
INDUCTIVE ROTATION TILINGS

DIRK FRETTLÖH AND KURT HOFSTETTER

Abstract. A new method for constructing aperiodic tilings is presented. The method
is illustrated by constructing a particular tiling and its hull. The properties of this tiling
and the hull are studied. In particular it is shown that these tilings have a substitution
rule, that they are nonperiodic, aperiodic, limitperiodic and pure point diffractive.

Dedicated to Nikolai Petrovich Dolbilin on the occasion of his 70th birthday.

1. Introduction

The discovery of the celebrated Penrose tilings [12], see also [6, 1], and of physical qua-
sicrystals [15] gave rise to the development of a mathematical theory of aperiodic order.
Objects of study are nonperiodic structures (i.e. not fixed by any nontrivial translation)
that nevertheless possess a high degree of local and global order. In many cases the struc-
tures under consideration are either discrete point sets (Delone sets, see for instance [2])
or tilings (tilings are also called tesselations, see [6] for a wealth of results about tilings).

Three frequently used construction methods for nonperiodic tilings are local matching rules,
cut-and-project schemes and tile substitutions, see [1] and references therein for all three
methods. In this paper we describe an additional way to construct nonperiodic tilings,
the “inductive rotation”, found in 2008 by the second author who is not a scientist but an
artist. Variants of this construction have been considered before, see for instance [3] →
“People” → “Petra Gummelt”, but up to the knowledge of the authors this construction
does not appear in the existing literature.

After describing the construction we will prove that the resulting tilings are nonperiodic,
aperiodic and limitperiodic, that they can be described as model sets, hence are pure point
diffractive, that they possess uniform patch frequencies and that they are substitution
tilings. (For an explanation of these terms see below). The latter property will be the key
for most of the other results. We end with some remarks and open questions. In order
to keep the paper as much self-contained as possible we try to explain all terms here, but
only as far as required to state the results. Where needed we provide references for further
information.

Let us fix some notation. A tiling of R2 is a collection of tiles {Qi | i ∈ N} that is a covering
(i.e.

⋃
i∈NQi = R2) as well as a packing (i.e. the intersection of the interiors of two distinct
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Figure 1. The substitution rule for the aperiodic chair tiling (left) and the
first two iterates of this rule applied to a single prototile.

tiles Qi and Qj is empty). The Qi are called tiles of the tiling. For our purposes it is fine
to think of the tiles as nice compact sets like squares or triangles. If all tiles in the tiling
belong to finitely many congruence classes [T1], . . . , [Tm] then we call the representatives
T1, . . . , Tm prototiles of the tiling. Any finite subset of a tiling is called a patch. Examples
of patches of a tiling are obtained by intersecting a tiling T with a ball Br(x), i.e. with an
open ball of radius r with centre x. The intersection is defined as

T ∩Br(x) := {T ∈ T |T ⊂ Br(x)}.

Sometimes we want to equip the tiles with an additional attribute like colour or decoration.
Then we consider the prototiles equipped with the different colours or decorations, too.
One can formalise this by considering pairs (T, i), where T is some tile and i encodes the
additional attribute. In order to keep notation simple we keep in mind to distinguish a black
unit square from a red unit square when necessary without writing down the additional
label i.

A vector t ∈ R2 such that T + t = T is called period of T . (If T = {Qi | i ∈ N} then T + t
means {Qi + t | i ∈ N}.) A tiling T is called periodic if it has a nontrivial period, i.e. a
period t 6= 0. A tiling T is called 2-periodic if T possesses two linear independent periods.
A tiling T is called nonperiodic if its only period is the trivial period t = 0.

A substitution rule σ is a simple method to generate nonperiodic tilings. The basic idea is
to substitute each prototile Ti with a patch σ(Ti) consisting of congruent copies of some of
the prototiles T1, . . . , Tm. The Penrose tilings can be generated by a substitution rule with
two prototiles, see [1], [3] or [17]. A simpler example using just one prototiles is shown
in Figure 1: a substitution rule for the chair tiling. The chair tiling is nonperiodic, even
though it contains large 2-periodic subsets [1].

