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Abstract. This paper studies properties of tilings of the plane by parallelograms. In
particular it is established that in parallelogram tilings using a finite number of shapes
all tiles occur in only finitely many orientations.

1. Introduction

Parallelogram tilings, in particular rhomb tilings, are a fundamental family in the
mathematical study of tilings, in both aperiodic order with its links to quasicrystals and
in the study of random tilings. In addition they provide visual models for a wide range
of mathematical structures.

The most famous aperiodic parallelogram tiling is certainly the Penrose tiling [Pen79,
Gar77, HF] in the version with rhombic tiles. Many other aperiodic tilings use par-
allelograms as tiles, including the Ammann-Beenker tilings [AGS92, Bee82], or more
generally, all canonical projection tilings [FHK02, HL04]. Further examples arise in
the study of geometric representations of substitutive dynamical systems,see for in-
stance [Pyt02]. Such models are of particular importance in the study of mathematical
quasicrystals [SBGC84] and systems with long range aperiodic order [BM00, Moo97].

In random tilings parallelogram tilings are also of importance. Usually finite tilings
are considered, lozenge tilings of polygons [KO07, BFRR11], or parallelotope tilings of
zonotopes [DWMB05, CR06], but infinite random parallelogram tilings are also stud-
ied [BFR08]. In this paper we focus on infinite tilings of the plane, but some results are
also valid and relevant for finite tilings, for instance Lemma 2.3 and Lemma 2.4.

Parallelogram tilings also turn up in the study of pseudo-line arrangements in com-
binatorics (for example [AS05, Goo80]), as a visualization of reduced words in Coxeter
groups [Eln97] and, through random tilings and Dimer models, they link to a wide va-
riety of physical models [Sti08]. The use of parallelogram tilings in a wide variety of
mathematics is discussed further on Math Overflow [Spe].

Interestingly, there are aperiodic tilings of the plane with polygonal tiles where the tiles
occur in an infinite number of orientations: The Pinwheel Tiling [Rad94] is an example
of a tiling using only one kind of tile (a triangle with edge lengths 1, 2 and

√
5) where the

tiles occur in infinitely many orientations throughout the tiling. A comprehensive study
of this phenomenon is [Fre08]. There are also tilings using two kinds of quadrilaterals in
which the tiles occur in infinitely many orientations [BFG07], see for instance the Kite
Domino Tiling in the online resource [HF]. (Click “Kite-Domino” on the main page for
information about the Kite Domino Tiling, and then “Infinite rotations” for a list of
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other examples.) Our main result states that such a behavior is impossible if all tiles
are parallelograms.

By definition, a parallelogram has two pairs of parallel edges. In a parallelogram
tiling therefore there are natural lines of tiles linked each sharing a parallel edge with
the next. These lines are called worms and were used by Conway in studying the Penrose
tilings [GS87]. We will follow Conway to call these lines worms. Figure 3 shows three
(finite pieces of) such worms. In this paper we consider the structure of these worms
and use them to prove results on parallelogram tilings. In particular, our main result
states that no parallelogram tiling using finitely many different parallelograms can have
tiles in infinitely many orientations.

This paper is organized as follows: The first section defines the necessary terms and
notations. The next section is dedicated to the proof of our main result Theorem 2.5. It
contains several results which may be of interest on their own in the study of parallel-
ogram tilings, for instance the Crossing Lemma 2.3 or the Travel Lemma 2.4. The last
section contains some additional remarks.

A tiling T of the plane R2 is a packing of R2 which is also a covering of R2. Usually,
the tiles are nice compact sets, and the tiling is a countable collection of tiles Ti: T =
{T1, T2, . . .}. The covering condition can then be formulated as

⋃
i Ti = R2, and the

packing condition as int(Ti) ∩ int(Tj) = ∅ for i 6= j, where int(A) denotes the interior
of A.

The set of congruence classes of tiles in a tiling T is called protoset of T . Its elements
are called prototiles of T . A tiling is called locally finite, if each ball B ⊂ R2 intersects
only a finite number of tiles of T . A tiling T is called vertex-to-vertex, if all prototiles
are polygons, and for all tiles in T holds: If x ∈ R2 is vertex of some tile T ∈ T , then
x ∈ T ′ ∈ T implies x is a vertex of T ′.

General Assumption: Throughout the paper, only locally finite vertex-to-vertex
tilings are considered. Moreover, the the prototiles will always be parallelograms. In
particular, all tiles have nonempty interior.

