
ON THE SUBGROUPS OF COXETER GROUPS AND THEIR

SUBGROUPS

A Dissertation

Presented to the

Faculty of the Graduate School of the

Ateneo de Manila University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Eden Delight B. Provido

2009



The dissertation entitled:

ON THE SUBGROUPS OF COXETER GROUPS AND THEIR

SUBGROUPS

submitted by Eden Delight B. Provido has been examined and is recommended

for Oral Defense.

EVANGELINE P. BAUTISTA, Ph.D.
Chair

Mathematics Department

MA. LOUISE N. DE LAS PEÑAS, Ph.D.
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ABSTRACT

EDEN DELIGHT B. PROVIDO. ON THE SUBGROUPS OF COXETER GROUPS

AND THEIR SUBGROUPS (Under the direction of Ma. Louise Antonette N. De

Las Peñas, Ph.D.)

In this work, a methodology is presented based on tools in color symme-

try theory that will facilitate the determination of subgroups of Coxeter groups

and their subgroups. The goal of this thesis is to extend the results given in

[25, 24, 4, 50] on index 2, 3 and 4 subgroups of triangle and tetrahedron groups.

In particular, this study aims to develop a framework that will address a wider

class of Coxeter groups in higher dimensional hyperbolic space, and to make pos-

sible the derivation of higher index subgroups. The method is applied to derive

index 5 subgroups of selected Coxeter groups in 3- and 4- dimensional hypebolic

space, and index 6 subgroups of the modular group. The method involves the

construction of trees that yield a set of generators for the subgroups of Coxeter

groups and their subgroups.

The other main focus of the work is to come up with a theory for identifying

torsion-free subgroups of Coxeter groups.
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Chapter 1

INTRODUCTION

1.1 Background

One of the important problems in mathematical crystallography is the

characterization of the subgroup structure of crystallographic groups. While

the subgroups of the crystallographic groups in the Euclidean and spherical

cases have been studied extensively in previous works, the subgroups of crys-

tallographic groups in hyperbolic space have not yet been completely classified.

In this work, we address the problem on the determination of the subgroups

of hyperbolic crystallographic groups, as suggested in 2005 by Prof. Marjorie

Senechal, a renowned group theorist and crystallographer. We focus on a huge

class of crystallographic groups called Coxeter groups and provide a general

method for determining the subgroup structure of these groups. The Coxeter

groups we consider here are groups generated by reflections in the hyperplanes

containing the sides of a Coxeter polytope in either Euclidean, spherical or hy-

perbolic space. This work extends the setting given in [25, 24, 50] on the enumer-

ation of index 2, 3, and 4 subgroups of the triangle group and tetrahedron and
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tetrahedron Kleinian groups. One of the motivations of the study is to arrive at

a framework that will provide the means to determine higher index subgroups

of Coxeter groups and their subgroups, particularly those that exist in higher

dimensional hyperbolic space.

Even though the problem of classification of isomorphic types of crystal-

lographic groups dates back to the nineteenth century, the idea of studying and

classifying torsion-free crystallographic groups and torsion-free subgroups of

crystallographic groups came much later with the study of flat manifolds. In

this work, we also provide a method for determining torsion-free subgroups of

Coxeter groups.

1.2 Statement of the Problem

The objectives of this work are the following:

1. to arrive at a general framework for determining the subgroups of the Cox-

eter group Γ and its subgroups, where Γ is generated by reflections in the

hyperplanes containing the sides of a Coxeter polytope lying on either Eu-

clidean, spherical or hyperbolic space,

2. to design the construction of trees that will yield a generating set for each

subgroup obtained, and



3

3. to formulate a method for determining torsion-free subgroups of Γ.

1.3 Significance of the Study

The study of the subgroup structure of crystallographic groups is helpful

in several branches of mathematics. The modular group and the Picard group,

which are well-known examples of subgroups of hyperbolic Coxeter groups, are

important in the study of elliptic modular functions and automorphic function

theory.

In the first half of the nineteenth century, crystallographers were already

busy studying the discrete groups of Euclidean isometries. Primarily, their

aim was to give a theoretical classification of the different kinds of symmetry

arrangements possible. It is interesting to note that these mathematical ex-

plorations were undertaken within 20 years before experimental means were

available for analyzing the crystals themselves. In this area, subgroups of crys-

tallographic groups are essential for a number of important studies in chemical

research such as providing a concise and powerful tool for describing and classi-

fying crystals. The group-subgroup relation methods are also used to investigate

phase transitions and symmetry problems in various types of crystals and liquid

crystals.

The symmetry aspects of structural phase transitions make use of group
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and subgroup transformation matrices which facilitated the formulation of the

famous Ladau’s theory of second-order phase transition in quantum mechanics.

In fact, in the middle of the last century, crystallographic group theory found an

important application in quantum mechanics. It was used to study the atom’s

internal structure. In the 1950s, a new generation of particle accelerators pro-

duced a variety of subatomic particles. Scientists used group theory to predict

the existence of a tenth nucleon in a tenfold symmetry scheme of nucleons of

which nine particles had already been detected. Then, in 1964, the tracks of

Omega-Minus, the tenth nucleon, were detected.

Figure 1.1: The first Omega-Minus.
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The emergence of quasicrystals in the mid-80’s influenced mathematicians

to rethink notions on periodicity and to establish the role of the higher dimen-

sional crystallographic groups in the study of quasicrystallographic structures.

A problem addressed to in this study is that of finding low index torsion-

free subgroups of Coxeter groups. The geometrical interest of such groups is that

the associated orbit space is a manifold. If a group Γ, with fundamental domain

D has a torsion-free subgroup of index n, then we can construct a manifold by

glueing together n copies of D, according to the face pairings determined by Γ,

and conversely. In the last quarter of a century, 3-manifold topology has been

revolutionized by Thurston and his school. This resulted in a huge literature

on hyperbolic 3-manifolds building on the classical 2-dimensional case. On the

other hand, for d > 3, there is a relative scarcity of techniques and examples of

hyperbolic d-manifolds. This study aims to contribute to this field by providing

a method for determining the torsion-free subgroups of Coxeter groups in any

dimension.