Given a substitution σ with prototiles T1, . . . , Tm a patch of the form σ(Ti) is called super-
tile. More generally, a patch of the form σk(Ti) is called level k supertile. A substitution
rule is called primitive if there is k ∈ N such that each level k supertile contains congruent
copies of all prototiles.

In the sequel we present a construction method for nonperiodic tilings that is similar but
not equal to a substitution rule. Before we give a more precise description let us first
illustrate the idea of the construction. We start with a square G0 of edge length two
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Figure 2. The first three iterates of the construction for non-decorated
tiles. The black dot indicates the origin.

centred in the origin, see Figure 2 left. (We may imagine this and further squares cut out
of cardboard or similar.) In the next step we remove G0 (but keep its position in mind);
we take four translates of G0, and we place the first one one unit to the left with respect to
G0. The next square we rotate by −π

2
and place it one unit up with respect to G0, shuffling

it partly below the first square. The third square we rotate by −π, place it one unit to
the right with respect to G0 shuffling it partly below the second square. The last square
is rotated by −3π

2
, placed one unit down with respect to G0 and shuffled below the third

square. The result is shown in Figure 2 second from the left. Let us call this constellation
of four overlapping squares G1.

We proceed in similar way: We take four translates of G1 and put one translate two units
to the left with respect to G1, a second translate (rotated by −π

2
) two units up with respect

to G1 and below the first translate, a third translate (rotated by −π) two units to the right
with respect to G1 and below the second translate, and a fourth translate (rotated by −3π

2
)

two units down with respect to G1 and below the third translate. The result G2, as seen
from above, is shown in Figure 2 second from the right.

The next generations are constructed analogously, just replace G1 by Gn and 2 by 2n in
the last paragraph. In this way we can cover arbitrary large parts of the plane. In order to
translate this covering into a tiling we consider only the visible (parts of) squares. Thus
the tiling has four prototiles: a large square with edge length two, a small square with edge
length one, a 1× 2 rectangle, and a “chair”, i.e. a non-convex hexagon that is the union of
three small squares. The more subtle question how this sequence of finite patterns yields
an infinite tiling of the plane is answered below. Briefly, we use the fact that the central
patches of the Gi are fixed under the iteration. These patches yield a nested sequence
S2 ⊂ S3 ⊂ S4 · · · of patches with a well defined limit which is an infinite tiling.
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2. The Tilings

Now we give a more precise description of the construction of the sequence of patches. Let
ϕ denote a rotation through −π/2 about the origin. Start with a square Q := [−1, 1]2.
In the following we need to keep track about which squares lie “above” (parts of) other
squares. In order to achieve this we may equip each square with an additional label. One
may write (Q, i) and consider the label i as the “height” of Q in some orthogonal direction.
Anyway, this idea leads to a tedious description of the construction that we omit here. For
our purposes it is sufficient just to keep track which squares are higher respectively lower
than other squares.

Let P0 := {Q}. Let

P1 := {Q+ (−1, 0), ϕQ+ (0, 1), ϕ2Q+ (1, 0), ϕ3Q+ (0,−1)},

where the first square is on top of the other squares, the second square is below the first
one but above the third and the fourth square, and the fourth square is on bottom. In the
nth step let Pn consist of four congruent copies of Pn−1:

Pn := {Pn−1 + (−2n−1, 0), ϕPn−1 + (0, 2n−1), ϕ2Pn−1 + (2n−1, 0), ϕ3Pn−1 + (0,−2n−1)}.

All squares in the first set are on top of the squares in the other three sets, the squares
in the second set all are below the squares in the first set but on top of all squares in the
third set and the fourth set, and the squares in the fourth set are all below the squares in
the other three sets. Two squares within one of the sets Pn−1 + t inherit their above-below
relation from the preceding steps in the iteration.