Definition 1.1. Let T be a tile in a parallelogram tiling, and let e be one of its edges.
There is a unique tile T1 sharing the edge e with T . Let e1 6= e denote the edge of
T1 parallel to e. There is a unique tile T2 sharing this edge with T1. Repeating this
yields a (one-sided) infinite sequence of tiles T, T1, T2, . . . uniquely given by T and e.
Repeating this on the edge of T which is opposite of e yields a further (one-sided)
infinite sequence of tiles T−1, T−2, . . .. In this way, T and e define a unique biinfinite
sequence W := . . . T−2, T−1, T, T1, T2, . . .. We will call this sequence the worm given by
T and e, and any such sequence just a worm. The intersection of two worms W,W ′ is
defined as W ∩W ′ = {T |T ∈ W,T ∈ W ′}.

Worms are also called de Bruijn lines [DWMB05] or ribbons [BFRR11]. Worms cor-
respond to pseudo-line configurations [AS05, Goo80], and to grid lines used in the con-
struction of canonical projection tilings by the multigrid method [GR86].

Definition 1.2. Let e be some edge in a parallelogram tiling. The set of all worms
which are defined by edges parallel to e is called the worm family (given by e).
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2. Proof of the Main Result

In this section we collect some basic results on worms, which will be used in the next
section. The first result states that a worm cannot bend “too much”. In order to state
this precisely, we define the open cone C(x, α) with axis x ∈ R2 and angle α ∈ [0, π[

by C(x, α) := {z ∈ R2 | |∠(x, z)| < α}, where ∠(x, z) = arccos 〈x,z〉
‖x‖‖z‖ denotes the angle

between x and z.

e
x1 x2α

C1 C2

Figure 1. The worm defined by the edge e cannot intersect the open cones C1 or C2.

Lemma 2.1 (Cone Lemma). Let T be some parallelogram tiling, with finite or infinite
protoset. Denote the infimum of all interior angles of the prototiles by α. Let W be a
worm given by some tile T and some edge e. Denote the two endpoints of e by x1 and
x2. If α > 0 then W is contained in

R2 \
(
C1 ∪ C2

)
, where C1 := x1 + C(x1 − x2, α), C2 := x2 + C(x2 − x1, α).

If α = 0 then W is contained in e ∪
(
R2 \ aff(e)

)
, where aff(e) denotes the affine span

of e.

Proof. By inspection of Figure 1 we observe that the worm defined by the edge e cannot
intersect the cones (shaded) C1 and C2, where α > 0 is the smallest interior angle of the
prototiles. Using the prototile with the smallest angle α alone, the worm can line up
along the boundary line of one of the cones at best.

If α = 0, the open cones are empty. Nevertheless, since any tile has nonempty interior,
the particular tile in the worm W containing e as an edge has some positive interior angle.
Then, by the same reasoning as above, W cannot touch the line aff(e) apart from e. �

The last lemma shows also that a worm can have no loop. We state this result as a
an additional lemma.

Lemma 2.2 (Loop Lemma). A worm has no loop.

Lemma 2.3 (Crossing Lemma). Two worms cross at most once. Worms in the same
family never cross.

In other words: The intersection of any two worms is empty or consists of a single
tile. The intersection of two different worms defined by parallel edges is empty.
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e’

e

Figure 2. Two worms can cross at most once.

Proof. Consider two worms in distinct families, and put their defining edges together
at a point (see Figure 2). Since the tiles are parallelograms, and the interior angles
of parallelograms are less than π, the two worms can only cross in the direction where
the edges form an angle less than π. After crossing this direction is reversed. Thus no
further crossing is possible.

If the two worms are in the same family the crossing tile would have to have all four
edges parallel, but no tile (with positive area) can have this property. �

Lemma 2.4 (Travel Lemma). Let T be some parallelogram tiling, with finite or infinite
protoset. Denote the infimum of all interior angles of the prototiles by α. If α > 0, then
any two tiles S, T in T can be connected by a finite sequence of tiles which are contained
in a finite number of worms. Moreover, less than d2π/αe different worms are needed.
(Here dxe denotes the smallest k ∈ Z such that k ≥ x.)

In plain words: If the prototiles are not arbitrarily thin, then we can always travel
from tile S to tile T by walking on worms, with finitely “turns”; that is, with finitely
many changes from one worm to another one. The proof stresses the fact that tiles
cannot be arbitrarily thin.

Proof. We start from tile S, and choose W0, one of the two worms passing through S.
As, by Lemma 2.2 W0 is not a loop, an infinite number of worms cross W0. The tile T
will either lie on one of these worms or between two of them. (The latter situation is
indicated in Figure 3.)