The subgroup structure and torsion-free subgroups of hyperbolic Coxeter

groups have found another application in the study of crystal nets. In [64],

Ramsden et al. used the subgroup lattice of the triangle group ∗642 (Figure

1.2) to give an enumeration of crystal nets. In Figure 1.3, the top row and bot-

tom row show the tilings resulting from the subgroup labelled ∗25(a) and ∗25(b),

respectively. The irregularly shaped unit cells in the central column correspond
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exactly to the highlighted region in the hyperbolic plane in the left. The right

column shows the nets derived from tilings by forming the most symmetric Eu-

clidean embeddings of the net topologies. (The reader is referred to [64], for the

nets derived from the other subgroups in the lattice.) Torsion-free subgroup

Ω∗ of ∗642 also plays an essential role in the geometric construction of peri-

odic three-dimensional Euclidean nets by projecting two-dimensional hyperbolic

tilings onto a family of triply periodic minimal surfaces.

Figure 1.2: The subgroup lattice of ∗642. The groups in rectangular nodes are
normal subgroups of ∗642. The subgroups in one conjugation class are labeled
(a) and (b) in the ellipsoidal nodes.
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Figure 1.3: The nets derived from the subgroups ∗25(a) and ∗25(b) of ∗642 [64].

The main results presented in Chapters 4, 5 and 6 are new and reflect

original work by the author.

1.4 Scope and Limitation of the Study

The results provided in this work pertain to subgroups of Coxeter groups

or subgroups of subgroups of Coxeter groups. The Coxeter groups under consid-

eration are groups generated by reflections in hyperplanes containing the sides

of a Coxeter polytope of finite volume in either Euclidean, spherical or hyperbolic
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space.

Computations have been carried out particularly on the index 5 subgroups

of Coxeter groups having Coxeter simplices in H4 as fundamental polytopes and

some examples of singly truncated Coxeter tetrahedron groups. The index 6

subgroups of the modular group were also derived. Moreover, low index torsion-

free subgroups have been obtained for the triangle group ∗442, the Hecke groups

32∞, 42∞ and 62∞. In addition, the index 96 torsion-free subgroup of the trian-

gle group ∗642 was also derived.

The calculations were done with the aid of the computer software Groups,

Algorithms and Programs version 4 (GAP4) [34]. However, due to hardware/soft-

ware constraints, only groups in at most dimension four were considered.

1.5 Methodology

To come up with a method that will facilitate the determination of the

subgroups of Coxeter groups and their subgroups, we first looked at the existing

approach given in [25, 24, 50] on the enumeration of the index 2, 3 and 4 sub-

groups of triangle groups and tetrahedron groups/tetrahedron Kleinian groups

in dimensions 2 and 3, respectively. More specifically, we examined the approach

and tried applying this to other classes of Coxeter groups. We also referred to

the materials in [4] pertaining to the index 5 and 6 subgroups of triangle groups.
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Then, an algorithm was formulated to generalize the method presented in those

studies to cover other classes of Coxeter groups and their subgroups and to ad-

dress the derivation of higher index subgroups. The algorithm was then imple-

mented in the routines Coloring and Sieve using GAP4.

For example, to obtain the subgroups of a subgroup Λ of the Coxeter group

Γ, we generate a list of color permutation assignments to the generators of Λ

that will give rise to the subgroups of Λ distinct up to conjugacy in Λ. The next

step involves obtaining a generating set of a subgroup Ω of Λ. The idea is to

construct trees from the color permutation assignment giving rise to Ω. We then

formulated the branching out rules for the tree construction to come up with

paths that will correspond to generators of Ω. To arrive at these rules, we looked

at various color permutation assignments that give rise to subgroups of Λ.

The routines were tested and applied to specific examples such as in ob-

taining index 5 subgroups of selected groups in hyperbolic 3- and 4-space and

the index 6 subgroups of the modular group. The results of the generating trees

construction were verified vı́s-a-vı́s a GAP4 routine ListSG (Appendix D) written

to give a listing of the subgroups of Coxeter groups or its subgroups.

To obtain our results in determining torsion-free subgroups of the Coxeter

group, a theory was developed which focuses on the color permutation assign-

ments that yield subgroups of the group of orientation preserving isometries in

the Coxeter group Γ. To determine if Ω is a torsion-free subgroup of Γ, we used
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the insights obtained during the construction of trees in arriving at a generat-

ing set of Ω. The results were verified by finding some well-known torsion-free

subgroups of particular Coxeter groups. In arriving at the index 96 torsion-free

subgroup of ∗642, we constructed a 642-transitive 48-coloring of a tiling by trian-

gles with interior angles π
4
, π

6
and π

2
.

The major results obtained in this work, mainly on the characterization

of the subgroup structure of Coxeter groups and their subgroups, use the well-

known relation of the group-subgroup problem to the algebraic structure of color

symmetry groups. The approach given in this paper demonstrates the connec-

tion between group theory and color symmetry theory.

1.6 Review of Related Literature

The problem of determining and characterizing subgroups of Euclidean

and spherical crytallographic groups has been addressed in several literatures:

[6, 12, 72].

More recently, several studies were also done on the Coxeter groups in the

hyperbolic plane. In [37], a classification of the low index subgroups of the hyper-

bolic triangle group ∗832 according to their symmetry structure was discussed.

The method uses right coset colorings of the subgroups. Selected classes of the

subgroups of hyperbolic groups were discussed and illustrated in [54]. In partic-
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ular, the subgroups of ∗732, ∗882 and ∗642 were discussed and their correspond-

ing generators were computed using the Reidemeister-Schreier method. The

subgroups of the well-known extended modular group ∗32∞ were also discussed

using numerical methods. The subgroups of the extended modular groups and

the modular groups were described using the notion of Farey symbols in [49].

Moreover, in [66] some subgroups of the extended Hecke group ∗p2∞ were de-

scribed and a result was presented stating that for any prime p ≥ 3 every normal

subgroup with torsion has index 2, 4 or 2p. In [67], it was shown that the group

∗32∞ has no normal subgroups of index 3 while it has exactly three normal sub-

groups of index 2. The Reidemeister-Schreier method was also used in obtaining

presentation of the subgroups. Based on this method, an algorithm using search

trees for finding all subgroups in a finitely presented group is described in [14].

