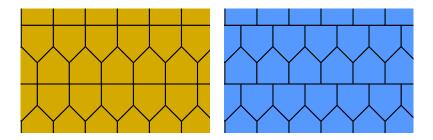
Weird normal tilings

Dirk Frettlöh

Joint work with Christian Richter, Alexey Glazyrin, Zsolt Lángi

Technische Fakultät Universität Bielefeld

International Conference on Discrete Mathematics București, September 2021 A *tiling* is a covering of the plane which is a packing of the plane as well.



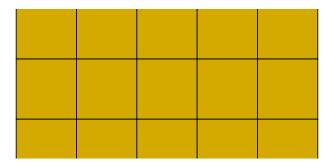
Here all tiles are convex polygons.

A tiling is called *vertex-to-vertex* if the intersection of any two tiles is a full edge, or a vertex, or empty.

(Left tiling: yes, right tiling: no)

A tiling is called *normal* if there are r > 0, R > 0 such that

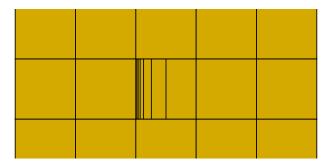
- Each tile contains in a disk of radius r
- Each tile is contained in a disk of radius R



Normal.

A tiling is called *normal* if there are r > 0, R > 0 such that

- Each tile contains in a disk of radius r
- Each tile is contained in a disk of radius R



Not normal.

Part 1

(with Christian Richter)

A rich source of interesting problems:

```
nandacumar.blogspot.com
```

Question: *Is there a tiling of the plane by pairwise noncongruent triangles of equal area and equal perimeter?*

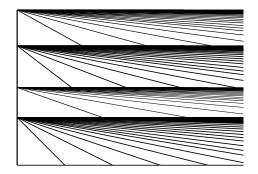
Answer: No

Andrey Kupavskii, János Pach, Gábor Tardos: Tilings with noncongruent triangles, *European J. Combin.* 73 (2018)

Weaker question: *Is there a tiling of the plane by pairwise noncongruent triangles of equal area?*

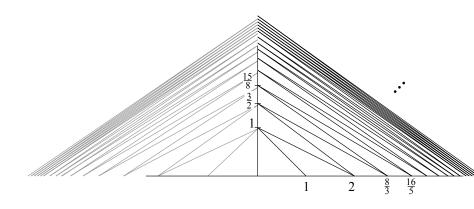
Answer: Yes.

i



i

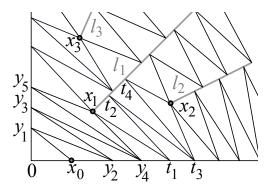
...but this tiling is not normal.



...and this tiling is not normal either.

Slightly harder question: *Is there a normal tiling of the plane by pairwise noncongruent triangles of equal area?*

Answer: Yes.



D.F.: Noncongruent equidissections of the plane, *Discrete Geometry and Symmetry*, Springer (2018)

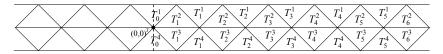
A. Kupavskii, J. Pach, G. Tardos: Tilings of the plane with unit area triangles of bounded diameter, *Acta Math. Hungar.* 155 (2018)

Even harder question: *Is there a normal vertex-to-vertex tiling of the plane by pairwise noncongruent triangles of the same area?*

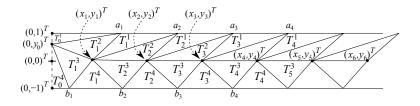
Answer: Yes.

D.F., Christian Richter: Incongruent equipartitions of the plane, *European J. Combin.* 2020

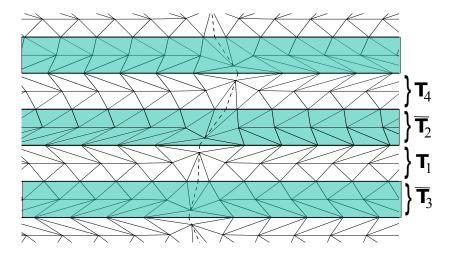
Idea: distort the triangles in this strip:



...by moving y_0 up, and keeping unit area etc.



Stack sheared copies of the strip tiling:



(greenish: strip is upside down)

- 7 pages of computation show:
 - The tilings are normal
 - All triangles are pairwise noncongruent
 - Determine exact values of y_i
 - Deviation of y_i is bounded (\Rightarrow normal)
 - All triangles within the strip are pairwise noncongruent
 - Exploit uncountably many choices for shear angles (⇒ pairwise noncongruent)

Is there a noncongruent equal area tiling by.... that is...

Triangles	vtv	not vtv
normal	?	?
equal perimeter	?	?
Quadrangles	vtv	not vtv
normal	?	?
equal perimeter	?	?
Pentagons	vtv	not vtv
normal	?	?
equal perimeter	?	?
Hexagons	vtv	not vtv
	-	2
normal	?	<i>!</i>
normal equal perimeter	? ?	? ?

Is there a noncongruent equal area tiling by.... that is...

