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Abstract. This paper uses a connection between bounded remainder sets in Rd and
cut-and-project sets in R together with the fact that each one-dimensional Pisot sub-
stitution sequence is bounded distance equivalent to some lattice in order to construct
several bounded remainder sets with fractal boundary. Moreover it is shown that there
are cut-and-project sets being not bounded distance equivalent to each other even if they
are locally indistinguishable, more precisely: even if they are contained in the same hull.

1. Introduction

Bounded remainder sets (BRS) have been studied intensely by several authors, including
early works by Hecke [14], Ostrowski [20], Szüsz [25] and Kesten [18]; see for instance
[10, 12] and references therein for an overview. BRS are sets P ⊂ [0, 1]d with uniformly
bounded discrepancy with respect to some (discrete) toral rotation; see below for details.
BRS have been studied in the context of Diophantine approximation, dynamical systems
or quasi Monte Carlo methods.

Cut-and-project sets (CPS) and substitution sequences are (infinite) discrete point sets
in R. They are central objects of study in the theory of aperiodic order, see [4] and
references therein. There is a strong connection between BRS and (windows of) CPS.
This connection was implicit in several papers (see for instance [7, 16]) but up to the
knowledge of the authors the connection was explicitly spelled out only in [11, 12].

Here we use this connection together with several other results in order to obtain many
explicit examples of BRS with fractal boundary. Along the way we re-prove some of these
results, namely the connection between CPS and BRS ([12] respectively Theorem 4.5),
and the fact that the point sets generated by Pisot substitution are bounded distance
equivalent to a lattice ([16] respectively Theorem 3.5). We also use partial answers to the
Pisot conjecture (Conjecture 5.3).

Independently we prove that two CPS are bounded distance equivalent if their windows
are equidecomposable by appropriate vectors (Theorem 6.1), but that there are CPS with
the same data but shifted windows that are not bounded distance equivalent to each other
(Theorem 6.4). This implies that bounded distance equivalence of CPS is not preserved
under local indistinguishability, or more precisely: two CPS in the same hull are not
necessarily bounded distance equivalent to each other.

Because our results are dealing mainly with discrete point sets in one dimension, most
terminology is stated for this one-dimensional case only. Note that most objects mentioned
in this paper (substitution sequences, tilings, CPS) have higher dimensional analogues.
Section 6 contains some results for higher dimensions, namely, Lemma 6.2, Lemma 6.3
and Theorem 6.1.

But mainly the objects of study in this paper are discrete point sets on the line. One
important example is the set Z of integers, or more general: the set aZ = {an | n ∈ Z}
for some a ∈ R\{0}. Such a set aZ is periodic, that is, there is a non-zero t ∈ R such that
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t+ aZ = aZ (namely, all t ∈ aZ will do). We are more interested in studying nonperiodic
discrete point sets Λ ⊂ R, that is, sets Λ such that Λ + t = Λ implies t = 0. Two
interesting classes of nonperiodic discrete point sets are substitution sequences and CPS.
They are introduced in Section 2.

The main question motivating this paper is “when are two given discrete point sets on
the line bounded distance equivalent to each other?” Roughly speaking, this means that
there is a perfect matching between the point sets such that the distance between any
two matched points is uniformly bounded. More precisely:

Definition 1.1. Two discrete point sets Λ,Λ′ ∈ Rd are called bounded distance equivalent

(Λ
bd∼ Λ′) if there is some c > 0 and some bijection ϕ : Λ → Λ′ such that |x − ϕ(x)| < c

for all x ∈ Λ.

Remark 1. It is straight-forward to see that bounded distance equivalence is indeed an
equivalence relation.

A cut-and-project set (CPS) is a discrete point set on the line that is defined by pro-
jecting the points of some point lattice in Rd+1 that are contained in some strip W × R
to the line R, where W is some (usually compact) subset of Rd. Compare Figure 1 for
an example with d = 1, see Section 2 for a precise explanation. It turns out that the
question whether a given (nonperiodic) CPS is bounded distance equivalent to some (pe-
riodic) point lattice is strongly related to the question whether W is a bounded remainder
set.

Remark 2. Throughout the paper µ denotes Lebesgue measure in the appropriate dimen-
sion.

Definition 1.2. Let α ∈ Rd, W ⊂ [0, 1]d. W is a bounded remainder set (BRS) with
respect to α, if for the discrepancy

Dn(W,x) =
n−1∑
k=0

1W
(
(x+ kα) mod 1

)
− nµ(W )

holds: there is c > 0 such that for all n and for almost all x ∈ [0, 1[ holds |Dn(W,x)| < c.

The parameter α in the definition above is some irrational number (if d = 1) respectively
irrational vector (if d > 1) which in our setup depends on the point lattice defining the
cut-an-project set under consideration. The x in the definition above is negligible for our
purposes.

2. Substitutions and cut-and-project sets

A point lattice (or shortly lattice) in Rd is the integer span of d linearly independent
vectors. Hence a lattice in R is a set aZ = {na |n ∈ Z}, where a ∈ R \ {0}.

The density of a discrete point set Λ in R is the average number of points of Λ per
unit. It is defined as the limit lim

n→∞
1

2n
|Λ ∩ [−n, n]|, if it exists. (In fact, the definition of

the density of a discrete point set is much more subtle, compare for instance [4, Section
1]. For our purposes this definition, sometimes called central density, is sufficient.)

The density of a lattice in Rd is 1
|det(M)| , where M is the matrix whose columns are the

spanning vectors of the lattice. Hence the density of a lattice L = {na |n ∈ Z} is 1
|a| .