In [60], similar results with adaptation of concepts of free groups and represen-

tation theory are applied to symmetry groups of regular hyperbolic tessellations.

The color symmetry theory used in this study was first used in [25] where

an approach for determining the index 2 subgroups of the triangle group ∗pqr

was presented using black and white colorings of tilings by triangles. This result

was then extended to determine the index 3 and 4 subgroups of ∗pqr in [25].

Recently, in [4], the index 5 and 6 subgroups of the triangle group ∗pqr were

derived. In [50], the index 2, 3, and 4 subgroups of the tetrahedron groups and

tetrahedron Kleinian groups were also determined using tools in color symmetry
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theory.

In the last quarter of the 20th century, the study on the geometry and

topology of hyperbolic 3-orbifolds and manifolds became an important field in

mathematics mainly due to the works of William Thurston’s group in the classi-

fication of 3-manifolds which is mainly influenced by the Poincaré conjecture

[59]. In connection with the studies in 3-manifolds, studies on the compact

tetrahedra arise such as in [13, 55, 52]. A Coxeter tetrahedron is a fundamen-

tal polytope of a Coxeter tetrahedron group which forms an important class of

groups in H3. Among its famous subgroups are the extended Eisenstein group

and extended Picard group. Picard group occurs as an index 2 subgroup of the

extended Picard group, and it has become an interest in number theory and the

theory of automorphic functions. In [44], Weiss together with N. Johnson shows

how linear fractional transformations over rings of rational and (real or imag-

inary) quadratic are related to the symmetry groups of regular tilings of the

hyperbolic 3-space. They also shed a new light on the properties of the rational

modular group PSL2(Z), the Gaussian modular (Picard) group PSL2(Z[i]), and

the Eisenstein modular group PSL2(Z[ω]). The modular group also occurs as a

subgroup of the Picard group. In [77], Asia Ivic Weiss explains how certain kinds

of subgroups of Coxeter groups can be used to derive regular and semi-regular

tessellations. Furthermore, she also shows that matrices whose entries belong

to certain rings of algebraic integers are associated with symmetry groups of
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tessellations of hyperbolic spaces.

It is worth noting that the concept of Coxeter group have been already

studied by mathematicians even before Coxeter introduced the concept; then,

such groups are called reflection groups. The spherical, Euclidean, and hyper-

bolic Coxeter groups whose fundamental polygons are triangles were determined

by Schwarz in his 1873 paper [68]. The Coxeter groups whose fundamental

polyhedra are tetrahedra in H3 were considered by Dyck in his 1883 paper [23].

The Coxeter groups whose fundamental polyhedra are tetrahedron in S3 were

determined by Goursat in his 1889 paper [35]. The spherical and Euclidean,

d-simplex as fundamental polytopes of Coxeter groups were enumerated by Cox-

eter in his 1931 note Groups whose fundamental regions are simplexes [20] and

also in his 1934 paper Discrete groups generated by reflections [16]. The hyper-

bolic, tetrahedron Coxeter groups appear in Coxeter and Whitrows 1950 paper

World-structure and non-Euclidean honeycombs [17]. The hyperbolic d-simplex

Coxeter groups were enumerated by Lannér in his 1950 thesis On complexes

with transitive groups of automorphisms [51]. Meanwhile, the hyperbolic, non-

compact d-simplex Coxeter groups were enumerated by Chein in his 1969 paper

[10]. A survey of hyperbolic Coxeter groups is given in Vinberg’s1985 survey

Hyperbolic reflection groups [76]. The theory of Coxeter groups and general the-

ory of reflection groups are also found in Bourbaki’s 1968 treatise [5], Coxeters

1973 treatise Regular Polytopes [19], and the 1990 treatise Reflection Groups
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and Coxeter Groups of Humphrey [40].

After the classification of some d-dimensional polytopes such as the sim-

plices, many studies focused on the volume formula of such polytopes and, conse-

quently, the co-volume of their corresponding Coxeter groups. In [43], N.W. John-

son et al. determined the covolumes of all hyperbolic Coxeter simplex reflection

groups. They presented volume computations involving several different meth-

ods according to the parity of dimension, subgroup relations and arithmeticity

properties. In [13], Conder and Martin provided a number of explicit examples

of small volume hyperbolic 3-manifolds and 3-orbifolds with various geometric

properties. These include a sequence of orbifolds with torsion of order q interpo-

lating between the smallest volume cusped orbifold (q = 6) and the smallest vol-

ume limit orbifold (q → ∞), hyperbolic 3-manifolds with automorphism groups

with large orders in relation to volume and in arithmetic progression, and the

smallest volume hyperbolic manifolds with totally geodesic surfaces. In [30], the

theory of Coxeter groups is used to provide an algebraic construction of finite

volume hyperbolic manifolds. Combinatorial properties of finite images of these

groups can be used to compute the volumes of the resulting manifolds. Three

examples, in 4, 5 and 6-dimensions, are given, each of very small volume, and

in one case of smallest possible volume. Daniel Allcock in [1] proved that there

are infinitely many finite-covolume (resp. cocompact) Coxeter groups acting on

hyperbolic space Hd for every d ≤ 19 (resp.d ≤ 6). When d = 7 or 8, they may



15

be taken to be nonarithmetic. Furthermore, for 2 ≤ d ≤ 19, with the possible

exceptions d = 16 and 17, the number of essentially distinct Coxeter groups in

Hd with noncompact fundamental domain of volume ≤ Vol grows at least expo-

nentially with respect to Vol. The same result holds for cocompact groups for

d ≤ 6. The technique is a doubling trick and variations of it; getting the most

out of the method requires some work with the Leech lattice.

Another type of studies that have been carried out related to higher di-

mensional polytopes are on identifying other types of polytopes aside from the

simplices that can exist in a particular dimension. For example, Tumarkin, in

[74], used methods of combinatorics of polytopes together with geometrical and

computational ones to obtain the complete list of compact hyperbolic Coxeter d-

polytopes with d + 3 facets, 4 ≤ d ≤ 7. Combined with the results of Esselman

in [28] this gives the classification of all compact hyperbolic Coxeter d-polytopes

with d + 3 facets, d ≥ 4. In the paper [42], Im Hof classified the polytopes that

can be described by Napier cycles. These polytopes have at most d + 3 facets.

