector equation (also recall that pk, pk−1, qk > 0 for k ≥ 0). We note that θ, ` > 0 by
the Perron-Frobenius theorem, compare Lemma 1.1.

The continued fraction expansion for ` follows immediately from [16, Theorem 5] which in
our case states: If

A =

(
pk pk−1
qk qk−1

)
=

(
c0 1
1 0

)(
c1 1
1 0

)
· · ·
(
ck 1
1 0

)
,

then
1

`
=

pk−1
λ− pk

= [c0; c1, c2, . . . , ck−1, ck, c0].

Taking the inverse, yields the result for `. Since a left eigenvector of A is a right eigenvector
of its transpose, the result for θ follows. �

We now have calculate eigenvalues and eigenvectors of the matrices of the form

A =

(
pk pk−1
qk qk−1

)
=

(
c0 1
1 0

)(
c1 1
1 0

)
· · ·
(
ck 1
1 0

)
= EP c0 EP c1 · · ·EP ck ,

but we will also need eigenvalues and eigenvectors of matrices of the form

EA = P c0 EP c1 · · ·EP ck , AE = EP c0 EP c1 · · ·EP ck E and EAE = P c0 EP c1 · · ·EP ck E

(recall that EE = id). The corresponding results for EAE are immediate, this only
permutes columns and rows of the matrix in Eq. (5).

Corollary 5.1. Let c0 > 0 and consider

EAE =

(
qk−1 qk
pk−1 pk

)
=

(
0 1
1 c0

)(
0 1
1 c1

)
· · ·
(

0 1
1 ck

)
= P c0E P c1E · · ·P ckE.

Then EAE is a primitive matrix with eigenvalues λ > 1 and λ′ as in Lemma 5.1. A left
and right eigenvector of EAE to its Perron-Frobenius eigenvalue λ are given by(

1,
1

θ

)
respectively

(
1
1
`

)
where θ and ` are given in Prop. 5.1, and thus we have

1

θ
= [ck; ck−1, . . . , c1, c0, ck] respectively

1

`
= [c0; c1, . . . , ck−1, ck, c0].

�

For EA and AE we need some slight modifications.

Proposition 5.2. Let c0 > 0, k > 0 and consider

EA =

(
qk qk−1
pk pk−1

)
= P c0 E P c1 E · · ·E P ck .
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Define

Ã = EP c1 EP c2 · · ·EP ck−1 EP c0+ck =

(
c1 1
1 0

)
· · ·
(
ck−1 1

1 0

) (
c0 + ck 1

1 0

)
=

(
p̃k−1 p̃k−2
q̃k−1 q̃k−2

)
.

Then, EA and Ã are primitive matrices, have the same eigenvalues, and we can use
Lemma 5.1 with γ = p̃k−1 + q̃k−2 noting that det(EA) = det Ã = (−1)k. Moreover, a
left and right eigenvector of EA to its Perron-Frobenius eigenvalue λ are given by(

1, θ̃
)

respectively

(
1
˜̀

)
where

θ̃ = [0; ck, ck−1, . . . , c1, c0 + ck] respectively ˜̀= [c0; c1, . . . , ck−1, c0 + ck].

Furthermore, the relationship of matrices of the form

AE = E(EA)E =

(
pk−1 pk
qk−1 qk

)
= E P c0 E P c1 E · · ·E P ck E

to EA are as between EAE and A in Corollary 5.1; in particular, a left and right eigen-
vector of EA to its Perron-Frobenius eigenvalue λ are given by(

1,
1

θ̃

)
respectively

(
1
1
˜̀

)
where

1

θ̃
= [ck; ck−1, . . . , c1, c0 + ck] respectively

1
˜̀

= [0; c0, c1, . . . , ck−1, c0 + ck].