Let An = {a1, . . . , an} denote an alphabet of n letters. Let A∗n denote all finite words
over An. A symbolic substitution is a map σ : A∗n → A∗n such that for all u, v ∈
A∗n holds σ(u)σ(v) = σ(uv). Here uv denotes the concatenation of u and v. Hence a
symbolic substitution is uniquely defined by σ(a1), . . . , σ(an). The substitution matrix of
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a substitution σ is the matrix Mσ = (|σ(aj)|i)1≤i,j≤n, where |σ(aj)|i denotes the number of
letters ai in σ(aj). A substitution σ is called primitive, if there is k such that Mk

σ contains
positive entries only. By the Perron-Frobenius theorem [21], the matrix Mσ of a primitive
substitution σ has a unique real eigenvalue λ > 0, such that all other eigenvalues of Mσ

are strictly smaller in absolute value. Furthermore, Mσ has an eigenvector v for λ with
positive entries only. In the following, we refer to λ as Perron-Frobenius eigenvalue of Mσ

and to v as Perron-Frobenius eigenvector of Mσ. The symbolic hull of σ is

Xσ := {u ∈ AZ
n | each finite subword of u is contained in some σk(ai)}.

Remark 3. In general, the hull Xu of any symbolic sequence u = (. . . , u−1, u0, u1, . . .) ∈ AZ

is the closure of {Sku | k ∈ Z} with respect to the metric

d(u, u) := 0, d(u, v) := 2−min{|i||ui 6=vi} where v = (. . . , v−1, v0, v1, . . .) 6= u

Here S denotes the shift operator S(. . . , u−1, u0, u1, . . .) = (. . . , v−1, v0, v1, . . .) with vi =
ui+1. If σ is a primitive substitution then Xσ = Xu for all u ∈ Xσ [9].

A tile substitution in R is a collection of intervals [0, `1], . . . , [0, `n], an inflation fac-
tor λ, and a rule how to partition each λ[0, `i] into translates of the original intervals
[0, `1], . . . , [0, `n]. Translates of the [0, `1], . . . , [0, `n] are called tiles. A tile substitution
can be repeatedly applied to a single tile, covering larger and larger portions of the line.
The iterate σk([0, `i]) is called (level-k) supertile (for convenience, we will sometimes use
ai for the tile [0, `i] below).

Trivially, any tile substitution can be transformed into a symbolic substitution by iden-
tifying translates of intervals [0, `i] with letters ai. Because of the following folklore result
(see e.g. [4]) each primitive symbolic substitution can be turned into a tile substitution,
too.

Theorem 2.1. Let σ be a primitive symbolic substitution. Let λ be the Perron-Frobenius
eigenvalue of Mσ, and let w = (`1, . . . , `n) be a left eigenvector of M for λ. Identifying ai
with [0, `i] yields a tile substitution σ with inflation factor λ.

The `i in the result above are called natural tile lengths. The choice is unique up to
an overall scaling of the `i. Any symbolic infinite sequence in the hull of some symbolic
substitution can be turned into a tiling of the line by identifying the symbol ai with a
translate of the tile [0, `i]. For the sake of convenience we want to identify the symbol u0 =
ai in u = · · ·u−1u0u1 · · · with the tile [0, `i] with left endpoint 0. Since we will consider
discrete point sets in the sequel, we consider the point sets {. . . , x−1, x0 = 0, x1, . . .}
consisting of the left endpoints of the tiles in the tiling rather than the tilings itself. The
set of all point sets arising from some primitive substitution (symbolic or tile) in this way
is the geometric hull and is denoted by Xσ. Theorem 2.1 has the following consequences
for these point sets Λ ∈ Xσ [4].

Theorem 2.2. Let σ be a primitive substitution, and let u ∈ Xσ. Let λ be the Perron-
Frobenius eigenvalue of Mσ, and let v = (v1, . . . , vn)T the right normalized eigenvector of
M for λ. The relative frequency of symbol ai in u

freq(ai) = lim
n→∞

|{uk |uk = ai, −n < k ≤ n}|
2n

exists and equals vi. The density of each point set Λ = {. . . , x−1, x0 = 0, x1, . . .} ∈ Xσ

using natural tile lengths w = (`1, . . . , `n) exists and equals

dens(Λ) =
( n∑
i=1

vi`i

)−1

=
1

w · v
.
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Figure 1. An illustration of the cut-and-project scheme for the Fibonacci
sequence. The symbolic Fibonacci sequence is indicated by letters a and
b. The vertex set of the resulting tiling are the black marks on the x-axis.
They are projections of all the lattice points contained in the gray strip
(white round points). The gray strip is R× [−1

τ
, 1[.

Remark 4. By the normalized vector v we always mean that the sum of its coordinates is
1. Particularly the theorem implies that the sum of relative frequencies of all symbols is
1, as it ought to be.

Example 2.3. The Fibonacci substitution σ is given by a 7→ ab, b 7→ a. It produces a
bi-infinite sequence by repeatedly applying it to the pair of letters a|a: σ(a|a) = ab|ab,
σ2
f (a|a) = aba|aba, σ3

f (a|a) = abaab|abaab, σ4
f (a|a) = abaababa|abaababa, . . .. Its substi-

tution matrix is Mσ =
(

1 1
1 0

)
with Perron-Frobenius eigenvalue λ = 1

2
(1 +

√
5) =: τ and

second eigenvalue 1
2
(1−
√

5). The normalized eigenvector of Mσ for λ is ( τ
1+τ

, 1
1+τ

)T , hence

the relative frequency of a is τ
1+τ

and the relative frequency of b is 1
1+τ

.
The sequence can be transformed into a discrete point set in R by assigning an interval

of length τ to a and an interval of length 1 to b. We then consider the endpoints of the

intervals as our point set ΛF . Then the density of ΛF is
(

(τ, 1) · ( τ
1+τ

, 1
1+τ

)T
)−1

= 1+τ
2+τ

.