In [75], Tumarkin classified all the hyperbolic noncompact Coxeter polytopes of

finite volume whose combinatorial type is either that of a pyramid over a prod-

uct of two simplices or a product of two simplices of dimension greater than one.

Kaplinskaja in [46] and Vinberg in [76] listed simplicial prisms while, in [29],

Esselmann classified the remaining compact d-polytopes with d + 2 facets. This

completes the classification of hyperbolic Coxeter d-polytopes of finite volume
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with d + 2 facets. In dimensions 2 and 3 compact Coxeter polytopes were com-

pletely classified by Poincaré [61] and Andreev [2]. Compact polytopes of the

simplest combinatorial type, the simplices, were classified by Lannér [51].

In comparison to the studies of volume and identification of polytopes re-

lated to Coxeter groups in higher dimension, there is a scarcity of literature

on the techniques and examples of determining the subgroup structure of such

groups. This study will hopefully become a springboard for more studies to re-

dress the current situation.

Related to the construction and identification of manifolds are the studies

on identifying the torsion-free subgroups of Coxeter groups since, as mentioned

earlier, the associated orbit space of such groups is a manifold.

The fact that a finitely generated Fuchsian group, i.e. a finitely generated

discrete subgroup of orientation-preserving isometries of the hyperbolic plane,

contains a torsion-free subgroup of finite index has been known for a long time.

The problem was posed by W. Fenchel and was first solved in full by R. Fox in [33]

whose proof is by representations in the symmetric groups. Later, in a simplified

form, J. Mennicke solved the problem by the method of congruence subgroups in

[58]. In [69], A. Selberg used the latter method to extend the result to all finitely

generated matrix groups. A consequence of Selberg’s result is that all finitely

generated Fuchsian and Kleinian groups have torsion-free subgroups of finite

index [55].
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In the proofs mentioned above, there is no information about the possible

indices of the torsion-free subgroups. For the case of the Fuchsian group, this

was settled by A. Edmonds, J. Ewing and R. Kulkarni [26] who gave the precise

finite indices possible. As described by the authors, the proof is of a geometric-

topological nature. Shortly after, R.G. Burns and D. Solitar [8] used elementary

algebraic techniques to also obtain the precise possible indices of torsion-free

subgroups of finite index of finitely generated Fuchsian groups. However, for

Kleinian groups, in general, it remains open [55].

R.D. Feuer in [32], considered certain torsion-free subgroups of various tri-

angle groups. He provides proof of their existence, and in some cases outlined the

calculations. In [3], L.A. Best studied a particular family of discrete subgroups

of PSL2(C), namely the groups which have compact orbit space. Any such group

which is torsion-free is the fundamental group of its own orbit space, which is

a compact 3-manifold. Best exhibits methods of obtaining examples of torsion-

free groups and illustrate how to construct the corresponding 3-manifolds. His

main tools were the theorem on the existence of discrete subgroups of PSL2(C)

given a hyperbolic polyhedra with appropriate geometric properties, and the

Reidemeister-Schreier method. It is known that the torsion-free subgroups of

finite index in the Picard group are the fundamental groups of hyperbolic 3-

manifolds. In [7], Brunner et al. classified the torsion-free subgroups of the

Picard groups of index 12 and 14 wher they obtain 2 and 17 nonisomorphic
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subgroups, respectively. Then they identified the 3-manifolds by using Dehn

surgery.

In [11], the computation and classification of 5- and 6-dimensional torsion-

free crystallographic groups, known as Bierberbach groups is presented. The

basis of the algorithm which decides torsion-freeness of a crystallographic group

as well as the triviality of its center. Recently, in [31], Everitt et al. constructed

torsion free subgroups of small and explicitly determined index in a large infinite

class of Coxeter groups by studying the action of the Weyl group of a simple

Lie algebra on its root lattice. One spin-off is the construction of hyperbolic

manifolds of very small volume in up to eight dimensions.

1.7 Organization of the Paper

The paper consists of 7 chapters and 4 appendices. The first chapter gives

the background and states the problem addressed in the study. The second chap-

ter presents concepts in hyperbolic geometry, polytope and tiling theory. In the

third chapter, we introduce Coxeter groups generated by reflections in hyper-

planes containing the sides of Coxeter polytopes. We give examples belonging

to this family of Coxeter groups. Moreover, we define the group of orientation

preserving isometries in the Coxeter group.

In the fourth chapter, we discuss the framework for determining the sub-
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groups of a Coxeter group Γ and its subgroups. In Section 4.1, we present the

main theorem which establishes the connection between index n subgroups of

a subgroup Λ of Γ and Λ-transitive n-colorings of the Λ-orbit of a fundamental

polytope D of Γ. In Section 4.2, we present the step by step procedure for ob-

taining the subgroups of Λ aided by the GAP4 routines TranSub, Coloring and

Seive. In Sections 4.3 and 4.4, we illustrate the application of the method in

obtaining index 5 subgroups of some Coxeter groups and the index 6 subgroups

of the modular group.

In the fifth chapter, we discuss the tree construction for determining a

set of generators of a subgroup Ω of Λ (called GenTree(Ω) construction) obtained

using the method in the previous chapter. In Section 5.1, we set the assump-

tions for the GenTree(Ω) construction. Then in Section 5.2, we define the compo-

nents of GenTree(Ω) such as the vertices, edges, paths and trees. In Section 5.3,

we present the branching out rules which when applied to the construction of

GenTree(Ω) yield paths that represent generators of Ω. In Section 5.4, we derive

a set of generators for each of the subgroups obtained in Sections 4.3 and 4.4.

In the sixth chapter, we present a method for identifying torsion-free sub-

groups of a Coxeter group.

In the final chapter, we give a summary of the paper and some recommen-

dations for further research on the problems considered in and related to this

study.
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In Appendix A, we give the GAP4 routine TranSub which checks whether

a given transitive subgroup of Sn (symmetric group of order n) can be generated

by order 2 elements. The GAP4 routine Coloring is given in Appendix B. It de-

termines all the possible permutation assignments to the generators of Λ which

give rise to index n subgroups of Λ distinct up to conjugacy in Λ. In Appendix

C we present the GAP4 routine Sieve which is used to verify some order condi-

tions on the permutation assignments to arrive at the final list of permutation

assignments that give rise to index n subgroups of Λ distinct up to conjugacy in

Λ. Finally in Appendix D, we present the GAP4 routine ListSG which we use to

verify the generators of a subgroup Ω obtained from GenTree(Ω).