Proof. The statement about the eigenvalues follows from

det(EA) = det(P c0EP c1 · · ·P ck−1EP ck) = det(EP c1 · · ·P ck−1EP c0+ck) = det Ã and

tr(EA) = tr(P c0EP c1 · · ·P ck−1EP ck) = tr(EP c1 · · ·P ck−1EP c0+ck) = tr Ã,

and thus EA and Ã have the same characteristic polynomial and consequently the same
eigenvalues.

For a right eigenvector (1, ˜̀)t of EA we note that EA = P c0 Ã (P c0)−1 = P c0 Ã P−c0 and
Ã has the right eigenvector (1, `)t where ` = [0; c1, . . . , ck−1, c0 + ck] by Prop. 5.1; but this

is just a transformation of the coordinate system and thus (1, ˜̀)t = P c0(1, `)t = (1, c0 + `),

i.e., ˜̀ = [c0; c1, . . . , ck−1, c0 + ck]. For a left eigenvector (1, θ̃) of EA, a similar calculation

using the right eigenvector (1, θ) of Ã with θ = [0; c0 + ck, ck−1, . . . , c1] yields that (1, θ̃) is

a multiple of (1− c0θ, θ) and thus of
(

1, 1
1
θ
−c0

)
which yields the claim.

The statements about AE follow directly from Corollary 5.1. �
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TODO

This shows that θ is unique, while λ is (usually) not!

TODO

Point out: power of substitution doesn’t change eigenvectors!

TODO

Theorem 5.1. TODO Summarize in the spirit of [16, Theorem 5].

Given A =

(
a b
c d

)
with detA = (−1)n+1. Then

(a) If max{a, b, c, d} = a, then a
c

= [c0; c1, . . . , cn] we have A = EP c0EP c1 . . . EP cn the
eigenvalues and eigenvectors of which are given in Lemma 5.1 and Prop. 5.1.

(b) If max{a, b, c, d} = d, then d
b

= [c0; c1, . . . , cn] we have A = P c0EP c1 . . . EP cnE the
eigenvalues and eigenvectors of which are given in Corollary 5.1.

(c) If max{a, b, c, d} = c, then c
a

= [c0; c1, . . . , cn] we have A = P c0EP c1 . . . EP cn the
eigenvalues and eigenvectors of which are given in Prop. 5.2.

(d) If max{a, b, c, d} = b, then b
d

= [c0; c1, . . . , cn] we have A = EP c0EP c1 . . . EP cnE
the eigenvalues and eigenvectors of which are given in Prop. 5.2.

Proof. TODO only have to consider what application of E on the left/right does! �

TODO Corollary is Lemma 2.4.

TODO

[33]

[43] [16]

6. Further Considerations

M??gliche weitere Resultate/Bemerkungen:

xxx Wir k??nnen die Anzahl der (verschiedenen) Substitutionen in einer Konjugation-
sklasse an der ε − π-Darstellung ablesen: Wegen π1π2 = π2π1 k??nnen wir jede subst in
kanonischer Form επn1

1 π
n1−j1
2 επn2

1 π
n2−j2
2 · · · schreiben. Die Konjugierten sind dann επ0

1π
n1
2 ε · · · , επ1

1π
n1−1
2 · · · ε

usw bis πn1
1 π

0
2 · · · . Alle M??glichkeiten also dann doch wohl (n1 + 1)(n2 + 1) · · · .

(Dazu m??ssen wir noch πn−k1 πk2 6= πn−j1 πj2 zeigen, und damit evtl sogar noch πn−k1 πk2επ
n−j
1 πj2 6=

πn−i1 πi2επ
n−l
1 πl2 zeigen)

TODO Eindeutigkeit der EP-Darstellung der Matrizen: [2, Section 2.2] and [13, Ex. 9.4.4]

xxx Fenster bzw θ, siehe [34, Section 6.4], seine Kettenbruchentwicklung aus der PE-
Darstellung ablesen. TODO Jetzt klar(?), Fenster direkt, Bedeutung des rot-angles α =



INVERTIBLE SUBSTITUTIONS AND CONTINUED FRACTIONS 19

θ
1+θ

in [34, Section 6.4.1]? (relative Häufigkeit? α als Kettenbruch ausdr??cken?). Experi-
mentell: θ = [0; ck, ck−1, ck−2, . . . , c1, c0] gibt α = [0; ck + 1, ck−1, ck−2, . . . , c1, c0, ck], Beweis
wie in [43, Section 4]?

xxx Wie klein/gro?? kann λ sein bzgl der Zahl der Ps in Mσ?