Definition 2.4. A cut-and-project set (CPS, aka model set) Λ is given by a collection of
maps and spaces:

G = R π1←− R× Rd π2−→ H = Rd

∪ ∪ ∪
Λ Γ W

where G and H are locally compact abelian groups, Γ is a lattice (i.e., a discrete cocompact
subgroup) in G ×H, W is a relatively compact set in H, and π1 and π2 are projections
to G, respectively to H, such that π1|Γ is one-to-one, and π2(Γ) is dense in W . Then

Λ = {π1(x) |x ∈ Γ, π2(x) ∈ W}

is a CPS.

Remark 5. For our purposes it does not really matter whether if we replace “lattice” by
“translate of a lattice” in the definition above: translating the lattice is equivalent to
translating the window — and the CPS Λ, if needed — by some small amount.

Throughout the paper G usually equals R, and H always equals Rd for some d ≥ 1.
The following result is standard, see for instance [4].

Lemma 2.5. The density of a CPS Λ is µ(W )
| det(MΓ)| , where MΓ is the matrix whose columns

are the spanning vectors of the lattice Γ.

Similar to a point set arising from a substitution, a CPS Λ ⊂ R can be written as a
sequence {. . . , x−1, x0 = 0, x1, x2, . . .} with xi < xj for i < j.
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Example 2.6. (Example 2.3 continued) A Fibonacci point set ΛF , as constructed by the
substitution above, can as well be generated as a CPS. This CPS has d = 1, W = [− 1

τ
, 1[,

lattice Γ = 〈
(

1
1

)
,
( τ

−1
τ

)
〉Z, and π1 and π2 are orthogonal projections; compare Figure 1.

Consequently the density of ΛF is
1+ 1

τ

τ+ 1
τ

= τ+1
τ+2

.

3. Substitution sequences in bounded distance to a lattice

Definition 3.1. Let A = {a1, . . . , am} and let σ be a primitive symbolic substitution over
A. The substitution is called a Pisot substitution if the matrix Mσ of the substitution has
one (simple) positive real eigenvalue λ > 1, and all other eigenvalues (real or complex)
have absolute values less than 1.

Note that sometimes a Pisot substitution is defined to obey a stronger condition,
namely, that in addition to the definition above all eigenvalues different from λ are non-
zero, see for instance [9, 1.2.5]. Since we are dealing with integer matrices this condition
implies the characteristic polynomial of Mσ being irreducible. Theorem 3.5 below holds
for the more general case of eigenvalues zero, hence we stick to the more general definition
here.

The goal of this section is to give an elementary proof that the set of vertices of a one-
dimensional primitive Pisot substitution is bounded distance equivalent to some lattice.
This was done before, for instance by Holton and Zamboni [16, Theorem A.2]. (Probably
this result was already known to Rauzy, but we are not aware of any reference). A similar
result holds for Pisot substitution tilings in higher dimension, shown by Solomon [24].
The proof here uses much simpler techniques than the ones by Holton and Zamboni, and
by Solomon. Although we need to require additionally that the substitution matrix is
diagonalizable, we gain that our result also includes the case of eigenvalue(s) zero.

We proceed to show that any Λ′ ∈ Xσ is bounded distance equivalent to dens−1(Λ′)Z
by showing this for some fixed point of σ. That means we choose Λ such that for the
biinfinite symbolic sequence u corresponding to Λ holds σ(u) = u. Such a u can always
be found by the pigeonhole principle, possibly by using some power σk of σ instead of
σ itself. Using the following result it suffices to show the claim for Λ. Since it holds in
higher dimensions as well we state it for the general case.

Theorem 3.2. Let Λ be a discrete point set in Rd generated by some primitive substi-

tution, or some CPS, such that Λ
bd∼ aZd for some a. Then for any Λ′ in the hull of Λ

holds: Λ′
bd∼ aZd.

Proof. We give only a sketch of the proof based on the criterion of Laczkovich [19]. The

criterion says that given a set M ⊂ Rd then M
bd∼ aZd if and only if the number of points

of M in any union of parallel unit cubes differs from the volume of that union by some
constant (which depends on M only) times the area of that union.

Since Λ
bd∼ aZd this condition holds for Λ. Since Λ and Λ′ are in the same hull, any

pattern in Λ′ can be found in Λ and therefore the condition of Laczkovich holds for Λ′ as
well. �

The argument in the sequel goes along the following lines: First we bound the distance
between the endpoint of a k-level supertile in Λ and the corresponding point in dens−1(Λ)Z
by some term c · ckσ with cσ < 1. Then we show that the error between any point in Λ
and its corresponding point in dens−1(Λ)Z is bounded by C(c0

σ + c1
σ + c2

σ + · · · ) + C ′ for
some constants C,C ′. Hence the distance is uniformly bounded.
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In the sequel let xij denote the jth point in the point set {xi0 = 0, xi1, . . . , x
i
nik
} represent-

ing the level-k supertile σk(ai) of type i. This supertile consists of nik = (1, . . . , 1)Mk
σei

intervals of length `1, . . . , `m where ei is the ith vector of the standard basis in Rm. By
Theorem 2.2 for any i ∈ {1, . . . ,m} the average length of intervals in the sequence {xij}j
equals the scalar product dens−1(Λ) of the left and right λ-eigenvectors of the matrix Mσ

(the right eigenvector normalized). Hence we have by the definition of the density

lim
j→∞

∣∣∣∣xijj − dens−1(Λ)

∣∣∣∣ = 0. (1)

By Theorem 2.2 a left eigenvector is just (`1, . . . , `m), and the normalized right eigenvector
(v1, . . . , vm)T contains the frequencies of the tiles.

Lemma 3.3. Let the substitution matrix Mσ ∈ Rm×m be diagonalizable over C. There is
a number cσ ∈ [0, 1[ such that for every i ∈ {1, . . . ,m} there is some positive constant ci
such that ∣∣∣xinik − nik · dens−1(Λ)

∣∣∣ < cic
k
σ.