Note that the centres of the squares are contained in the lattice translate

(1, 0) + Λ := (1, 0) + 〈(1, 1), (1,−1)〉Z = {(x1, x2) ∈ R2 |x1 + x2 odd }

Hence, by the construction, the centre of each of the congruent copies of P1 (i.e. the
single point that is the intersection of the four squares in the copy of P1) is contained in
(2, 0) + 2Λ = (2, 0) + 〈(2, 2), (2,−2)〉Z. Since each x ∈ (1, 1) + Λ has a unique presentation
of the form

x = y +

{
(0,±1)
(±1, 0)

, (y ∈ (2, 0) + 2Λ)

the following lemma is immediate.

Lemma 2.1. The set Pn consists of 4n congruent copies of Q with centres

{(x1, x2) ∈ Z2 |x1 + x2 odd , |x1|+ |x2| ≤ 2n − 1}

Because of Lemma 2.1 almost any (x1, x2) ∈ R2 (i.e. any with x1, x2 /∈ Z) is covered by
exactly two squares in Pn (for n large enough). Any (x1, x2) with exactly one integer
coordinate is covered by three squares in Pn (the interior of one square and some common
edge of two further squares; again if n is large enough), and any (x1, x2) with two integer
coordinates is covered by four squares (midpoints of edges) if x1 + x2 is even, and by five
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Figure 3. The construction of Figure 2 applied to squares with certain
decorations. A single square R0 is shown on the left: the decoration divides
R0 into four unit squares of distinct colours, where each unit square carries
an arrow in addition. These decorated unit squares yield the tiles of the
tiling A.

squares (the centre of one square and the common vertex of four further squares) if x1 +x2
is odd. This yields the following result.

Lemma 2.2. For all n ∈ N the covering degree of Pn is two in {(x1, x2) ∈ R2 | |x1 +x2| ≤
2n − 1}.

Since we may decide to equip the squares used above with some additional decoration
there are several ways in which this construction yields tilings of R2. In the sequel we will
mainly consider one particular tiling: the arrowed tiling A that is obtained by decorating
the underlying square R0 with arrows and colours as shown in Figure 3 (left).

The tiling A is obtained by considering what we see viewing Pn from “above”, where Pn
now consists of congruent copies of the decorated square R0. Formally, each unit square
K = [k, k + 1] × [m,m + 1] (k,m ∈ Z) inherits the decoration (colour and arrow) from
the top square of the two large squares in Pn that contain K. We want to consider A as a
tiling by unit squares with decoration as prototiles where the unit squares carry an arrow
as well as a colour (here: black, dark grey, light grey, white). From now on the term “tile”
always denotes such a unit square with decoration, if not mentioned otherwise.

Regarding the point how to obtain a tiling of the entire plane from the finite patches Pn,
a very natural approach —and a very useful one—is considering the limit lim

n→∞
Pn, where

the limit is taken with respect to the local topology [1]. In particular, in this topology
two tilings are ε-close if they agree in a ball of radius 1/ε centred in the origin. For our
purposes we may define the distance d(T , T ′) between two tilings T , T ′ by

d̃(T , T ′) = inf{ε > 0 | ∃x, y ∈ Bε : B1/ε ∩ (T + x) = B1/ε ∩ (T ′ + y)}
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where Br denotes the open ball of radius r centred in 0. In order to make d̃ into a metric,
i.e. in order to ensure transitivity, we define

d(T , T ′) = min{d̃(T , T ′), 1√
2
},

compare [9]. We will see in the sequel that the central parts Sn of Pn for n ≥ 2 form a
nested sequence

S2 ⊂ S3 ⊂ · · · ⊂ Sn ⊂ · · · ,
where Sn has support {(x1, x2) | |x1 + x2| < 2n−1 − 1}, hence the sequence Pn—or any
sequence of tilings (Tn)n where Tn contains Pn as its central patch—converges with respect
to the metric d.