Chapter 2

PRELIMINARIES

In this chapter, we present some concepts on hyperbolic geometry, poly-

tope and tiling theory which will be used in the succeeding chapters.

2.1 Standard Hyperbolic Space

There are only three essentially distinct simply connected geometries with

constant curvatures in any dimension: a 0, 1 and -1 sectional curvature.

Let Hd denote the standard hyperbolic d-space. It is, up to isometry, the

unique simply connected Riemannian manifold of constant sectional curvature

-1. In this paper, our main focus will be groups in Hd although the material also

holds for groups in Euclidean space Ed and the sphere Sd of constant sectional

curvature 0 and +1, respectively.

We realise Hd in the upper half space Ed
+ = {x = (x1, . . . , xd) ∈ Ed|xd > 0}

equipped with the hyperbolic metric ds2 = |dx|2/xd
2. In particular, the distance

between two points x, y ∈ Hd lying on the d-axis is given by log(x
y
). The geodesics
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are either open semi-circles or vertical lines orthogonal to Ed−1 = {xd = 0}. The

set ∂Hd = Êd−1 = Ed−1 ∪ {∞} is called the ideal boundary of Hd.

Another important frame for hyperbolic geometry is the Lorentz-Minkowski

space E(d,1) equipped with the bilinear form

〈x, y〉 = x1y1 + · · ·+ xdyd − xd+1yd+1

of signature (d, 1). Then, Hd can be interpreted as vector subset

{x ∈ E(d,1)|〈x, x〉 = −1, xd+1 > 0}.

A hyperbolic line of Hd is the intersection of Hd with a 2-dimensional time-

like vector subspace of Ed+1. A vector subspace V in Ed is said to be time-like

if and only if it has a time-like vector. A hyperbolic c-plane of Hd is the inter-

section of Hd with a c-dimensional time-like vector subspace of Ed+1. Note that

a hyperbolic 1-plane of Hd is the same as a hyperbolic line of Hd. A hyperbolic

(d− 1)-plane of Hd is called a hyperplane of Hd.

Another useful model of the hyperbolic plane is the Poincaré circle model.

It is a conformal model which means that the hyperbolic measure of an angle is

just its Euclidean measure. Furthermore, it is represented in a bounded region

of the Euclidean plane. The points in the model are the interior of a bound-

ing circle (called the fundamental circle). The hyperbolic lines are circular arcs

orthogonal to the fundamental circle, including diameters.
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2.2 Convex Polytopes and Dihedral Angles

Throughout this study, we let Xd = Sd,Ed, or Hd with d > 0. A pair of points

x, y of Xd is said to be proper if and only if x, y are distinct and y 6= −x in Xd = Sd.

If x, y are a proper pair of points of Xd, then there is a unique geodesic segment

in Xd joining x to y. We denote such segment by [x, y].

We define a subset C of Xd to be convex if and only if for each pair of proper

points x, y in C, the geodesic segment [x, y] is contained in C. The boundary of a

nonempty convex subset C is denoted by ∂C, and the closure of C is denoted by C.

A side of a convex subset C of Xd is a nonempty, maximal, convex subset of ∂C.

A convex polytope in Xd is a subset of the form D = ∩H−i for i ∈ I, where

H−i is the closed half-space bounded by the hyperplane Hi, under the assumption

that (a) D contains a non-empty open subset of Xd; (b) every bounded subset of

it intersects only finitely many hyperplanes Hi. In what follows we assume that

none of the half-spaces H−i contains the intersection of all the others. Under this

condition, the half-spaces H−i are uniquely determined by D. We say that each

of the Hi bounds the polytope D, and we associate it to a side of D.

In this study, the word polytope means convex polytope unless stated oth-

erwise.

In the setting where we interpret Hd as

{x ∈ E(d,1)|〈x, x〉 = −1, xd+1 > 0},
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the hyperplanes H in Hd arise as orthogonal complements of normed space-like

vectors ν, that is, H = ν⊥ with 〈ν, ν〉 = 1. Let D ⊂ Hd denote a convex polytope

bounded by finitely many hyperplanes Hi = ν⊥i , i ∈ I, with νi directed inwards

to D. Assume that D is acute-angled (all non-right dihedral angles are strictly

less that π
2
) of finite volume. If Hi and Hj intersect at D, then the dihedral angle

αij = cos−1(−〈νi, νj〉). On the other hand, if Hi and Hj are parallel, we let αij = 0.

2.3 Simplices, Fundamental Polytopes and Tesselations

From our definition of polytope in the previous section, it is clear that a

polytope is a geometrical figure bounded by portions of lines, planes, or hyper-

planes. In two dimensions it is polygon, in three a polyhedron.

In the space of no dimension the only possible figure is a point which we

denote by Ψ0. In one-dimensional space, we can have any number of points. As

we know, any two points bound a line segment Ψ0 which is a one-dimensional

analogue of the polygon Ψ2 and Ψ3.

The simplest polytope is called a simplex whose construction can be de-

scribed as follows. By joining Ψ0 to another point, we construct Ψ1 which is a

simplex in one dimension. On the other hand, joining Ψ1 to a third point (out-

side its line) yields a triangle, the simplest polygon Ψ2. Furthermore, by joining

the triangle to a fourth point (outside its plane) we construct a tetrahedron, the



25

simplest polyhedron. Continuing the process, joining the tetrahedron to a fifth

point (outside its 3-space) we construct a 4-simplex which is the simplest poly-

tope in four dimension. It is now evident that any d + 1 points which do not lie

in an (d− 1)-space are vertices of a d-dimensional simplex.

Observe that a line segment is enclosed by two points, a triangle by three

lines, a tetrahedron by four planes, and so on. Thus a simplex may alternatively

be defined as a finite region of d-space enclosed by d + 1 hyperplanes.