Proof. Let’s fix i. We will write down the left hand side using the substitution matrix.
The number xi

nik
is the length of level-k supertile of type i. After every substitution step

the length of each basic tile multiplies by λ, thus xi
nik

= λk`i.

We know that nik = (1, . . . , 1)Mk
σei. Since the matrix Mσ is diagonalizable, there is a

matrix C (possibly with complex entries) such that Mσ = C diag(λ, λ2, . . . , λm)C−1 where
λi are all algebraic conjugates of λ. Then

Mk
σ = C diag(λk, λk2, . . . , λ

k
m)C−1 = λkC diag(1, 0, . . . , 0)C−1 +Bk

for some matrix Bk with entries represented by linear forms of λk2, . . . , λ
k
m.

Plugging this back in the formula for nik we get

xinik
− nik · dens−1(Λ) = b · λk + (1, . . . , 1)Bkei · dens−1(Λ)

for some number b. Note, that λ is the only eigenvalue of Mσ with absolute value greater
than 1, hence lim

k→∞
Bk = 0 and, using Equation (1):

0 = lim
k→∞

∣∣∣∣∣x
i
nik

nik
− dens−1(Λ)

∣∣∣∣∣ = b · lim
k→∞

λk

nik
= b · dens−1(Λ).

Hence b = 0, and the difference
∣∣∣xinik − nik · dens−1(Λ)

∣∣∣ can be written as a fixed linear

form of kth powers of algebraic conjugates of λ which have absolute values less than 1.
Now we can choose cσ = max(|λ2|, . . . , |λm|) < 1 and the statement of the lemma is

obvious. �

Let εik be the maximum discrepancy (or error) within the level-k supertile of type i,
that is

εik = max
0<j≤nik

|xij − j · dens−1(Λ)|.

Our next step is to establish recurrent inequalities for the errors εik.

Lemma 3.4. For every k > 1 we have

εik ≤ max
1≤j≤m

εjk−1 + C · ck−1
σ

where C is a constant that does not depend on k or i.
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Proof. Let N be the maximum number of tiles in the level-1 supertile, and let Cmax be
the maximum of constants cj from Lemma 3.3. Then we can take C = CmaxN .

Indeed, assume that the maximum for εik is attained at the point xit. Then this point
falls into one of ni1 supertiles of level k − 1 that constitute the level-k supertile. Assume
it falls in the sth supertile from left. Then according to Lemma 3.3 each of the first s− 1
level k − 1 supertiles contributes an error of at most Cmaxc

k−1
σ , and the error in the last

supertile is at most max
1≤j≤m

εjk−1. Since s ≤ ni1 ≤ N we obtain

εik ≤ (s− 1)Cmaxc
k−1
σ + max

1≤j≤m
εjk−1 ≤ max

1≤j≤m
εjk−1 + C · ck−1

σ . �

Theorem 3.5. Let σ be a primitive Pisot substitution in R such that the substitution

matrix Mσ is diagonalizable over C. For each Λ ∈ Xσ holds Λ
bd∼ dens−1(Λ)Z.

Proof. By Theorem 3.2 it is sufficient to show the claim for some Λ arising from a fixed
point of σ. Since Λ is a nested sequence of supertiles it is sufficient to show that all
sequences εik are uniformly bounded. Lemma 3.4 implies εik ≤ max

1≤j≤m
εjk−1 + C · ck−1

σ and

therefore
max

1≤j≤m
εjk ≤ max

1≤j≤m
εjk−1 + C · ck−1

σ .

Applying this inequality to the errors εjk−1, ε
j
k−2 and so on, we obtain that

max
1≤j≤m

εjk ≤ C · ck−1
σ + C · ck−2

σ + . . .+ C · c0
σ + max

1≤j≤m
εj0.

So, each error εik does not exceed the sum of the infinite geometric series
∞∑
i=0

Cciσ with

positive quotient cσ < 1 plus some constant. Thus all errors are bounded. �

Remark 6. As mentioned above, some sources do not allow 0 to be an eigenvalue of
the matrix of a Pisot substitution. But our approach works in that case, too. For
instance, consider the substitution a 7→ aabb, b 7→ ab. The substitution matrix is

(
2 1
2 1

)
with eigenvalues 3 and 0. The natural tile lengths are `1 = 2, `2 = 1, the frequencies are
1
2

for both a and b. The discrete point set Λ arising from this substitution is nonperiodic

and has density 2
3
. Theorem 3.5 implies that Λ

bd∼ 3
2
Z.

Additionally, the same arguments will work not only if Mσ is diagonalizable but also
if some power of Mσ is diagonalizable. The latter condition means that for any non-
zero eigenvalue of Mσ all Jordan cells have size 1 but Jordan cells corresponding to the
eigenvalue 0 can be arbitrary.

4. BRS and bounded distance equivalence of CPS

In the sequel we will exploit a correspondence between CPS and BRS in Rd. A relevant
result in this context is the following theorem by Kesten that gives a necessary and
sufficient condition for an interval [a, b] ⊂ [0, 1[ to be a BRS with respect to some given
slope α.

Theorem 4.1 ([18]). Let α ∈ [0, 1[, 0 ≤ a < b ≤ 1. Then [a, b] is a BRS with respect to
α if and only if b− a ∈ αZ + Z.