For the next steps it will be convenient to consider the arrowed tiling A. In order to avoid
confusion let us call the corresponding sequence Rn, i.e. the sequence Pn where each tile is
equipped with the arrow decoration of Figure 3. The first observation is that the arrows on
tiles at the boundary of Rn point outwards. In order to make the term “boundary” precise,
let bd(Rn) be the set of the tiles in Rn that have edges on the boundary of

⋃
T∈Rn

T . These
are exactly the tiles that have two edges that are not shared with other tiles of Rn ; or
equivalently: these are exactly the tiles with a vertex that is not vertex of another tile of
Rn.

Lemma 2.3. The arrows on all tiles at the boundary bd(Rn) of Rn point outwards, i.e. in
the direction of their vertex that is not a vertex of any other tile of Rn.

Proof. The claim is true for R0 and R1, hence it follows inductively for all Rn by considering
the construction: The boundary of Rn consists of the boundaries of Rn−1. �

Lemma 2.4. All arrows on the tiles in Rn on the two diagonals (x1, x2) with x1 = x2
or x1 = −x2 respectively show in the following directions: (1,−1) for x1 = x2, (1, 1) for
x1 = −x2 < 0, (−1,−1) for x1 = −x2 > 0.

This is an immediate consequence of Lemma 2.3 and the construction. Figure 4 (right)
illustrates the situation.

Theorem 2.5. The sequence Rn is convergent with respect to the metric d. Consequently,
any sequence of tilings (Tn)n where Tn contains Rn as its central patch is convergent with
respect to the metric d.

Proof. The idea is to consider three steps of the iteration, i.e. how Rn+2 is build up from
congruent copies of Rn−1. This shows that the central patch of Rn+1 reappears as the
central patch of Rn+2, compare Figure 5.

For n ≥ 1 the set R′n := Rn \ bd(Rn) is nonempty and reappears in Rn+1, see Figure 4.
Considering how R′n is contained in Rn+1 we find that the central patch S of Rn+1 consists
of four congruent copies of R′n−1. (This is indicated in the left part of Figure 5, the area
shaded in darker grey.) The central patch of Rn+2, indicated in Figure 5 by shading in
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Figure 4. The structure of the patches R′n. Each R′n is build from four
congruent copies of R′n−1 and some further tiles on its main diagonals. The
arrows in the tiles on the diagonals are pointing in the directions given in
Lemma 2.4.

lighter grey, is a translate of the central patch S of R′n+1, since (a) it is build up from
congruent copies of R′n−1 in the same manner (this yields the bulky part), and (b) the
arrows on the diagonal boundaries of the R′n−1 coincide by Lemma 2.4 together with the
construction (this yields the “skeleton” part). The directions of the arrows on the tiles
on the boundaries of the R′n−1 are indicated by small black squares in the corresponding
corners of the tiles in Figure 5.

Altogether this yields that the central patch of Rn+1 equals the central patch of Rn+2. Let
us denote the central patch of Rn+1 consisting of four congruent copies of R′n−1 (plus the
tiles on the two diagonals) by Sn+1. More precisely, let

Sn+1 := Rn+1 ∩ {(x1, x2) | |x1 + x2| ≤ 2n−1 − 1} = Rn+2 ∩ {(x1, x2) | |x1 + x2| ≤ 2n−1 − 1}.

The patches Sn+1 yield a nested sequence

S2 ⊂ S3 ⊂ S3 ⊂ · · · ⊂ Sn ⊂ · · · .

In particular we obtain that for any n ∈ N we have that Rn+1 coincides with all Rk

(k ≥ n+ 1) in a ball B1/ε for 1
ε
≤ 1√

2
(2n−1 − 1), i.e. ε ≥

√
2

2n−1−1 . Thus

d(Rn+1, Rk) ≤
√

2

2n−1 − 1
for k ≥ n+ 1.

Hence the sequence Rn, respectively any sequence of tilings (Tn)n where Tn contains Rn as
its central patch, converges for n→∞ with respect to the metric d. �

Note that neither the sets Rn nor the sets R′n form a nested sequence, there are slight
mismatches further away from the centre.