If the midpoints of all the edges that emanate from a given vertex O of

Ψd lie in one hyperplane, then these midpoints are the vertices of an (d− 1)-

dimensional polytope called the vertex figure of Ψd at O. A polytope is said to

be regular if its sides are regular and there is a regular vertex figure at every

vertex.

We proceed to describe the simplicial subdivision of a regular polytope, be-

ginning with the one-dimensional case. The segment Ψ1 is divided into two equal

parts by its center O1. The polygon Ψ2 is divided by its lines of symmetry into

2p right-angled triangles, which join the center O2 to the simplicially subdivided

sides. The polyhedron Ψ3 is divided by its planes of symmetry into g quadrirect-

angular tetrahedral which join the center O3 to the simplicially divided faces.

Analogously, the general regular polytope Ψd is divided into a number of con-

gruent simplexes (of a special kind) which join the center Od to the simplicially

subdivided cells.
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A subset F of a metric space Xd is a fundamental region for a group Γ of

isometries of Xd if and only if

(1) the set F is open in Xd;

(2) the members of {γF : γ ∈ Γ} are mutually disjoint; and

(3) Xd = ∪{γF : γ ∈ Γ}.

A subset E of a metric space Xd is a fundamental domain for a group Γ of isome-

tries of Xd if and only if E is a connected fundamental region for Γ.

We define a fundamental polytope for a discrete group Γ of isometries of

Xd as a polytope in Xd whose interior is a locally finite fundamental domain for

Γ.

A tessellation of Xd is a collection T of d-dimensional polytope in Xd such

that the interiors of the polyhedra in T are mutually disjoint; the union of the

polyhedra in T is Xd; and the collection T is locally finite.



Chapter 3

COXETER GROUPS

The setting by which we consider Coxeter groups is defined in this chap-

ter. We present examples from two families of Coxeter groups; namely, Cox-

eter groups with simplices as fundamental polytopes and the singly truncated

Coxeter tetrahedron groups. We also define the group of orientation-preserving

isometries in the Coxeter group.

3.1 Coxeter Polytopes, Coxeter Groups, Coxeter Diagrams

A convex polytope D ⊂ Xd bounded by hyperplanes Hi, i ∈ I, is said to be

a Coxeter polytope if for all i, j ∈ I = {1, . . . ,m}, i 6= j, the hyperplanes Hi and Hj

are disjoint or form a dihedral angle of π
hij

, where hij ∈ Z and hij ≥ 2.

If D is a Coxeter polytope, then the group Γ of isometries of Xd generated

by the reflections Ri in the hyperplanes Hi is discrete and D is a fundamental

polytope for Γ. This means that the polytopes γD, γ ∈ Γ do not have pairwise

common interior points and cover Xd; that is, they form a tessellation T for Xd.
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Γ is defined by the relations

Ri
2 = e, (RiRj)

hij = e (1)

If Hi and Hj are disjoint, the corresponding relation with hij = ∞ may be omit-

ted. The group Γ with generators Ri and defining relations (1) is called a Coxeter

Group. Γ is also referred to as the group

Γ = Γ(h21, . . . , hm1, h23, . . . , h2m, . . . , hm−1,m)

=

〈
R1, R2, . . . , Rm

∣∣∣∣∣∣ R1
2 = · · · = Rm

2 = (R2R1)h21 = · · · = (RmR1)hm1 =

(R2R3)h23 = · · · = (R2Rm)h2m = · · · = (Rm−1Rm)hm−1m = e

〉
.

The Coxeter group Γ may be denoted by its Coxeter diagram, a graph

whose nodes i, j correspond to the generators of Γ. The nodes are connected

by an edge labeled by hij whenever the product of the corresponding reflections

is of period hij. The label is omitted when hij = 3 and the nodes are not con-

nected when hij = 2. If hij = ∞, the nodes i, j are connected by a dashed line.

The Coxeter diagram can also be used to denote the corresponding fundamental

polytope D of Γ.

Γ is said to be Euclidean, spherical or hyperbolic depending on whether its

corresponding fundamental polytope D is in Ed, Sd or Hd. In the next sections,

some examples of Coxeter group Γ are presented.



29

3.2 Coxeter Groups and Simplices as Fundamental Polytopes

In X2, a well-known example of a Coxeter group is the triangle group.

Consider a triangle4 (a two-dimensional Coxeter polytope) with interior angles

π
p′

, π
q′

and π
r′

, where p′, q′, r′ are integers ≥ 2. 4 lies on E2, S2 or H2 according as

π
p′

+ π
q′

+ π
r′

is larger, equal or smaller than one, respectively. Repeatedly reflecting

4 in its sides results in a tessellation of the appropriate plane by copies of 4.

Let P ′, Q′ and R′ denote respectively the reflections in the sides of 4 opposite

the angles π
p′

, π
q′

and π
r′

. The group generated by these reflections is called a

triangle group denoted by ∗p′q′r′ or Γ(r′, q′, p′) with fundamental triangle 4. The

generators P ′, Q′,R′ satisfy the relations

P ′ 2 = Q′ 2 = R′ 2 = (Q′P ′)r
′
= (R′P ′)q

′
= (Q′R′)p

′
= e.

A special type of hyperbolic triangle group is the extended Hecke group,

denoted by ∗p′2∞ or Γ(∞, 2, p′). In this case, 4 has zero as one of its interior

angles.

To illustrate an example of the extended Hecke group, consider 4 with

interior angles π
3
, π

2
and 0. Repeatedly reflecting 4 in its sides results in a

tessellation of H2 by copies of 4 as shown in Figure 3.1. Let P ′, Q′, R′ denote

respectively the reflections in the sides opposite the angles π
3
, π

2
and 0. The

group generated by P ′,Q′, R′ is the extended Hecke group ∗32∞ also known as
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the extended modular group. We also refer to it as the group

Γ(∞, 2, 3) = 〈P ′, Q′, R′|P ′ 2 = Q′ 2 = R′ 2 = (R′P ′)2 = (Q′R′)3 = e〉.

Figure 3.1: Tessellation of the upper halfplane by copies of4with interior angles
π
3
, π

2
and 0.