The “if” part of Theorem 4.1 was known for a long time. It was shown by Hecke [14] (p
73) for a = 0, using analytic number theory (Dirichlet series of meromorphic functions).
Ostrowski found a simple argument for generalizing this to arbitrary a [20]. Kesten settled
the “only if” part by “heavy use of continued fraction expansions”. Several papers studied
the higher dimensional analogues of the problem, see [10, 13] for an overview.
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1

b

Figure 2. A graphical sketch of the connection between CPS and BRS.
The black and white points (k, kα mod 1) are lifted versions of the points
kα mod 1. The white points correspond to the points kα mod 1 ∈ [0, b].
Comparing the left part of the image with Figure 1 reveals already some
similarity. Furthermore, it is shown that projecting all points in the strip
to the x-axis (left part) is the same as assigning to each point a flag-stick of
height b, and projecting each point whose flag-stick is hit by the horizontal
line through (0, b) (middle). By slanting the flag-sticks and projecting not
orthogonally, but in direction of the flag-sticks, the resulting set of projected
points becomes a periodic set (white rectangles, right).

The “if”-part of Theorem 4.1 can be proven by a simple geometric argument [6, 13].
Here we want to give a brief sketch of the idea on a very concrete level, since it illustrates
nicely the connection between BRS and CPS that we will make more precise below.

Let a = 0, and consider the set

Λ = {k ∈ Z | kα mod 1 ∈ [0, b[}.
We lift Λ to R2 as follows: Let Γ := 〈(1, α)T , (1, α − 1)T 〉Z. In particular, Γ contains all
points (k, kα mod 1)T where k ∈ Z. If π1 denotes the orthogonal projection to the first
coordinate, then Λ consists of all elements π1(k, kα mod 1) of Γ with 0 ≤ kα mod 1 < b;
compare Figure 2, left part: the points in the gray strip are the points that are projected
to points in Λ. (Comparing this left part of the image with Figure 1 already gives an idea
about the connection between CPS and BRS.)

The condition b ∈ Z + αZ means that there is some lattice point (k, kα mod 1) ∈ Γ
such that b = kα mod 1. Rather than projecting all points orthogonally to the line (by
π1) we project now in direction of (k, kα mod 1). With respect to the points in the strip
this is clearly a bounded distance transformation.

Fixing k ∈ Z\{0} and attaching to each lattice point in Γ a line segment (k, kα mod 1)
(the “flag-sticks” in the image) yields a set of parallel equidistant lines. Because of the
particular property of b being equal to kα mod 1 for some appropriate k ∈ Z, the line
segments are in fact a partition of the lines (or more general, an m-fold covering of the
lines). Projecting all points in some strip in direction (k, kα mod 1) then is the same as
considering the intersection of the parallel lines with the x-axis.

The intersection of the parallel equidistant lines with the x-axis is a periodic set cZ.
In fact, it is almost a CPS: it fulfils all requirements but the one that the for projection
π on R holds that π : Γ → R is one-to-one. In fact this can be fixed easily by changing
the direction of projection slightly. Hence, by Lemma 2.5 the density of the resulting
(almost) CPS cZ is b

|det(MΓ)| = b (since Γ = 〈
(

1
α

)
,
(

1
α−1

)
〉Z). Thus we obtain cZ = 1

b
Z.

Altogether we have 1
b
Z bd∼ Λ. The if-part of Kesten’s theorem follows now like in the proof

of Theorem 4.5 below.
The argument above makes use of a relation between BRS and CPS: the set Γ above is

the lattice in R×R, the set Λ corresponds to the CPS. What is lacking is the requirement
that the projection π1|Λ is one-to-one. This can be achieved easily by changing the
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direction of projection, or equivalently, by applying a linear transformation
(

1 a
0 1

)
to Γ.

In the sequel we want to translate an arbitrary CPS into the canonical form used in the
reasoning above, i.e. into a set that fulfils all the conditions of a CPS but one, having
lattice Γ′ = 〈v1, . . . , vd+1〉Z, such that the first entry of each vi is 1. (Hence the condition
not fulfiled is that π1(Γ′) is one-to-one.) Furthermore, the window W should fit into
[0, 1]d. Let us call a point set with all these properties a canonical quasi-CPS, cqCPS for
short. Then we can study whether W is a BRS by considering whether the corresponding
cqCPS is bounded distance equivalent to some lattice.

In order to fit the window W into [0, 1]d the following two trivial observations are
helpful.

Lemma 4.2. A CPS Λ with lattice Γ, G = R, H = Rd, and W ⊂ H is the union of kd+1

CPS with lattice translates kΓ + t (t ∈ Γ/kΓ) and the same G, H, W .

Lemma 4.3. If Λ1, . . . ,Λ` are disjoint CPS in R such that there is a ∈ R with Λi
bd∼ aZ

for 1 ≤ i ≤ `, then Λ1 ·∪ . . . ·∪Λ`
bd∼ a

`
Z.

A more interesting result on the converse of Lemma 4.3 is Lemma 6.3 in Section 6.

Lemma 4.4. Let Λ ⊂ R be a CPS with window W ⊂ Rd and lattice Γ. Then Λ is
bounded distance equivalent to some lattice aZ if and only if the corresponding cqCPS Λ′

constructed above is bounded distance equivalent to some lattice bZ.

Of course in this case a = dens−1(Λ) and b = dens−1(Λ′).

Proof. Let us make the relation sketched above more precise. Let Λ be some CPS with
lattice Γ ⊂ R × Rd and window W . Choose a d-dimensional sublattice Γd of Γ that is
maximal in the sense that Γd = Γ ∩ H ′, where H ′ is some d-dimensional hyperplane.
This step corresponds to choosing the direction of projection: we want to project along
some lattice vector (if H = R), respectively along a d-dimensional sublattice (if H = Rd,
d ≥ 1).

By Lemmas 4.2 and 4.3 we can assume without loss of generality that there is a fun-
damental domain F of Γd whose projection π2(F ) contains W in its interior. (Otherwise
we split the CPS Λ into kd+1 coarser ones using Lemma 4.2. Showing that each of them

is bounded distance equivalent to some kd+1aZ implies that Λ
bd∼ aZ.)