Since the sequence Rn, respectively any sequence of tilings (Tn)n where each Tn contains
Rn as its central patch, converges with respect to d, there is a unique limit A = limn→∞ Tn.
The tiling A is the desired infinite tiling. Moreover we may now define the hull of A. In
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Figure 5. How congruent copies of R′n−1 are located within Rn+1 (left part)
and Rn+2 (everything).

the theory of aperiodic tilings the hull turns out to be a central object of study. The hull
is the closure of the set of all translates of A, i.e.

X(A) = {A+ t | t ∈ R2},

where M defines the closure of the set M with respect to d, see again [1, Chapter 4] for
details.

Since A has only finitely many prototiles, and all tiles are vertex-to-vertex, the set of all
finite patches in A up to some given radius r > 0 is finite, up to congurence (even up to
translations). This property is called finite local complexity [1]. It holds for each tiling in
X(A) and for the set X(A) as a whole. Hence by standard reasoning ([13, 14], see also
[1, Chapter 4]), X(A) is compact with respect to d, hence (X(A), d) is a compact metric
space.

3. Properties of the tilings

With the help of the metric d above we are now able to give a precise definition of aperiodic
tilings. A tiling is aperiodic if its hull does not contain any periodic tiling. In particular,
aperiodicity implies nonperiodicity. (The hull of a periodic tiling T contains only translates
of T , so in particular it contains only periodic tilings.)

Considering Figure 5 one may get the impression that A is periodic. At least the ar-
rangement of the R′n−1 in the image seem to form a periodic pattern. This behaviour is
well-known for certain aperiodic structures like the chair tiling, the Robinson square tiling
or the one-dimensional period doubling sequence, see [1, 3]. Loosely speaking, a limit-
periodic tiling is one that is the union of infinitely many periodic packings with larger and
larger periods where the lattices Λi of periods are nested sequences Λ1 ⊂ Λ2 ⊂ Λ3 · · · , pos-
sibly up to a set of density zero. In fact, the exact definition of limitperiodicity uses spectral
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Figure 6. The congruent copies of R′1 in A form a periodic subset of the
tiling with density 1

2
. The centre of the shaded patch is the origin.

properties of the hull. We will not explain this in detail (compare [1]) since there is a simple
geometric sufficient condition ensuring limitperiodicity that applies to our examples.

Theorem 3.1. A is the union of 2-periodic packings Mn and a set Z of density zero. More
precisely, A = Z ∪

⋃
n∈N

Mn, where

Mn := {R′n +
(
(2n, 0) + 2n+1Λ), ϕR′n +

(
(0,−2n) + 2n+1Λ), ϕ2R′n +

(
(−2n, 0) + 2n+1Λ),

ϕ3R′n +
(
(0, 2n) + 2n+1Λ)}

where Λ = 〈(1, 1), (1,−1)〉Z (i.e. the integer span of the two vectors (1, 1) and (1,−1)) and
Z is the set of all tiles in A whose diagonals are contained in {(x1, x2) |x1 = ±x2}.

Proof. By the proof of Theorem 2.5 we get that for any n ∈ N the central patch of A is Rn.
Considering how patches of type R′n−3 are located in Rn we obtain inductively arbitrary
large parts of 2-periodic packings consisting of congruent copies of R′k, ϕR

′
k, ϕ

2R′k and
ϕ3R′k for any k ∈ N, compare Figure 5. Figure 6 indicates the arrangement of congruent
copies of R′1. Let Λ = 〈(1, 1), (1,−1)〉Z. Then the four 2-periodic sets

(1) R′1 +
(
(2, 0) + 4Λ), ϕR′1 +

(
(0,−2) + 4Λ), ϕ2R′1 +

(
(−2, 0) + 4Λ), ϕ3R′1 +

(
(0, 2) + 4Λ)

yield already half of the tiles of A. Each of the four sets has period vectors (4, 4) and
(4,−4). This situation is indicated in Figure 6. The arrangement of Rn is similar on all
levels 2n, hence further periodic structures in A are