Triangles	vtv	not vtv
normal	?	?
equal perimeter	No	No
Quadrangles	vtv	not vtv
normal	?	?
equal perimeter	?	?
<u> </u>		
Pentagons	vtv	not vtv
	vtv ?	not vtv ?
Pentagons		not vtv ? ?
Pentagons normal	?	not vtv ? ? not vtv
Pentagons normal equal perimeter	?	? ?

Kupavskii-Pach-Tardos 2018a

Is there a noncongruent equal area tiling by.... that is...

Triangles	vtv	not vtv
normal	?	Yes
equal perimeter	No	No
Quadrangles	vtv	not vtv
normal	?	?
equal perimeter	?	?
<u> </u>		
Pentagons	vtv	not vtv
	vtv ?	not vtv ?
Pentagons		not vtv ? ?
Pentagons normal	?	not vtv ? ? not vtv
Pentagons normal equal perimeter	?	? ?

F. 2018, Kupavskii-Pach-Tardos 2018b

Is there a noncongruent equal area tiling by.... that is...

vtv	not vtv
Yes	Yes
No	No
vtv	not vtv
?	?
?	?
vtv	not vtv
?	?
?	?
vtv	not vtv
?	?
-	2
	Yes No vtv ? ? vtv ? ? vtv ? vtv

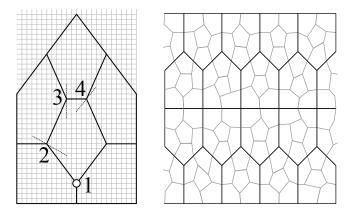
F.-Richter 2020

Is there a noncongruent equal area tiling by.... that is...

Triangles	vtv	not vtv
normal	Yes	Yes
equal perimeter	No	No
Quadrangles	vtv	not vtv
normal	Yes	Yes
equal perimeter	?	?
Pentagons	vtv	not vtv
normal	?	Yes
equal perimeter	?	?
Hexagons	vtv	not vtv
normal	Yes	?
equal perimeter	?	?

F. 2018

Quadrangles are easier than triangles. Pentagons and hexagons are still easier. E.g.:



Triangle tilings turn out to be the most restrictive case (equal area *and* equal perimeter impossible).

Is there a noncongruent equal area tiling by.... that is...

Triangles	vtv	not vtv
normal	Yes	Yes
equal perimeter	No	No
Quadrangles	vtv	not vtv
normal	Yes	Yes
equal perimeter	2	?
equal permeter	•	•
Pentagons	vtv	not vtv
	•	not vtv Yes
Pentagons	vtv	
Pentagons normal	vtv ?	Yes
Pentagons normal equal perimeter	· vtv ? ?	Yes Yes

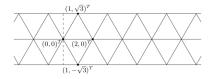
F.-Richter 2021+ (preprint)

Is there a noncongruent equal area tiling by.... that is...

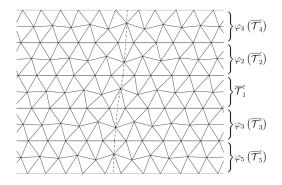
vtv	not vtv
Yes	Yes
No	No
vtv	not vtv
Yes	Yes
?	Yes
vtv	not vtv
?	Yes
? ?	Yes Yes
?	Yes
	Yes No vtv Yes ?

F.-Richter Journal of Combinatorial Theory A 2021

Lengthy and technical proof. Similar approach: distort

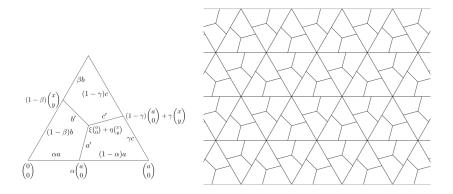


Stack sheared copies:



... as close to the regular triangle tiling as desired.

Subdivide triangles into incongruent quadrangles (equal perimeter)



Is there a noncongruent equal area tiling by.... that is...

vtv	not vtv
Yes	Yes
No	No
vtv	not vtv
Yes	Yes
?	Yes
vtv	not vtv
?	Yes
? ?	Yes Yes
?	Yes
	Yes No vtv Yes ?

F.-Richter Journal of Combinatorial Theory A 2021

Is there a noncongruent equal area tiling by.... that is...

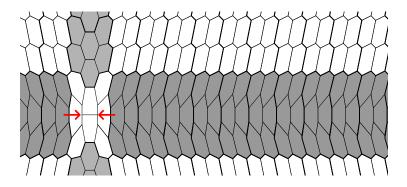
Triangles	vtv	not vtv
normal	Yes	Yes
equal perimeter	No	No
Quadrangles	vtv	not vtv
normal	Yes	Yes
equal perimeter	?	Yes
	-	
Pentagons	vtv	not vtv
· ·	vtv ?	not vtv Yes
Pentagons		
Pentagons normal	?	Yes
Pentagons normal equal perimeter	? ?	Yes Yes

F.-Richter 2020

Recall: quadrangles, pentagons and hexagons are easier.

And usually "not vertex-to-vertex" is less restrictive than "vertex-to-vertex".