The next step is to change the direction of projection, or alternatively: applying some
linear map to the lattice Γ (and keeping π1 being the orthogonal projection to G = R).
H ′ can be written as (l(y), y)T (y ∈ Rd) with l : Rd → R linear. Hence we apply the map
ϕ : (x1, x2, . . . , xd+1)T 7→ (x1 − l(x2, . . . , xd+1), x2, . . . , xd+1)T to Γ. This transformation
maps H ′ to H and hence Γd to H. While ϕ is not a bounded distance transformation with
respect to the entire lattice Γ, it is one with respect to Γ ∩ (R ×W ), since l is bounded

on W . Hence the CPS Λ will be mapped to Λ′, where Λ′
bd∼ Λ. Since Γ′ := ϕ(Γ) consists

of d-dimensional layers of copies of π2(Γd) parallel to H = Rd, Λ′ is already a subset of
some periodic set cZ. Without loss of generality let c = 1.

By shifting Γ′ and W along H simultaneously we can achieve that the parallelepiped
π2(F ) has one vertex at 0. This shift leaves Λ′ invariant. Transforming π2(F ) into a unit
cube [0, 1]d (hence π2(Γ′) into Zd) is achieved by a linear map ψ that does only affect the
internal space Rd, hence ψ keeps Λ′ unchanged. Thus Λ′ is a cqCPS. �

Theorem 4.5. Let Λ ⊂ Z be a cqCPS with window W ⊂ Rd, lattice Γ and slope α. Then
Λ is bounded distance equivalent to the lattice dens−1(Λ)Z if and only if W is a BRS with
respect to α.
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Proof. Without loss of generality, let Λ = {. . . , λ−1, λ0 = 0, λ1, λ2, . . .}. (If 0 /∈ Λ we may
consider Λ− k for some k ∈ Λ.)

By definition, W is a BRS with respect to α if and only if there is C > 0 such that for
all n

|Dn(W,x)| = |
n−1∑
k=0

1W (x+ kα mod 1) − nµ(W )| < C. (2)

Let λm ∈ Λ and let nm − 1 be the summation index yielding λm; that is, nm − 1 = λm,
and

m =
nm−1∑
k=0

1W (x+ kα mod 1).

Using O notation, (2) becomes m = nmµ(W ) +O(1). This is equivalent to

1

µ(W )
m = nm +O(1) = nm − 1 +O(1),

hence to 1
µ(W )

m = λm + O(1). This means that the distance between the mth point

λm of Λ and the mth point of 1
µ(W )

Z = dens−1(Λ)Z is uniformly bounded in m, hence

Λ
bd∼ dens−1(Λ)Z. �

Note that the transformations in the proof of Lemma 4.4, transforming a CPS into
a cqCPS, changes the direction of the slope α, as well as the shape of the window W .
Whenever we use Theorem 4.5 together with Lemma 4.4 in order to show that the window
W of some CPS is a BRS one has to read this as “an affine image of W is a BRS with
respect to an appropriate slope α”.

Computing the particular slope for some concrete example might become tedious. It
would be very interesting if one could obtain an example of some BRS that is not covered
by Theorem 5.2 below. But in all examples we tried the required affine maps always leave
Zd + αZ invariant. Hence these examples yielded nothing beyond the scope of Theorem
5.2.

5. BRS with fractal boundary

In the sequel we need a notion of equidecomposability.

Definition 5.1. Let X and Y be two subsets of Rd, and let V be a set of d-dimensional
vectors. We say that X and Y are V -equidecomposable if there is a natural number k, a
decomposition of X into k disjoint subsets

X = X1 ·∪ . . . ·∪Xk,

and k vectors v1, . . . ,v1 ∈ V such that

Y = (X1 + v1) ·∪ . . . ·∪(Xk + vk).

There are several profound results yielding conditions that imply that some given com-
pact set in Rd is a BRS. For d = 1 see for instance Theorem 4.1. For d > 1 there are
several results for special cases, see [10, 13] and references therein. A pretty general result
was obtained by Grepstad and Lev.

Theorem 5.2 ([10]). Let α ∈ Rd be completely irrational. That is, α = (α1, . . . , αd) such
that 1, α1, . . . , αd are linearly independent over Q. Then any zonotope in Rd with vertices
belonging to Zd + αZ is a BRS.
A Riemann measurable set S ∈ Rd is a BRS if and only if S is (Zd+αZ)-equidecomposable
to some parallelepiped spanned by vectors in Zd + αZ.
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Figure 3. The window for a 7→ aab, b 7→ ba (left) is one-dimensional.
Here it is thickened for the sake of visualization. The windows for a→ abc,
b 7→ ab, c 7→ b (middle) and for a → abc, b 7→ ab, c 7→ a (right) are both
BRS.

The connection between BRS and cqCPS established in Theorem 4.5 allows us to use
Theorem 5.2 to construct several cqCPS (or CPS) that are bounded distance equivalent
to some lattice aZ. But it allows us also to go the opposite direction: the window of

any CPS Λ ⊂ R with Λ
bd∼ aZ yields a BRS. Candidates for such CPS are provided by

Theorem 3.5: discrete point sets Λ generated by Pisot substitutions are bounded distance
equivalent to some aZ. Hence the Pisot conjecture (or Pisot substitution conjecture) be-
comes important. In fact, the Pisot conjecture appears in several equivalent formulations,
and in several levels of generalization [1]. The formulation needed here is the following.

Conjecture 5.3. Let σ be a primitive substitution on A = {1, . . . , n}, If σ is a Pisot
substitution, and the characteristic polynomial of Mσ is irreducible over Q, then the vertex
sets of the tilings defined by σ (in the sense of Section 2) are CPS.

In the case of two letters the conjecture is known to be true, as shown by Hollander
and Solomyak [15].

Theorem 5.4. Let σ be a primitive substitution on A = {1, 2}. If σ is a Pisot substitu-
tion, and the characteristic polynomial of Mσ is irreducible, then the tilings defined by σ
(in the sense of Section 2) are CPS.