In X3, an example of a Coxeter group is the Coxeter tetrahedron group,

which is a three-dimensional analogue of a triangle group. Consider a tetrahe-

dron t of finite volume with dihedral angles π
p
, π
q
, π
r
, π
s
, π
t

and π
u
, p, q, r, s, t, u ≥ 2

as shown in Figure 3.2. t is denoted by [p, q, r, s, t, u] and is a three-dimensional

Coxeter polytope called a Coxeter tetrahedron.
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Figure 3.2: A tetrahedron t with vertices a, b, c, d. A label k at an edge of t means
that the dihedral angle of t at this edge is π

k
.

Reflecting t in its faces results in a tessellation in X3. Let P , Q, R, and S

denote reflections along the respective faces bcd, abd, abc, and acd of t. The group

generated by the reflections P , Q, R, and S is called the Coxeter tetrahedron

group with fundamental tetrahedron t. This group is referred to as

Γ(p, q, r, s, t, u)

=

〈
P,Q,R, S

∣∣∣∣∣∣ P
2 = Q2 = R2 = S2 = (QP )p = (RP )p =

(SP )r = (QR)s = (QS)t = (RS)p = e

〉
.

There are five Coxeter tetrahedra in S3 namely [3, 2, 2, 3, 2, 3], [3, 2, 2, 3, 2, 4],

[3, 2, 2, 4, 2, 3] and [3, 2, 2, 3, 3, 3]. On the other hand, the Coxeter tetrahedra in

E3 are [4, 2, 2, 3, 2, 4], [4, 2, 2, 3, 3, 2] and [3, 2, 3, 3, 2, 3]. In the hyperbolic case, it is

known that there are 9 compact and 23 noncompact Coxeter tetrahedra of finite

volume. The noncompact types have one, two, three or four vertices at infinity.

The list of Coxeter tetrahedron groups with fundamental tetrahedra of compact
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type (respectively, non-compact type) is presented in Table 3.1 (respectively, Ta-

bles 3.2 and 3.3).

In Hd, d > 3, known examples of Coxeter groups include those having sim-

plices (called Coxeter simplices) as fundamental polytopes. Hyperbolic Coxeter

simplices exist up to dimension 9. In H4, there are 5 compact and 9 non-compact

Coxeter simplices. There are 12, 3, 4, 4 and 3 hyperbolic Coxeter simplices in

H5, H6, H7, H8 and H9, respectively, all of which are non-compact. The Coxeter

diagrams of these hyperbolic Coxeter groups are listed in Table 3.4.
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Table 3.1: Coxeter tetrahedron groups with fundamental tetrahedra of compact
type together with their respective Coxeter diagrams.
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Table 3.2: Coxeter tetrahedron groups with fundamental tetrahedra of non-
compact type (having one vertex at infinity) together with their respective Cox-
eter diagrams.
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Table 3.3: Coxeter tetrahedron groups with fundamental tetrahedra of non-
compact type (with two or more vertices at infinity) together with their respec-
tive Coxeter diagrams.
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Table 3.4: The Coxeter diagrams of the Coxeter groups in Hd, d > 3.
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3.4 Singly Truncated Coxeter Tetrahedron Groups

Previously, we were introduced to Coxeter tetrahedron groups arising from

Coxeter tetrahedra with one vertex at infinity (cusp). In this section, we will

look at examples of Coxeter groups whose fundamental polytopes are truncated

tetrahedra, which are obtainable from such Coxeter tetrahedra. These groups

belong to the family referred to as singly truncated Coxeter tetrahedron groups.

In [13], Conder and Martin discussed a procedure for truncating a tetra-

hedron t with a vertex a at infinity (see Figure 3.3). This process is achieved

by opening up a cusp of a hyperbolic tetrahedron, which can be done in three

different ways.

Figure 3.3: A singly cusped tetrahedron with vertices a, b, c, and d; S∞ denotes
the sphere at infinity.
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The general idea is to choose a pair of faces in t having common vertex

a. For example, consider the faces acd and abc with dihedral angle π
u

(one may

also consider the faces with dihedral angles π
s

or π
t
). Then continuously decrease

the angle π
u

to θ = π
v
, 0 ≤ θ ≤ π

u
while fixing all the other dihedral angles. By

decreasing the angle π
u
, the sum of the dihedral angles around the cusp decreases

to less than π, opening up the cusp. This amounts to moving the ideal vertex a

beyond the sphere at infinity (see Figure 3.4).

Figure 3.4: Opening up a cusp of a tetrahedron.

Furthermore, Conder and Martin showed that such a tetrahedron with

an open cusp can be truncated by a hyperbolic plane which is perpendicular to

each of the unbounded faces. The resulting polytope is a hyperbolic prism and

we refer to it as a truncated tetrahedron t′ (see Figure 3.5). For more details on

this procedure, the reader is referred to [13]. The group generated by the reflec-
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tions about the faces of this prism is an example of a singly truncated Coxeter

tetrahedron group. We introduce some notations to clearly denote this particular

Coxeter group.

Figure 3.5: A truncated tetrahedron t′ which is a hyperbolic prism. The addi-
tional three vertices of the polytope are x, y and z.

For i = 1, 2, . . . , 9, u ∈ {2, 3, 4, 6}, and 0 ≤ π
v
≤ π

u
, we denote by Γi,u(v) the

singly truncated Coxeter tetrahedron group generated by reflections in the faces

of the hyperbolic prism obtained by opening up the cusp of the tetrahedron with

the ith Coxeter diagram in Table 3.2 along the edge going out to the cusp with

dihedral angle π
u

by an angle π
v
. The group Γi,u(v) has five reflections P , Q, R, S

and T . Referring to Figure 3.5, P , Q, R, S and T are the reflections along the

faces bcd, bdzx, bcyx, cdzy and xyz, respectively. Γi,u(v) is also referred to as the

group
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Γ(p, q, r,∞, s, t, 2, v, 2, 2)

=

〈
P,Q,R, S, T

∣∣∣∣∣∣ P
2 = Q2 = R2 = S2 = T 2 = (QP )p = (RP )q = (SP )r =

(QR)s = (QS)t = (QT )2 = (RS)v = (RT )2 = (ST )2 = e

〉
.

We have the following result on Γi,u(v) from [13].