(2) R′n +
(
(2n, 0) + 2n+1Λ), ϕR′n +

(
(0,−2n) + 2n+1Λ), ϕ2R′n +

(
(−2n, 0) + 2n+1Λ),

ϕ3R′n +
(
(0, 2n) + 2n+1Λ)

For each n the union of the four sets has density 1
2
. Each of the four sets has period vectors

(2n+1, 2n+1) and (2n+1,−2n+1). It is easy to see that the union of these sets for all n ∈ N
contains all tiles of A except tiles along the diagonals x1 = ±x2, i.e. all tiles in Z. This
set has density zero. �
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T1 T2 T3 T4

Figure 7. The substitution rule σ yielding the tiling A.

Remark 3.2. Note that Equation (2) yields all tiles in A except the tiles on the diagonals
x1 = ±x2, hence (2) together with Lemma 2.4 yields the entire tiling.

The next theorem is the key to all further results. This holds because the theory of
substitution tilings is developed pretty well, while there is no theory for the construction
above yet.

Theorem 3.3. A can be generated by a primitive tile substitution rule.

Proof. This result is achieved by giving an appropriate substitution rule yielding the tiling
A. More precisely, we will show that this rule yields a substitution tiling that possesses
the particular structure (union of periodic packings) described by Remark 3.2.

This substitution rule is shown in Figure 7. Let us denote this substitution rule by σ. Its
prototiles are denoted by T1, T2, T3 and T4; they are the prototiles of A. Figure 8 shows
the action of σ, σ2, σ3 and σ4 on T1. Note that σ(T3) = σ(T4). Note also that there are
no reflections involved: all tiles in σ(Ti) are direct congruent copies of the Ti, not reflected
congruent copies.

To obtain an infinite substitution tiling in Xσ it is useful to consider a tiling S that is fixed
under σ, i.e. σ(S) = S. The construction of such a tiling is standard: take a legal “seed”,
i.e. a patch P that is contained in some σn(T ) for some prototile T , such that σ(P ) (or
σ2(P ) or σ3(P ) . . . ) contains a translate of P in its interior. Here we choose P as the
patch of four tiles shown in Figure 9 left, consisting of three dark grey tiles of type T2 and
one black tile of type T1. P occurs in σ4(T1), see Figure 8.

Applying σ to P one gets that P is exactly the central patch of σ(P ), compare Figure 9.
Hence σ(P ) is the central patch of σ2(P ), and inductively we get that σn(P ) is the central
patch of σn+1(P ). Hence the sequence σn(P ) (or any sequence of tilings Sn having σn(P )
as their central patch respectively) converge to some tiling in the local topology. Let us
denote this tiling by S.

In order to show that S = A we use the particular structure of A stated in Remark 3.2.
Consider σ3(T1), σ

3(T2), σ
3(T3) and σ3(T4). The interior of each of the four patches contains

four congruent copies of R′1. On their boundaries these patches have halves of R′1. (See for
instance Figure 8, the patch on the right is the union of one copy of σ3(T1), σ

3(T2), σ
3(T3)

and σ3(T4) each.) The entire constellation of congruent copies of R′1 and halves of R′1 agrees
on all four supertiles σ3(Ti), and it is invariant under rotation by π/2 about the centre of
each σ3(Ti). All tiles in S lie edge to edge, hence all “supertiles” σ3(Ti) lie edge-to-edge.
Hence S contains the same periodic arrangement as A, i.e. the one in Equation (1).



INDUCTIVE ROTATION TILINGS 11

Figure 8. The image shows T1, σ(T1), σ
2(T1), σ

3(T1), and σ4(T1) (from
left to right). On the right it is indicated how σ4(T1) consists of congruent
copies of σ3(T1), σ

3(T2), σ
3(T3) and σ3(T4). A seed for A is found in σ4(T1)

(e.g. the middle of the fourth and the fifth row, compare Figure 9).