But for hexagons it is the other way around: it is harder to find non-vertex-to-vertex tilings by hexagons than vertex-to-vertex ones.



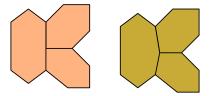
Here: only two non-vertex-to-vertex situations. This leads to ...

Part 2

(with Alexey Glazyrin and Zsolt Lángi)

Question: How many non-vertex-to-vertex situations can a tiling by convex hexagons have?

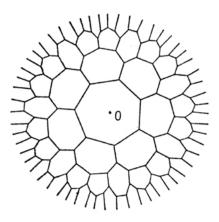
Very similar question: How many heptagons can a tiling by convex *n*-gons have, if $n \ge 6$?

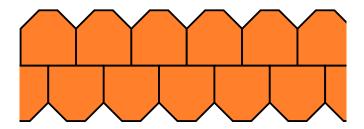


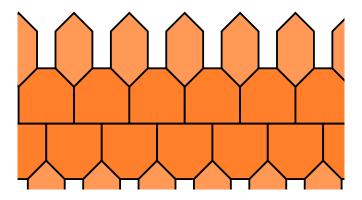
Question: How many non-vertex-to-vertex situations can a tiling by convex hexagons have?

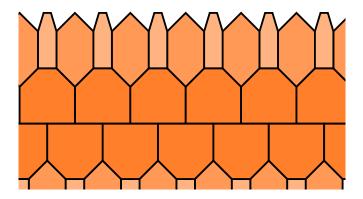
Very similar question: How many heptagons can a tiling by convex *n*-gons have, if $n \ge 6$?

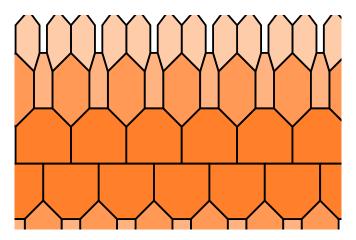
Answer: a lot.











Partial answer: at most finitely many.

Theorem (Stehling, Akopyan) In a normal tiling of \mathbb{R}^2 by convex polygons, all of them having at least six edges, there are on finitely many *n*-gons with $n \ge 7$.

Thomas Stehling: Über kombinatorische und graphentheoretische Eigenschaften normaler Pflasterungen, PhD thesis, Dortmund (1989)

Arseniy Akopyan: On the number of non-hexagons in a planar tiling, Comptes Rendus Math. Acad. Sci. Paris 356 (2018).

Akopyan also provides an upper bound:

$$\#$$
 heptagons $\leq 2\pi rac{D}{A} - 6$

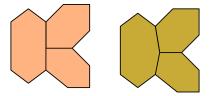
D: maximal diameter, A: minimal area.

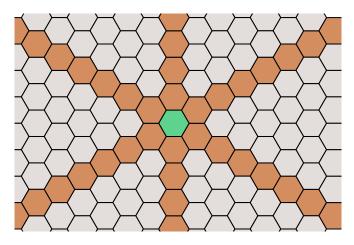
(so D/A is a measure for how "normal" the tiling is)

Answer: Arbitrarily many. (Even of unit area)

D.F., Alexey Glazyrin, Zsolt Lángi: Hexagon tilings of the plane that are not edge-to-edge, *Acta Math. Hung.* 2021

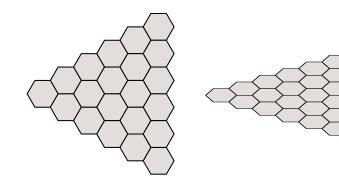
Corollary: A hexagon tiling can have arbitrarily many non-vertex-to-vertex situations (but not infinitely many)



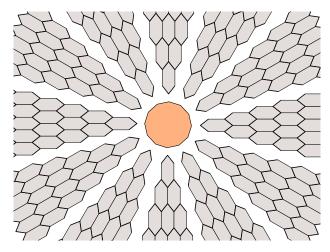


How to obtain "arbitrary many"?

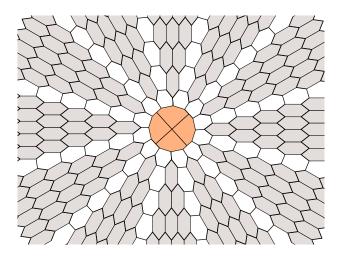
Divide a regular hexagon tiling into six infinite wedges...



...squeeze the wedges...



...arrange them around a central 3n-gon... (here n = 4)



...cut the 3n-gon into n heptagons, and fill the gaps.

We can do the maths in order to compare with Akopyan's bound:

heptagons
$$\leq 2\pi \frac{D}{A} - 6$$

Our construction yields tilings T_n , with parameters D_n , A_n such that

$$\lim_{n \to \infty} \frac{\# \text{ heptagons in } \mathcal{T}_n}{2\pi \frac{D_n}{A_n} - 6} = \frac{3}{4}$$

Hence we achieve 3/4 of Akopyan's bound.

It follows that his bound is asymptotically tight

By which I mean, correct up to leading constant, i.e. linear in D/A.