Semi-experimentally:

• lower envelope by P nE which yields θ = [0;n] = 1
2
(−n +

√
n2 + 4) (where n ≥ 1;

for discriminantes see sequence A087475 in OEIS) and λ = [n;n] = 1
2
(n+

√
n2 + 4)

• upper envelope by P nEP which yields θ = [0; 1, n+ 1] = 1
2(n+1)

(n−1+
√

(n+ 1)2 + 4)

(where n ≥ 1) and λ = [n+ 1;n+ 1] = 1
2
(n+ 1 +

√
(n+ 1)2 + 4)

• middle upper envelope (i.e., approaching 1
2

from below) by P nEP 2 which yields

θ = [0; 2, n+ 2] = 1
2(n+3)

(n − 2 +
√

(n+ 2)2 + 4) (where n ≥ 1) and λ = [n +

2;n+ 2] = 1
2
(n+ 2 +

√
(n+ 2)2 + 4)

• middle lower envelope (i.e., approaching 1
2

from above) by P nEPEP which yields

θ = [0; 1, 1, n+ 1] = 1
2(2n+1)

(n − 1 +
√

(n+ 3)2 − 4) (where n ≥ 1; discrimi-

nante given by sequence A028347 in OEIS) and λ = [n + 2; 1, n+ 1] = 1
2
(n +

3 +
√

(n+ 3)2 − 4)

TODO

http://www.oeis.org/A087475
http://www.oeis.org/A028347
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Upper bound for λ given by τn, i.e., (PE)n (just a power of Fibonacci, so θ = 1
τ

for all n)!

Lower bound for λ given by the above cases, i.e., 1
2
(n+

√
n2 + 4).

Continued fraction expansion for λ lines up with observation about conjugate matrices
earlier (Remark 3.1) – but things are a bit more complicated, cyclic permutations are just
one possibility to get same λ (however: see next section, cyclic permutations yields matrices
of the same integral similarity class and thus with the same “limit translation module”).
For a number N of P s, the set of substitutions of the form P n1EP n2E . . . EP nk−1EP nkE
with N = n1 + n2 + . . .+ nk yield how many different substitution factors?

N 1 2 3 4 5 6 7 8 9 10

A008965 in OEIS 1 2 3 5 7 13 19 35 59 107
A091696 in OEIS 1 2 3 5 7 12 17 29 45 77

# distinct λs 1 2 3 5 7 12 17 27 42 70

First difference found at N = 6: PEP 2EP 3E and PEP 3EP 2E. Similarly for N = 7:
PEP 2EP 4E and PEP 4EP 2E, as well as PEPEP 2EP 3E and PEPEP 3EP 2E — so
is this just A008965 modulo matrix transpose? No, this would be A091696! Minimal
“different” examples for N = 8: PEPEPEPEP 4E and P 2EP 3EP 3E have λ = 13 +√

170 = [26; 26]; PEPEPEPEPEP 3E and P 2EP 2EP 2EP 2E = (P 2E)4 have λ = 17 +
12
√

2 = [33; 1, 32]. Two N = 10 examples: PEPEPEP 2EP 5E and PEPEP 3EPEP 4E
have the same λ = 24+

√
577 = [48; 48]; or PEPEP 2EP 2EP 4E and PEP 2EPEP 3EP 3E

with λ = 30 +
√

901 = [60; 60]. Above sequence not found in OEIS! Also clear: might
get the same λ for different N (see figures, e.g., at λ = 3 +

√
10, i.e.,P 6E vs. PEPEP 2E;

note that difference doesn’t have to be even, e.g., PEPEPEPEP 2E vs. PEP 3EP 3E yield
λ = 8 +

√
65).