Figure 9. The iterates under σ of the small patch on the left converge to A.

Observe that σ(R1) contains R′2, and—more generally—σ(Rn) contains R′n+1. (To see this
one may use Figure 3 together with Figure 7.) Since σ(S) = S holds, the tiling S contains
also the periodic arrangements from Equation (2). This shows that S and A coincide
everywhere except on the diagonals {(x, y) |x = ±y}. Considering the action of σ it is
easy to see that S has on each of the four branches of this set tiles with arrows that show
in the same directions, and that these directions coincide with the ones in A. Altogether
we obtain S = A. �

Note that there is also the concept of the hull Xσ of a substitution. Since A can be
generated by a primitive substitution we have that X(A) = Xσ (see [1] for details). More
important, we now obtain the following result easily.

Theorem 3.4. All T ∈ X(A) are aperiodic. In particular A is aperiodic (hence nonperi-
odic).
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Proof. Since σ is a primitive substitution and X(A) is of finite local complexity, one can
apply a classical result on substitution tilings [6, Thm 10.1.1]: a primitive substitution
tiling is aperiodic if in this tiling the level 1 supertiles can be identified in a unique way.
(See also Solomyak [16, Thm 1.1] for the proof of the “if and only if” version of this result.)

For the tilings in X(A) this is particularly simple: any level 1 supertile consists of four tiles
sharing a common vertex. These four tiles have at least three distinct colours, and the
arrows on the tiles do neither point to this common vertex nor do they point away from it.
This leaves only one possibility: the vertices of the congruent copies of R′1 are the centres
of the supertiles. �

There are two geometric properties of a tiling T that have strong consequences on the
dynamical properties of the hull X(T ) of T . A tiling T is repetitive if for each r > 0 there
is R > 0 such that each patch of radius less than r is contained in each patch of radius R.
If R ∈ O(r) then T is called linearly repetitive.

Moreover, a tiling T has uniform patch frequencies if the frequencies of all patches are
well-defined. More precisely: if P is a patch in T then let NP (Br(x)) denote the number of
congruent copies of P in T ∩Br(x), where Br(x) denotes the open ball of radius r centred
in x. If for all patches P in T the limit

lim
r→∞

1

πr2
NP (Br(x))

exists uniformly in x then T has uniform patch frequencies. For a more thorough discussion
of repetitivity or uniform patch frequencies see [1] or [4]. We omit it here since we need
the terms only to state the following result.

Corollary 3.5. All T ∈ X(A) are linearly repetitive and have uniform patch frequencies.

Proof. By a result of Solomyak [16, Lemma 2.3] each primitive substitution tiling in R2

with finite local complexity is linearly repetitive.

By a result of Lagarias and Pleasants [8, Theorem 6.1] linear repetitivity implies uniform
patch frequencies. �

The fact that our tilings possess the particular structure (union of periodic packings)
described by Remark 3.2 is a hint that they are possibly limitperiodic. In this particular
case this means that they can be generated by a certain cut-and-project method using a
lattice in R2× (Q2)

2, where Q2 denotes the field of 2-adic numbers. Structures of this kind
are called model sets (with 2-adic internal space). Model sets are relevant since by a result
of Hof [7, 14, 1] all models sets show pure point diffraction. It is beyond the scope of this
paper to give details on this, but we may formulate the result and prove it using a simple
to check sufficient condition.

Properly speaking, model sets are discrete point sets, not tilings. Hence our tilings are not
model sets, but they are strongly related: they are mutually locally derivable (mld) with
model sets, meaning that there is a local rule transforming one into the other (see [1]).
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Theorem 3.6. All T ∈ X(A) are limitperiodic. Consequently, all T ∈ X(A) are mutually
locally derivable with model sets, hence pure point diffractive.

