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A enneagonal tiling of the plane is proposed. A self-sirnilar pattern is obtained by using eight basic 
shapes. This pattern presents rotational symmetry and no translational invariance. 

1. Introduction 
Quasiperiodic lattices have been intensively investigated after the discovery of a new 
phase of AI-Mn, a quasicrystallirie phase, by Shechtman et al. [l]. Following this discov- 
ery other quasicrystalline systems were found : octogonal, decagonal, and dodecagonal 
phases [2 to 41. Recently, one-dimensional quasicrystals (Fibonacci phases) were grown by 
MBE [5, 61, according to second arid third-order Fibonacci sequences, that correspond to 
quadratic and cubic irrationalities, respectively. In 1974 Penrose [7] proposed a pentago- 
nal tiling of the plane by using six basic shapes. After that he devised a new version for 
pentagonal tiling with two forms (‘darts’ and ‘kites’) and gave the corresponding inflation 
rule [8]. For darts or kites, the side ratio is the golden mean (z = (1 + &)/2). Penrose 
tiling is associated to a second-order Fibonacci sequence (musical sequence) defined by 

F,, = Fr2-1 + F7,-2, L + LS, S 4 L .  (1) 

In (1) F,,, is t,he number of terms of the rt-th generation. Numerical values for F,, are: 0, 
1, 1, 2, 3,  5 ,  8, 13, 21, 34, 55, 89 . . . A closed form for F,, is 

which is known by Binet theorem [9]. A growth sequence for (1) after seven steps 
(F7 = 21) would be LSLLSLSLLSLLSLSLLSLSL. The traiisformation given by (1) can 
be expressed by the so-called “divine proportion” 
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If we put x = L/S we will have 

x2 - 5 - 1 = 0 ,  (4) 

which has a positive solution t. The sequence of intervals L and S can be also characterized 
by the substitution law rL = MCJr,,  where the transformation matrix M is given by [lo] 

M = ( ;  ;) (5) 

and its secular equation is x2 - x - 1 = 0 which gives the golden mean Z. 

2. Fourth-Order Fibonacci-Like Sequences 

In 1993, one of us proposed a third-order Fibonacci sequence associated to heptagonal 
tilings of the plane [ll, la].  The obtained pattern presents self-similarity and exhibits rota- 
tional symmetry. Heptagonal and enneagonal tilings were considered in 1988 by Whittaker 
and Whittaker [13] who used the projection method. The present work deals with a fourth- 
order Fibonacci-like sequence associated to an enneagonal quasiperiodic tiling of the plane, a 
quasiperiodic tiling of non-quadratic irrationality. Such tilings give rise to  physically un- 
stable systems and, indeed, ninefold symmetric quasicrystals have not been observed yet 1141. 
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Fig. 1. Fundamental shapes of our tiling (A = 1.000, B N 1.879, C N 2.532, D = 2.879, and 
4 = 4 9 )  
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Fourth- order Fibonacci-like sequences associated to an enneagonal tiling, are defined by 

s, = as,-] + 3s,,-2 - s 7 , - 3  - ST1-4 

s, = 4ST1- 1 - 3s,,-2 - 3s, - 3  + 3sn-4 

s, = S,,-] +3STL_2 -as,,_, - s,-, . 

(6) 

(7) 

(8) 

or 

or 

In this work we are interested in a tiling associated to a non-quadratic irrationality 
defined by (6). The inflation rule for (6) is 

A - D ,  B + D C ,  C-BCD, D-DABC (9) 

and the corresponding transformation matrix is 

with the secular equation 

24 - 223 - + + 1 = 0 .  

a 

Fig. 2. Transformations of the shapes 
a) 1, b) 2, c) 3, and d) 4 of Fig. 1 
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Fig. 3. Transformations of the shapes 
a) 5, b) 6, c) 7, and d) 8 of Fig. 1 

n 

b C d 

The secular equation for (7) is 

x4 - 4x3 + 3 2  + 32 - 3 = 0 

.x4 - 

(12) 

(13) 

and the characteristic equation for (8) is 
2 

- 32 + 2rc + 1 = 0 .  