Note: In the above table, powers of simpler “substitutions” are contained. What if we
make table removing these? So remove powers of substitutions and make a new table
(TODO use results earlier to interpret this table – also, in view of next section, use only
one representative per integral similarity class):

N 1 2 3 4 5 6 7 8 9 10

# overall substitutions up to N times P s 1 4 11 26 57 120 247 502 1013 2036
2N+1 −N − 2 = A000295 in OEIS

# distinct θs 1 3 9 21 51 105 231 471 975 1965
A119917 in OEIS

# distinct θs without preperiod 1 2 5 11 26 53 116 236 488 983
1
2
(A119917 +1) = A085945 in OEIS
# distinct λs in all substitutions 1 3 6 10 16 25 37 58 86 133

# distinct λs in distinct substitutions 1 2 4 7 13 19 32 51 80 125

Note: For N = 2, substitutions include PEPE = (PE)2 which has the same θ as PE –
however, their λ will be different (one being the square of the other). However, the two

http://www.oeis.org/A008965
http://www.oeis.org/A091696
http://www.oeis.org/A000295
http://www.oeis.org/A119917
http://www.oeis.org/A085945
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silver mean substitutions PEP and P 2E will have the same λ, but different θ (first one
with preperiod).

Observe self-similar structure of continued fractions here!

Next step: Investigate combinations, i.e., composition of substitutions! (Probably then/now
trivial!) TODO JA, nun klar von Kettenbruchentwicklung!

7. Module Generated by the PF-Eigenvector

TODO reformulate the following – Limit Translation Module(?), compare [4, Section 5.1.2
& Example 5.3] and references therein (same argument because inflation factor is unit).
So, are we calculating “equivalence classes” of the limit translation module (all members of
the cycle of a PE-representation belong to the same class), or something like that? What
does this mean for relationship between LTM and MLD ([4, Corollary 5.1]) and Theorem
4.3?

TODO [16, Theorem 1], also found in [40], says that this module generated by the compo-
nents of the PF-Eigenvector is an ideal in the integral domain OQ(λ) (notation for integral
domain vs. Z[λ]!?!)

TODO also need [16, Theorem 2] – part A) (C)) ⇔ B) tells us that integrally similar
matrices generate modules/ideals belonging to the same ideal class

Two matrices A and A′, say in GL2(Z) (although this holds more generally for matrices
Mn(Z) for any n), with the same characteristic polynomial and thus the same eigenvalues
λ, λ′, are similar to each other, i.e., there is a matrix U ∈ GL2(R), in fact, we can even
choose U ∈ GL2(Q), such that UAU−1 = A′, compare [11, Theorem 1]. However, they
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might not be integrally similar, where we say that two matrices A and A′ are integrally
similar if there is a matrix U ∈ GL2(Z) such that UAU−1 = A′. Since this is an equivalence
relation, one can define the integral similarity class of matrices in M2(Z) that are integrally
similar to each other.

We look at an example: The matrices A = EP 6 =

(
6 1
1 0

)
and A′ = EPEPEP 2 =

(
5 2
3 1

)
both have characteristic polynomial x2 − 6x − 1 and thus eigenvalues λ = 3 +

√
10 and

λ′ = 3−
√

10. Thus, they are similar, e.g., by the matrix U =

(
1 0
1
2

1
2

)
∈ GL2(Q). However,

they are not integrally similar: Let U =

(
a b
c d

)
, then UA−A′U = 0 leads to c = a

2
+ b

2
and

d = a
2
− 5b

2
. Then, the condition detU = ±1, leads to the equation (a− 3b)2 − 10b2 = ±2,

i.e., a Pell’s equation x2 − 10y2 = ±2 which has no integral solutions (since there is no
solution of x2 ≡ ±2 mod 5). So the two matrices A and A′ belong to different similarity
classes (two other representatives of these two classes can be found in [11, Example 11],
where the intersting observation is made that, however, these two matrices are similar w.r.t
a matrix U ∈ GL2(Z[

√
2])).