If T lies on one of the worms we are done. Otherwise there are two worms, defined
by adjacent tiles in W0, such that T lies between these two worms. Let W1 be the worm
further from S and S1 be the tile given by the intersection of W0 and W1. Again T
either lies on a worm crossing W1 or between two worms. If T does lie on such a worm
we are done. Otherwise call the worm further from S1 W2.

Using this method we obtain a sequence of worms W0,W1, . . .. Note that we cannot
visit infinitely many tiles of the same worm: In this case we would have found infinitely
many worms passing between S and T , which is impossible, since worms cannot be
arbitrarily thin.

Thus we obtain a sequence of finite pieces of worms by our method. We proceed to
show that we have to arrive at T in this way after finitely many turns.
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S

S1

T

W0

W1

Figure 3. Starting from a tile S and worm W0, there are a set of worms crossing W0.
A tile T that does not lie on one of these worms must lie between two. We

label the worm further from S with W1.

By assumption we have α > 0. Thus after at most k := d2π/αe turns we completed a
full turn by 2π or more. Note that, by construction, the tile T is always on the right hand
side of the current worm, or always on the left hand side. Without loss of generality, let
T be always on the right hand side of the current worm. Now let us travel further on
the current worm Wk, say. Either S is contained in Wk (Case 1), or on the left hand
side of it (Case 2), or on the right hand side of it (Case 3). In the first two cases we
have completed a loop (Case 2 is indicated in Figure 4).

Assume we have completed a loop. By construction, T lies inside this loop. Since,
by construction, our sequence of worms is not crossed by any worm defined by T , the
two worms defined by T must be contained entirely inside this loop. Since worms are
infinite, and tiles are not arbitrarily small, this is impossible.

It remains to consider Case 3: S is on the right hand side of our current worm Wk.
There are two subcases: Either Wk reaches the first worm W0, defined by S. In this
case we have closed a loop again, yielding a contradiction. Or Wk avoids the first worm
W0. Now we utilize the Cone Lemma 2.1 to show that this case is impossible, too. Let
us denote the tile where we entered Wk by Sk. By Lemma 2.1, the cone C0 pointing
outward our sequence (to the left) defined by S and the edge defining W0 cannot contain
tiles of W0. Similarly, the cone pointing outward defined by Sk and the edge defining
Wk cannot contain tiles of Wk.

Either Ck intersects W0, then Wk intersects our worm sequence, closing a loop. Other-
wise, since k ≥ 2π/α, the axis of Ck is tilted towards S, thus C0 and Ck have non-empty
intersection. (This situation is indicated in Figure 5.) Neither W0 nor Wk can intersect
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S

T

kW

W0

Sk

Figure 4. Case 2: The constructed worm sequence encircles T .

C0 ∩Ck. W0 cannot intersect C0, and Wk cannot intersect Ck, thus W0 and Wk have to
intersect each other. This closes a loop, which yields a contradiction.

Thus our constructed worm sequence cannot avoid T . Thus T is reached from S by
using (finitely many) tiles contained in finitely many (k or less) worms. �

Theorem 2.5. Let T be a parallelogram tiling with a finite protoset. Then each prototile
occurs in a finite number of orientations in T . Moreover, the number of orientations of
each prototile is bounded by a common constant.

Proof. This is now an immediate consequence of Lemma 2.4: Let α denote the minimal
interior angle in the prototiles. Fix some tile S in the tiling. Any other tile T of the
same shape can be reached from S by a sequence of worms with at most k = d2π/αe
turns. Let there be m prototiles altogether. If we can connect S with T without any
turn at all (i.e., S and T are contained in the same worm) there are 2 possibilities how
T is oriented with respect to S. (T can be a translated copy of S or a reflected copy
of S, yielding two different orientations unless S and T are squares.) If we can connect
S with T using one turn, there are 2m possibilities how T is oriented with respect
to S: m possibilities arising from the choice of the prototile defining the turn, and two
possibilities for any such choice (left-handed or right-handed). Analogously, for any turn
there are 2m possibilities of changing the orientation. Thus there are (2m)` possibilities
if we need exactly ` turns. Altogether, this leaves

N := 2 + 2m+ (2m)2 + · · ·+ (2m)k = 1 +
k∑

n=0

(2m)k =
1

2m− 1

(
(2m)k+1 + 2m− 2

)
as an upper bound for the number of different orientations of T with respect to S. This
is true for any tile T congruent to S. Thus there are at most N2 possibilities for the
orientation of any two congruent tiles T, T ′ to each other. �

At this point one may ask how the result generalizes to prototiles being centrally
symmetric convex polygons.