As a consequence of Theorems 3.5, 4.5, and 5.4, the window of the CPS of any Pisot
substitution on two letters is a BRS, if the inflation factor is some quadratic irrational.
Applied to the Fibonacci sequence this yields nothing new; compare Example 2.6: the
window is an interval with length τ , hence by Kesten’s theorem this is a BRS. More
interestingly, there are examples where the window has a boundary that is a fractal.
Consider for instance the substitution a 7→ aab, b 7→ ba. The substitution matrix is

(
2 1
1 1

)
,

the eigenvalues are τ 2 and τ−2. In particular, the inflation factor τ 2 is a Pisot number,
and σ is a Pisot substitution. Hence by Theorem 3.5 for the vertex set Λ of the tilings of

the line generated by σ holds: Λ
bd∼ aZ. By Theorem 5.4 the tilings of the line generated

by σ are CPS. Hence by Theorem 4.5 the window of this CPS is a BRS. The window
for Λ is indicated in Figure 3 (left). This window is similar to a (fat) Cantor set: it has
infinitely many connected components. Its total length is τ , hence by Theorem 5.2 it
is not only a BRS, but equidecomposable to the interval [0, τ ]. The window W is the
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(measurewise disjoint) union of a coupled iterated function system with two sets A and
B:

A = (τ−2A) ∪ (τ−2A+ 1) ∪ (τ−2B + 2), B = (τ−2B) ∪ (τ−2A+ 2)

By a theorem of Hutchinson [11] such an iterated function system has a unique nonempty
compact solution (A,B). Here we have W = A ∪B.

In order to obtain higher dimensional BRS one can use Pisot substitutions with d > 2
letters. Generically this requires H = Rd−1, yielding (d−1)-dimensional windows that are
candidates of BRS. Unfortunately we can not apply an analogue of Theorem 5.4: up to
the knowledge of the authors the Pisot conjecture is still open for more than two letters.
The fractal nature of many window sets for substitutions with more than two letters can
make it tedious to prove that a given Pisot substitution actually yields a CPS. In [5] it is
shown (on several pages) that the sequence generated by the Pisot substitution a→ abc,
b 7→ ab, c 7→ b indeed yields a CPS. Hence the window W for this CPS is a BRS. The slope
for this example is (Re(β), Im(β))T , where β is the complex (non-real) root of x3−2x2−1
with positive imaginary part. This set is shown in Figure 3 (middle). The Hausdorff
dimension of its boundary is 1.2167 . . . [5]. The corresponding iterated function system is
given in [5] or [4, Example 7.5].

In such a way one gets a wealth of examples of BRS with fractal boundary. In [2] the
authors proved that all three-letter Pisot substitutions where the trace of the substitu-
tion matrix is less than three fulfil the Pisot conjecture. They checked all 446683 Pisot
substitutions with this properties using a computer and the so-called potential overlap
algorithm [3]. One BRS arising from of these examples is shown in Figure 3 (right), ob-
tained from the Pisot substitution a → abc, b 7→ ab, c 7→ a; hence with inflation matrix(

1 1 1
1 1 0
1 0 0

)
[8]. It is a BRS with respect to the slope α′ = (α1, α2), where α1 = −0.8019 . . .

and α2 = 0.5549 . . . are the smaller roots of x3 − 2x2 − x+ 1.
By Theorem 5.2 the last two examples are (Z2 + (Re(β), Im(β))TZ)-equidecomposable

(respectively (Z2 +α′Z)-equidecomposable) to parallelograms spanned by vectors in Z2 +
(Re(β), Im(β))TZ (respectively in Z2 + α′Z). See also [4, Figure 7.3] or [23, Figure 2.2]
for a particularly fuzzy example of a set that actually is a BRS.

6. Bounded distance equivalence for two cut-and-project sets

Jamie Walton [26] asked whether two CPS in the same hull are necessarily bounded
distance equivalent. In this section we will show that there are two one-dimensional CPS
in the same hull that are not bounded distance equivalent. Recall that the hull was defined
for primitive substitutions above. More general, the hull of a discrete point set Λ ⊂ R
is defined as the closure of {t + Λ | t ∈ R} under the local topology, see [4] for details.
Roughly speaking, being in the same hull is the precise concept of Λ and Λ′ being “locally
indistinguishable”, i.e., Λ contains a translate of each finite pattern in Λ′ and vice versa.
This is literally true only if Λ and Λ′ fulfil certain nice properties, see [4, Section 4.2].

For CPS this essentially boils down to the statement that two CPS are in the same hull
if they can be generated with the same G,H,Γ, and the windows are translates of each
other. (There are some subtleties to consider, but this is literally true for G = R = H
and the windows being half-open intervals.) So the hull of a CPS can be obtained by
considering all translations of the window W .

Theorem 6.1 and Lemmas 6.2 and 6.3 below are valid also in higher dimensions. For
this purpose note that CPS can live as well in Re for some e > 1: just replace in Definition
2.4 of a CPS above G = R by G = Re.

Theorem 6.1. Let Λ and Λ′ be two CPS defined with the same lattice Γ and with the
same projections π1 and π2 but with different windows W and W ′ respectively.
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If the windows W and W ′ are π2(Γ)-equidecomposable, then Λ
bd∼ Λ′.

Proof. Let W = W1 ·∪ . . . ·∪Wk be the decomposition given in Definition 5.1, and let xi ∈ Γ
be the vectors such that

W ′ = (W1 + π2(x1)) ·∪ . . . ·∪(Wk + π2(xk)).

