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Definition. If σ is a primitive tile substitution, X(σ) denotes the hull of σ (in the appropriate
top, for instance local rubber top). X(σ) aperiodic, if each member of X(σ) is nonperiodic.

Supertile means a patch σ(T ), or more general, σk(T ), where T is some tile in T ∈ X(σ).
More precisely, the latter is called k-th order supertile. Edge or vertex of a supertile means
some edge resp. vertex of the union of the tiles in σk(T ).

Here: substitution always selfsimilar. That is, the supertile σ(T ) is congruent to λT , where
λ is the inflation factor.

Here: always tilings in R2. Let R denote the rotation through π about the origin.

Lemma 1. Let σ be a primitive tile substitution with the unique decomposition property,
and let X(σ) be aperiodic. Let T ∈ X(σ) such that R(T ) = T . Then, for all k ∈ Z holds
R(σk(T )) = σk(T ).

Proof. The claim is immediate for k ≥ 0. (For k = 0 it is an assumption, and since two
equal tiles/patches stay equal under k-th substitution, it is true for all k ≥ 0.) So, let us
assume the claim is wrong for k = −1. Then, R(T ) = T , but the unique tiling σ−1(T ) is not
R-symmetric. But then some symmetric patch P in T corresponds to a non-symmetric patch
in σ−1(T ). Thus P can be desubstituted in two ways: σ−1(P ) 6= σ−1(R(P )). Let P be the
largest such patch. Either P is finite, then no local information can tell how to desubstitute P
uniquely (since the rest T \P is symmetric). Or P is infinite, then again, no local information
tells how to desubstitute P . ¤

Lemma 2. If 0 is contained in the interior of some tile T in a primitive substitution tiling T ,
and if R(T ) = T , then T is determined uniquely by the sequence of types of the k-th order
supertiles containing 0.

Proof. (Sketch) By selfsimilarity, 0 is not a vertex of any supertile. If the sequence of supertiles
σ(T ), σ2(T ′), . . . containing 0 fail to cover the entire plane, there is some point x which is not
contained in the union U of the supertiles. By R(T ) = T , and by Lemma 1, −x is also not
contained in U . This means that all k-th order supertiles having 0 as their symmetry centres,
do not contain x and −x. Contradiction. ¤

Theorem. Let σ be a primitive tile substitution with the unique decomposition property,
and let X(σ) be aperiodic and FLC. Then there are only finitely many elements of X(σ) which
are invariant under a rotation by π about the origin.

Proof. Since R fixes the entire tiling T , R fixes in particular the patch P0 = {T ∈ T | 0 ∈ T}.
First, let us assume that 0 is contained in the interior of some tile T (hence P0 = {T}). Then,
since R(T ) = T , 0 is exactly the (unique) centre of symmetry of T . By the Lemma 1, 0 is
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2 D. FRETTLÖH, UNIV. BIELEFELD

also the unique centre of each supertile containing 0. Let there be m different tile types, and
let T be of type 1.

Case 1: There is more than one type of supertile containing a type 1 tile in its centre.

Case 1.1: Say, these are of type 1 and 2. Then there has to be a third supertile type containing
a tile of type 2 in its centre, say, type 3. Thus we need a fourth supertile type, containing a
tile of type 3 in its centre, and so on. Contradiction (at stage m, by the pigeon hole principle).

Case 1.2: Say, these are of type 2 and 3. Contradiction, analogously to the last case.

Case 2: There is only one type of supertile σ(S) containing a type 1 tile in its centre.

Case 2.1: This supertile is of type 1. Then, the next order supertile σ2(S′) has to be of type
1, too, and the same is true for all k-order supertiles: all are of type 1. By Lemma 2, this
yields a unique tiling T .

Case 2.2: This supertile is of type 2. Now, either there is more than one supertile containing
a tile of type 2 in its centre, and we are in Case 1. Or there is exactly one supertile containing
a tile of type 2 in its centre. It may be of type 1 (then we have a loop 1 2 1 2 ...), or of type
3. Proceeding in this manner, we will finally get into some loop 12...n of length at most m.
By Lemma 2, this yields at most m different tilings T with R(T ) = T .

Now, assume that 0 is not contained in the interior of some tile, but in the interior of some
supertile. Then, by the same arguments, 0 has to be the centre of this supertile, and the
centre of all higher order supertiles containing 0; and again, this yields only finitely many (at
most m) different tilings T with R(T ) = T .

The remaining possibilities we have to consider is when 0 lies on the boundary of kth or-
der supertiles on any level k. This means that in 0 two or more supertiles are meeting. If
more than two are meeting on each level, then 0 is a vertex on each level, and the substi-
tution of the vertex constellation P

(−k)
0 = {T ∈ σ−k(T ) | 0 ∈ T} is the vertex constellation

P
(−k+1)
0 = σ(P (−k)

0 ) = {T ∈ σ−k+1(T ) | 0 ∈ T}. Similar as in Lemma 2, the sequence of
super-vertex constellations P0, P

(1)
0 , P

(2)
0 , . . . determines the tiling uniquely. By selfsimilarity,

vertices substitute to vertices. By FLC, there are only finitely many vertex constellations,
say, n. Thus, this sequence is always ultimately periodic, with period at most n. This yields
at most n different tilings T with R(T ) = T .

The last possibility to consider is that 0 lies on the boundary of exactly two supertiles, from
some level k on.

Consider again P0 = {T ∈ T | 0 ∈ T}. Now, P0 contains exactly two tiles of the same type,
and 0 is the centre of symmetry of P0. By FLC, there are again only finitely many possibilities
for P0. Moreover, 0 is also the centre of symmetry for each constellation of the two supertiles
P

(k)
0 = {σk(T ) | 0 ∈ σk(T )}. By considering all the centres of the P0s as artificial vertices, we

are in the situation of the last case: 0 is a vertex on each level, vertices substitute to vertices,
there are only finitely many of them, say, n. Thus the possible sequence of super-vertices is
ultimately periodic, yielding finitely many tilings.
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Remarks: The proof generalises immediately to any rotation R about the origin. However,
it does not work for mirror reflections: One can construct infinitely many pinwheel tilings
which are mirror symmetric.

The proof indicates that all R-symmetric tilings are of the form
⋃

k≥0 σnk(P ) for some sym-
metric legal patch P in T .

Let a be the number of R-symmetric tiles, b be the number of R-symmetric vertex constella-
tions and c be the number of R-symmetric pairs of adjacent tiles, then a + b + c is an upper
bound for the number of R-symmetric tilings in X(σ).

A more detailed study how vertices substitute to vertices etc. yields the exact number
of symmetric tilings. For instance, there are exactly four pinwheel tilings which are R-
symmetric: One with vertex constellation V7 (Fig. 6 in [1]) in its centre, (the tiling being
T7 :=

⋃
k≥0 σ2k(V 7), where sigma2(T7) = T7) one with vertex constellation 11 in its centre

(T11 := σ(T7), also fixed by σ2), one with a domino D in its centre (see Figure 4 in [1], it is
TD =

⋃
k≥0 σ2k(D)), and its substitution Ts := σ(TD). Again, we have TD = σ(Ts) and vice

versa, thus σ2(TD) = TD and σ2(Ts) = Ts.
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