Corollary 2.6. Let T be a tiling with a finite protoset, and let all prototiles be centrally
symmetric convex polygons. Then each prototile occurs in a finite number of orientations
in T .
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S

T
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kW

W0

k

C C0 k

Figure 5. Case 3: The constructed worm sequence does not entirely encircle T , but
nevertheless W0 and Wk have to cross (since the cones C0 and Ck are tilted
towards each other, W0 cannot intersect C0, and Wk cannot intersect Ck).

Proof. It is known that each centrally symmetric convex polygon can be tiled by parallel-
ograms, see [KaS92], Theorem 1. Any tiling T by centrally symmetric convex polygons
with tiles in infinitely many orientations could be refined into a tiling by parallelograms
in infinitely many orientations, in contradiction to Theorem 2.5. �

3. Remarks

0
1

2
3

4
5

6

Figure 6. This patch illustrates how a tile (in this case a square) can lie in infinitely
many orientations, if we allow infinitely many prototiles.

The tiling indicated in Figure 6 demonstrates that Theorem 2.5 is sharp, in the fol-
lowing sense: it becomes false if we allow an infinite number of prototiles, even if the
minimal interior angle α is bounded away from 0. In this example, the squares labelled
1, 3, 5, . . . are rotated through π

4
with respect to the square labelled 0 (compare Figure 6).

The squares with even label i 6= 0 are rotated through π
10i

with respect to the square
labelled 0. Thus these squares occur in infinitely many orientations in the tiling.

Nevertheless, the Travel Lemma still holds in this example: The minimum interior
angle is α = π

4
− π

10
(occurring in the thinner rhomb that touches square number 2).
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Thus any tile can be connected to the square 0 by a (finite) sequence of tiles which is
contained in a finite number of worms.

The upper bound obtained in the proof of Theorem 2.5 is not optimal. For instance,
the angle changes induced by turns are not always independent: the pair of turns induced
by a tile of type 1 (right-handed, say) followed by a turn induced by a tile of type 2
(right-handed) yields the same relative orientation as the pair of turns induced by a tile
of type 2 (right-handed) followed by a turn induced by a tile of type 1 (right-handed).
However, we don’t see how to bring this upper bound below O

(
(2m)k

)
.

Throughout the paper we made the general assumption that all tilings are vertex-
to-vertex, and that all tilings are locally finite. The requirement of local finiteness is
essential, otherwise the Travel Lemma would become false: We can no longer guarantee
that any two tiles can be connected by a finite sequence of tiles at all.

The requirement that the tilings are vertex-to-vertex allows for the definition of worms.
However, if the tilings are locally finite, but not vertex-to-vertex, then we can dissect
each parallelogram into finitely many parallelograms such that the new tiling is vertex-
to-vertex. Thus all results apply also to locally finite parallelogram tilings which are not
vertex-to-vertex.

One may ask whether Theorem 2.5 can be generalized to arbitrary centrally symmetric
polygons. By the results in [KaS92] and [K93], a centrally symmetric polygon can
be tiled by parallelograms if and only if it satisfies certain technical conditions: the
“balance condition” and the “convex crossing condition”, see Theorem 2 in [KaS92].
Thus Theorem 2.5 generalizes to any tiling by prototiles fulfilling these conditions, along
the lines of the proof of Corollary 2.6. A simple example of a centrally symmetric polygon
which does not fulfil these conditions — thus can not be tiled by parallelograms — is a
bow-tie (or hour-glass) shaped centrally symmetric non-convex hexagon. For such tiles
the methods of this paper break down: The Cone Lemma is not longer true in this
case, thus the Loop Lemma cannot be derived from it. Also the Crossing Lemma is
false for such tiles: it is easy to construct counterexamples to the Crossing Lemma using
the mentioned bow-tie shaped hexagons plus some parallelograms. This leads us to the
formulation of the following problem.

Problem. Is there a locally finite tiling by centrally symmetric polygons where the
tiles occur in an infinite number of orientations?

Equivalent results to those proved in this paper should apply to tilings of Rd (d ≥ 2) by
parallelotopes. In order to generalize Lemma 2.4, however, we need to enclose some tile
T with a finite collection of tiles. This would require further objects. In addition to the
pseudo-lines for worms, one must also include pseudo-planes (and pseudo-hyperplanes)
made up of linked parallelotopes sharing a parallel edge in common.
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[GS87] B. Grünbaum and G.C. Shephard, Tilings and patterns, W.H. Freeman, New York, 1987.
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