Positive solutions for (II), ( l a ) ,  and (13) are, respectively E ,  v ,  and p with the following 
approximate values: 

E = 2.879, v = 2.532, and p = 1.879. (14) 
p, v, arid ( are the distinct lengths of a 9-gon (regular enneagon) of unitary side 
(p = 2 cos @, v = 2 cos2 @ + cos 2@, and 6 = 2 cos3 @ + cos @ cos 2@ + cos 3$), where 
@ = n/9. By using cyclotornic polyriornials [I51 it can be proved that E, Y, and p are, 
respectively, roots of equations ( l l ) ,  (12), and (13). 

Next, we display some generations of the inflation transforniation given by (9), 

1st generation: D 
2nd generation: DABC 
3rd generation: DABCDDCBCD 
4th generation : DABCDDCBCDDABCDABCBCDDCBCDDABC 
5th generation: DABCDDCBCDDABCDABCBCDDCBCDDABC 

DABCDDCBCDDABCDDCBCDDCBCDDABCD 
ABCBCDDCBCDDABCDABCDDCBCD 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(15) 
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Fig. 4. The infinit? pattern for eririeagorial syriirrietry 

In thc above transformations the riurriber of intervals in each generation is given by 
S1 = 1, S, = 4, Ss = 10, S d  = 30. S5 = 85, . . . according to (6). 

3. Results and Conclusions 
In the following we will describe how to tile the plane with an ennea.gona1 quasiperio- 
dic symmetry. In Fig. 1 we show eight forms which are basic for the constructions that 
will appear in this paper. They are three isosceles triangles, two scalene triangles, one 
equilateral triangle, one parallelogram, and one lozenge. Angles are multiples of q!~ arid 
sides are according to the correspondence: 1 ---f A, p 4 B, v 4 C, 

Fig. 2 and 3 are the trarisforniations of Fig. 1 by the approximate scaling factor 8.29. 
Fig. 2 (a, b, c, arid d) corresponds, respectively, to forms 1, 2,  3, and 4 of Fig. 1. Fig. 3 
(a, b; c, and d) corresponds, respectively, to fornis 5 ,  6, 7, and 8 of Fig. 1. Forms of 
Fig. 2 and 3 have sides according to t,he Fibonacci-like sequence defined by (6). 

+ D. 
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Fig. 5. One ninth of a enneagonal star on tllr plane 

Fig. 4 presents the infinite pattern corresponding to (6). It is a 18-gon with radius 
DABCDDCBCD (third generation in (15)). The central l8-gon of Fig. 4 has radius D 
and uses eighteen forms given by form 3 of Fig. 1. This is surrounded by other nine 
equal 18-gons with centers located at the distance DABCD (D + A + B + C + D) from 
the origin 0 (along OP). The whole figure can be considered as a new central 18-gon 
surrounded by nine equal 18-gons, arid so on. Thus the pattern of Fig. 4 presents self- 
similarity and the approximate scaling factor is 8.29. We must note that radial direc- 
tions separated by q5 do not correspond (in the inflation transformations such radial 
directions correspond to walks in opposite directions starting at the central 18-gon). So, 
we have only ninefold symmetry. 

Fig. 5 is formed by Fig. 2a, b, c, and d and represents a part of one star on the plane 
(one ninth of  a star). It furnishes inore details about the pattern of Fig. 4. If we observe 
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Fig. 4 and 5 ,  we see that the central star of Fig. 4 (radius DCB) transforms into a large 
star that contains the same internal structure of the central star of Fig. 4. This large 
star, in turn, would transform in a bigger star with the same internal structure of the 
star generated Fig. 5 nine times, and so on. We notice that Fig. 4 has rotational symme- 
try, hut it is not translationally invariant. 
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