This example agrees with [16, Theorem 6] which states that two matrices in GL2(Z) are
integrally similar iff their factorisation into elementary matrices E and P c is just a cyclic
reordering of each other. It also agrees with the Latimer-MacDuffee-Taussky theorem, see
[22, 40], [28, Theorem III.13], [42, Theorem 5], [20, Lecture 2], [11, Theorem 3], which
states that there is a one-to-one correspondence between the integral similarity classes of
matrices A ∈ Mn(Z) with irreducible monic polynomial p(x) ∈ Z[x] of degree n, and the
ideal classes in Z[λ] (where λ ∈ C is a root of p(x) = 0). Indeed, the class number of
Q(
√

10) is 2, and two matrices are the representatives of the corresponding two integral
similarity class.

Let us consider another example: LetA = EPEP 2EP 3 =

(
10 3
7 2

)
andA′ = EPEP 3EP 2 =(

9 4
7 3

)
, both with eigenvalues λ = 6 +

√
37 and λ′ = 6 −

√
37. While, for example,

U =

(
1 −1

7
0 1

)
(noting that detU = 1) shows that these two matrices are similar, again it

follows from [16, Theorem 6] that these two matrices are not integrally similar. However,
the class number of Q(

√
37) is 1, compare sequence A003172 in OEIS (even its narrow

class number is 1, see sequence A003655 in OEIS), thus there should be only one integral
similarity class (respectively,even one narrow integral similarity class for which we require
U ∈ SL2(Z), compare [11, Remark 9] TODO narrow class number [14, p. 180]). Note that

A is integrally similar to the transpose (A′)t of A′, e.g., using U = (EP )−1 =

(
0 −1
−1 1

)
in agreement with [16, Theorem 6]. However, a matrix needn’t be integrally similar to its
transpose as [11, Example 15] shows.

http://www.oeis.org/A003172
http://www.oeis.org/A003655
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TODO comparing [6], [16] and our considerations: ∆ = γ2 ± 4, in particular, always
∆ > 0 in our case. Iteration in [6] has form A 7→ (EP−n)A(EP−n)−1 = (EP−n)A(P nE)
to create matrices of the form (P aE)(P bE)(P c · · ·E)(PmE) and its cyclic permutations –
at most first or first two steps not in the cycle depending on form EP · · ·PE, EP · · ·EP ,
PE · · ·EP or PE · · ·PE. Compare with standard matrices, [16, Definition 4.1], which
have the form (EP a)(EP b)(E · · ·P k)(EPm).

As another test for this example, we look at [6]: The discriminate ∆ = tr2−4 · det of
the characteristic polynomial of A and A′ is ∆ = 148 = 4 · 37 > 0. Thus, [6, Theorem
4.3] can be used to check whether the two matrices fall into the same integral similarity
class by applying a certain “reduction operator” successively to these matrices that will
lead a unique cycle of reduced matrices in each integral similarity class. In this case with

discriminate ∆ > 0 and not a complete square, a matrix

(
a b
c d

)
is called reduced if c > 0

and |
√

∆− 2c| < (d− a) <
√

∆. In fact, both matrices A and A′ lead to a cycle of length
3 of reduced matrices, one cycle containing the transposed matrices in the other cycle (as
one might expect from the calculations before), but not the same cycle (contrary to the
expectation from the class number).

