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Empty lattice polygons:
(" polygon” here always means convex polygon)

Several interesting results and applications.
One: Helly number of point lattices.



Helly numbers

Theorem (Radon '21, Kodnig '22, Helly '23)

Let Ki, ..., K, be convex subsets of R, with n > d + 1. If any
d + 1 of these sets have a common point, then all have a common
point; that is

(K #2.

j=1

Hence d + 1 is the Helly number h(R?) of R€.

For instance, h(R?) = 3.



Helly numbers

Let us generalize Helly numbers to other sets than RY.

Definition
Let S C RY be nonempty. The S-Helly number h(S) of S is the
minimal number n > d such that the following statement holds:

Let K1, ..., Kn be convex subsets of S. If any h(S) of these sets
have a common point, then all have a common point.
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Definition
Let S C RY be nonempty. The S-Helly number h(S) of S is the
minimal number n > d such that the following statement holds:

Let K1, ..., Kn be convex subsets of S. If any h(S) of these sets
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One result in this context:

Theorem (Doignon '73)
h(Z9) = 29.



Helly numbers

For instance, h(Z?) = 4.

Any three triangles have a common point, but not all four.



Helly numbers and empty polygons

Theorem (Averkov '13)

Let S C RY be discrete. Then the Helly number h(S) equals the
maximal number of vertices of an empty S-polytope.

For instance h(Z?) = 4:
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Helly numbers and empty polygons

Theorem (Averkov '13)

Let S C RY be discrete. Then the Helly number h(S) equals the
maximal number of vertices of an empty S-polytope.

For instance h(Z?) = 4: : te .“’:
N

Which interesting discrete sets S we may study?
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Empty polygons in Penrose tilings

...and determine the empty polygons.




Empty polygons in Penrose tilings

By Averkov's result the maximal number of vertices yields the
Helly number h(P).
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Empty polygons in Penrose tilings

By Averkov's result the maximal number of vertices yields the
Helly number h(P).

So far we have:
Theorem[Garber '16] h(P) < 32.

Claim h(P) = 6.

Thank you!