Proof. Since A is a primitive substitution tiling with integer scaling factor (in this case 2)
and σ is a block substitution (since each unit square is mapped to four unit squares in a
2 × 2 grid) we can apply a result in [9] and [10]: we need to show that σ has a modular
coincidence. By a result in [5] this is the case if there is a coincidence in the supertiles.
For this it suffices to note that the upper right tile in σ(T1), σ(T2), σ(T3) and σ(T4) is a
black tile T1 with its arrow pointing down right, compare Figure 7. (The lower left tile in
all four cases is T2, yielding a second coincidence.) For further details see [9, 10, 5, 1]. �

The fact that A is pure point diffractive has consequences if one imagines A as a physical
solid: assume that in such a solid the four different types of atoms (or molecules) are
arranged in the same pattern as the four different tiles in A. A diffraction experiment
would then show a diffraction image with bright spots (“Bragg peaks”) and (ideally) no
diffuse parts.

Now that we have obtained several results on the arrowed tiling A we turn our attention
to the naked tiling using no decoration at all, compare Figure 2. Let us called the tiling
obtained by the same construction but with undecorated squares N .

A tiling T1 is called locally derivable from a tiling T2 if there is a local rule transforming
T2 into T1. Two tilings T1, T2 are called mutually locally derivable if T1 is locally derivable
from T2 and vice versa [1].

Lemma 3.7. The naked tiling N is locally derivable from the arrowed tiling A.

Proof. It suffices to give a local rule to transform A into N . Considering that in the arrow
decoration of A the arrows point always away from the centre of the large square, the
arrows determine locally the edges of the large (overlapping) squares in a unique way. The
edges of the overlapping squares determine N . �

Two tilings that are mutually locally derivable share a lot of properties (aperiodicity,
repetitivity, pure point diffraction, uniform patch frequency...) Thus it would suffice to give
a local rule that transforms N into A. We probably found such a rule, but unfortunately
we were yet unable to prove that it really works.

Problem: Are A and N mutually locally derivable?

As an intermediate step, one may consider whether A is mutually locally derivable with
the tiling obtained from A by deleting the colours. It is a simple exercise to see that this
is indeed true.

4. Remarks and Outlook

The original construction of inductive rotation tilings found by the second author used
to place the origin close to the leftmost part of the patches Pn. Hence the “limit” of
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this sequence fills only a quarter plane. Four copies of this limit could be used to fill the
entire plane. The resulting tilings are the same as the ones described in this paper. The
construction in this paper is more adapted to the notion of convergence of sequences of
tilings used here.

Here we showed that the tiling A is nonperiodic by showing that A is a substitution tiling
and then applying the result of Solomyak that a substitution tiling is nonperiodic if σ−1 is
unique. We found an alternative proof of nonperiodicity by direct means, using only the
limitperiodic structure of A. For the sake of briefness we omit the alternative proof here.

The construction presented here uses squares and rotations by π
2
. The second author found

similar constructions for triangles and rotations by 2π
3

as well as for hexagons and rotations
by π

3
. For an artistic application of these constructions see http://hofstetterkurt.net/ip,

see also [11].

The substitution rule σ used to generate the tilingA uses four prototiles, but σ(T3) = σ(T4).
Probably one of these tiles is redundant and everything works for a substitution for three
prototiles as well. We prefer to use the four-colour version since it carries more information,
so it might make some arguments more clear.

We studied the tilings A and N . We have good evidence (but no proof so far) that A and
N are mutually locally derivable. What about other decorations? There are decorations
of the large square Q leading to 2-periodic tilings. So the construction yields at least two
distinct mld classes (one aperiodic, one 2-periodic). Are there more mld classes?

The tilings N and A are obtained by looking on Rn from “above”. Are the tilings obtained
by looking from below congruent to N respectively A? Are they at least mutually locally
derivable with N respectively A?

We may realise the sets Rn also with tiles with “thickness” in R3. Now above and below
have a precise meaning. The construction for the sets Rn now has to be described in three
dimensions. Is there such a construction such that the height of all Rn is bounded by a
common constant? Are there arbitrary high stairs?
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