starting matrix cycle of length 3

A =

(
10 3
7 2

) (
2 7
3 10

) (
3 4
7 9

) (
1 3
4 11

)
A′ =

(
9 4
7 3

) (
3 7
4 9

) (
2 3
7 10

) (
1 4
3 11

)

We note that the cycles correspond to the matrices PEP 2EP 3E, P 2EP 3EPE, P 3EPEP 2E
respectively PEP 3EP 2E, P 3EP 2EPE, P 2EPEP 3E. With this trace and determinant,
the algorithm following [6, Theorem 4.3] finds two more cycles, namely a cycle of length
1 consisting of the matrix P 12E, and another cycle of length 3 consisting of PEPEP 5E,
PEP 5EPE, P 5EPEPE. Note that this is in accordance with [16, Theorem 6] and our
results earlier (we got all possibilities with k even, i.e., determinant 1, and γ = 12). TODO
for this example, also re-visit [11, Example 13]

TODO Something is not quite right with the Latimer-MacDuffy-Tausky theo-
rem (or I mis-interpret it): Given that Q(

√
37) has class number 1, there should

only be one integral similarity class of matrices of that characteristic polyno-
mial, but we got 4! Why??? TODO clear now: Z[λ] vs. integral domain OQ(λ)

(notation?) – only if Z[λ] = Z⊕ λZ is integral domain of number field, and thus
1, λ an integral basis (observe cases D ≡ 1 mod 4 vs. D ≡ 2, 3 mod 4 for quadratic

number fields Q(
√
D) for D square-free), is the number of matrix classes equal

to ideal class number, otherwise additional cases (?related to discriminante of
the number field?). Possible references: [28, Section III.16] and [14, 26, 27].
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TODO in Q(
√

37) splitting/inert primes given via Legendre Symbol, note
(
37
3

)
=
(

3
37

)
.

E.g., inert are 2, 5, 13, 17, 19, 23, 29, 31, . . ., splitting are 3, 7, 11, . . .. Will we get something
out of this?

TODO look all examples in [11]

TODO maybe also consider lattices (“geometry of numbers”) related to different module
classes [27]

TODO Vergleich mit [36, Theorem 7 & Sections 8 & 9] (dies ist der SL(2,Z) Fall? Narrow
Ideal Class?); Note: U = EPEP−1, T = UEP

TODO Further SL(2,Z) results: See [17, Section 7.2, Theorems 7.14 & 7.18] (note: In
SL(2,Z) case if both eigenvalues are positive, det = 1). Also see [3] (or only Baake-
Roberts?), [1], [41, Setion 5] and references therein, [42] and references therein

TODO Great reference: [44]!! (Can we also cite Gauss now??)

det = −1 case, h class number of Q([γ; γ]), H number of conjugacy classes in GL(2,Z),
compare [44, Corollary to Theorem 2] & [16, Theorem 6]

γ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h 1 1 1 1 1 2 1 1 2 2 1 1 1 1 3
H 1 1 1 2 1 2 1 2 2 2 2 4 1 3 3

e.g., {EP 4, EPEPEP}, {EP 8, EP 3EPEP}, {EP 11, EPEPEPEP},
{EP 14, EP 6EPEP,EP 2EP 2EP 2}
det = 1 case, h class number of Q([γ − 1; 1, γ − 2]), H number of conj. classes in GL(2,Z)

γ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

h 1 1 1 1 1 2 1 1 1 2 2 1 2 1 2
H 1 1 1 2 2 2 1 3 2 2 2 3 2 3 2

e.g., {EP 4EP,EP 2EP 2}, {EP 5EP,EPEPEPEP}, {EP 8EP,EP 4EP 2, EP 2EPEPEP},
{EP 9EP,EP 3EP 3}, {EP 12, EP 4EP 3, EP 6EP 2}, {EP 14EP,EP 7EP 2, EP 4EPEPEP}
Russian school?: [18, 19]

Appendix A. Sage code

TODO
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