In this case we can represent Λ as disjoint union Λ = Λ1 ·∪ . . . ·∪Λk where

Λi = {π1(x) | x ∈ Γ, π2(x) ∈ Wi}.
Therefore the set

Λi + π1(xi) = {π1(x+ xi) | x ∈ Γ, π2(x) ∈ Wi} =

= {π1(x+ xi) | x ∈ Γ, π2(x+ xi) ∈ Wi + π2(xi)} = {π1(y) | y ∈ Γ, π2(y) ∈ Wi + π2(xi)}
is a subset of Λ′. Moreover, since the sets Wi + π2(xi) decompose W ′ we can decompose
Λ′ into

Λ′ = (Λ1 + π1(x1)) ·∪ . . . ·∪(Λk + π1(x1)).

We define f : Λ −→ Λ′ by f(x) := x + π1(xi) provided x ∈ Λi. This map is clearly a
bijection and ||f(x)− x|| is bounded by the length of the longest vector from xi. �

In particular two Rd × R CPS with windows W and W ′ differ by a translation of a
vector from π2(Γ) are bounded distance equivalent (actually they are translated copies
since k = 1 in that case). Our next goal is to show that this condition can’t be relaxed.
Namely we will show that two halves of the Fibonacci sequence are not bounded distance
equivalent although they can be constructed as R×R CPS with windows being intervals
of equal length.

We are going to use the following Rado’s theorem [22] (locally finite version of graph-
theoretical Hall’s marriage lemma).

Lemma 6.2. Consider a bipartite graph G = (V1 ∪ V2, E) with countable vertex sets V1

and V2 such that any vertex has finite degree. Assume that for any finite subset X of V1

there are at least |X| vertices from V2 that are connected with at least one vertex from
X; and the same holds for the roles of V1 and V2 exchanged. Then there exists a set of
disjoint edges of G that covers all vertices of G.

Lemma 6.3. Consider a discrete point set set A in Rd such that A
bd∼ Zd. If A is repre-

sented as A = M1 ·∪M2 ·∪ . . . ·∪Mn in such a way that Mi
bd∼ Mj then Mi

bd∼ n1/dZd.

The statement can be easily deduced from Laczkovich’s criterion [19] but we would like
to provide a purely combinatorial proof below.

Proof. Without loss of generality we can assume that A = Zd. It is enough to con-
struct a bounded distance bijection between M1 and the set of all integer points in
T := {(nk1, k2, . . . , kn) | ki ∈ Z}. Two lattices of the same density are bounded dis-

tance equivalent [6, Theorem 1], so we have n1/dZd bd∼ T and the claim of the lemma
immediately follows from them. Let cij be a distance in the bounded distance bijection
between Mi and Mj and c = max cij.

Consider a bipartite graph with parts represented by points from M1 and points from
T. Two vertices are connected with an edge if and only if the distance between these
vertices is at most c + n. We will show that this graph satisfies Lemma 6.2. For every k
and for any k points from M1 we have at least kn lattice points in A covered by c-balls
centred at these points (we have at least k points from each Mi). For every such lattice
point x we decrease the first coordinate to the closest integer divisible by n. In this way
we will get a point y ∈ T with distance at most n from x. The point y is at distance at
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most c+n from one of the k points from M1 we used initially. For a fixed point y ∈ T we
reached y at most n times so we obtained at least k different points from T in (c+n)-balls
centred at given k points of M1.

The same is true for any k points from T : there are kn points in this n×1×. . .×1 bricks
and at least k of them are from one Mi. Thus at least k points from M1 are at distance
c from these bricks and at distance c + n from these points from T. So the conditions of
Lemma 6.2 are fulfilled and we get the desired bounded distance bijection determined by
the edges from Lemma 6.2. �

Recall that the Fibonacci sequence ΛF is the CPS with d = 1, W = [− 1
τ
, 1[, lattice

Γ = 〈
(

1
1

)
,
( τ

−1
τ

)
〉Z, and π1 and π2 are orthogonal projections.

Let F1 and F2 be two CPS with the same initial data as the Fibonacci sequence but

with W1 = [− 1
τ
,

1− 1
τ

2
[ and W2 = [

1− 1
τ

2
, 1[; that is, F1 and F2 use disjoint halves of the

window W . Therefore we call them half-Fibonacci sequence(s). Note, that F1 and F2

use windows of the same length, so F1 and F2 are contained in the same hull, but these
windows are not translated to each other by a vector from π2(Γ).

Theorem 6.4. The Half-Fibonacci sequences F1 and F2 are not bounded distance equiv-
alent.

Proof. Assume F1
bd∼ F2. The union F = F1 ·∪F2 is the Fibonacci set and according to

Kesten’s theorem 4.1 is bounded distance equivalent to the lattice αZ for α = dens−1(F ).

Then according to Lemma 6.3 F1
bd∼ F2

bd∼ 2αZ.
However, according to Kesten’s theorem 4.1 F1 is not bounded distance equivalent to

a lattice since the length of the window does not equal to the length of π2-projection of
any vector of Γ. We’ve got a contradiction and hence F1 and F2 are not bounded distance
equivalent. �

In particular the last result raises further questions: Given some discrete point set
(or tiling), generated by substitution or by some cut-and-project method, of how many

equivalence classes (with respect to
bd∼) does its hull consist? Theorem 3.2 yields a partial

answer to this question for substitution sequences: if for any Λ ∈ Xσ holds Λ
bd∼ aZ, then

for all Λ′ ∈ Xσ holds Λ′
bd∼ aZ, hence there is only one equivalence class.

It would also be interesting to expand on Remark 6: For any primitive substitution σ
with inflation factor λ ∈ Z, can there be more than one equivalence class in the hull Xσ?
Respectively, can there be a substitution sequence Λ in Xσ that is not bounded distance
equivalent to any aZ?

On a different note it might be worth to study whether the results of this paper yield a
BRS beyond the scope of Theorem 5.2. For instance it might be worth studying whether
this construction yields some BRS with respect to a slope that is not completely irrational.
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