Theorem 3.1 The Coxeter group Γi,u(v) is a Coxeter group with the truncated

tetrahedron t′ as fundamental polytope for the following triples (i, u, v):

(i) (i, 6, v) for i = 1, 4, 6 and v ≥ 6

(ii) (i, 3, v) for i = 3, 7, 9 and v ≥ 3

(iii) (2, 4, v) for v ≥ 4

(iv) (5, 2, v) for v ≥ 2

(v) (8, 4, 4)

In Table 3.5, we present examples of Γi,u(v) for i = 1, 2, . . . , 9 together with

their Coxeter diagrams. In arriving at these groups, we looked at particular

instances of truncated tetrahedra realizable from Coxeter tetrahedra with one

cusp as given in Theorem 3.1.
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Table 3.5: Examples of truncated Coxeter tetrahedron groups Γi,u(v), for i =
1, 2, . . . , 9.
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3.4 Group of Orientation-Preserving Isometries

One of the important subgroups of the Coxeter group

Γ(h21, . . . , hm1, h23, . . . , h2m, . . . , hm−1,m)

=

〈
R1, R2, . . . , Rm

∣∣∣∣∣∣ R1
2 = · · · = Rm

2 = (R2R1)h21 = · · · = (RmR1)hm1 =

(R2R3)h23 = · · · = (R2Rm)h2m = · · · = (Rm−1Rm)hm−1m = e

〉

is its index 2 subgroup Γ0 consisting of orientation preserving isometries. The

group is given by

Γ0 = Γ0(h21, . . . , hm1, h23, . . . , h2m, . . . , hm−1,m)

=

〈
R2R1, R3R1, . . . , RmR1

∣∣∣∣∣∣ (R2R1)h21 = · · · = (RmR1)hm1 = (R2R3)h23

= · · · = (R2Rm)h2m = · · · = (Rm−1Rm)hm−1m = e

〉
.

Γ0 is generated by R2R1, R3R1, . . . , RmR1. For any pair i, j ∈ {1, . . . ,m},

observe that RiRj = (RiR1)(RjR1)−1. If the order of RiRj is finite, it is called a

relator of Γ0.

For instance, the orientation preserving subgroup of the triangle group

∗p′q′r′ given by

Γ(p′, q′, r′) = 〈P ′, Q′, R′|P ′ 2 = Q′ 2 = R′ 2 = (Q′P ′)r
′
= (R′P ′)q

′
= (Q′R′)p

′
= e〉

is the group

Γ0(p′, q′, r′) = 〈Q′P ′, R′P ′|(Q′P ′)r′ = (R′P ′)q
′
= (Q′R′)p

′
= e〉
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which is also called p′q′r′.

A special case of p′q′r′ is the orientation preserving subgroup of the ex-

tended modular group

Γ(∞, 2, 3) = 〈P ′, Q′, R′|P ′ 2 = Q′ 2 = R′ 2 = (R′P ′)2 = (Q′R′)3 = e〉

which can be generated by Q′P ′, R′P ′ and, consequently, it is defined as

Γ0(∞, 2, 3) = 〈Q′P ′, R′P ′|(R′P ′)2 = (Q′R′)3 = e〉.

This group is called the modular group and is also denoted by 32∞. Take note

that R′P ′ and Q′R′ are of orders 2 and 3, respectively whereas Q′P ′ is of infinite

order. Hence, R′P ′ and Q′R′ are relators of 32∞.

The index 2 subgroup of the Coxeter tetrahedron group

Γ(p, q, r, s, t, u)

=

〈
P,Q,R, S

∣∣∣∣∣∣ P
2 = Q2 = R2 = S2 = T 2 = (QP )p = (RP )q =

(SP )r = (QR)s = (QS)t = (RS)u = e

〉
.

consisting of orientation preserving isometries is called the tetrahedron Kleinian

group and is referred to as

Γ0(p, q, r, s, t, u)

= 〈QP,RP, SP |(QP )p = (RP )q = (SP )r = (QR)s = (QS)t = (RS)u = e〉 .



Chapter 4

DETERMINING THE SUBGROUPS OF COXETER GROUPS AND

THEIR SUBGROUP

In this chapter, we address the problem on determining the subgroups of Cox-

eter groups and their subgroups. We present the setting and framework for the

problem which exhibit a connection between group theory and color symmetry

theory. The results are applied in obtaining the index 5 subgroups of hyper-

bolic Coxeter groups having Coxeter simplices in H4 as fundamental polytopes

and some examples of singly truncated Coxeter tetrahedron groups. The index

6 subgroups of the groups of orientation preserving isometries of the triangle

group will also be derived using the method.

4.1 Colorings of n-dimensional Tessellations by Coxeter Polytopes

In the results that follow, our primary assumption is that we start with a

Coxeter group

Γ = Γ(h21, . . . , hm1, h23, . . . , h2m, . . . , hm−1,m)

=

〈
R1, R2, . . . , Rm

∣∣∣∣∣∣ R1
2 = · · · = Rm

2 = (R2R1)h21 = · · · = (RmR1)hm1 =

(R2R3)h23 = · · · = (R2Rm)h2m = · · · = (Rm−1Rm)hm−1m = e

〉
.
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on either Xd = Ed,Sd or Hd, given the conditions discussed and notations devel-

oped in Section 3.1.

The following result from [76] holds for the Coxeter group Γ.

Lemma 4.1 The Coxeter polytope D forms a fundamental polytope for Γ and the

tessellation T is the Γ-orbit of D; that is, T = {γD|γ ∈ Γ}. Moreover, StabΓ(D) =

{γ ∈ Γ|γD = D} is the trivial group {e} and Γ acts transitively on T .

Consequently, as explained in Section 3.1, if γ ∈ Γ and γD is the image

of D under γ, then the union of these images as γ varies over the elements of

Γ is Xd. Moreover, if γ1, γ2 ∈ Γ, γ1 6= γ2, the respective interiors of γ1D and γ2D

are disjoint. Each polytope in T is the image of D under a uniquely determined

γ ∈ Γ.

Now, consider a subgroup Λ of Γ and O = ΛD = {λD|λ ∈ Λ} the Λ-orbit of

D. Then StabΛ(D) = {e}, and Λ acts transitively on O. Hence, there is a one-to-

one correspondence between Λ and O given by λ 7→ λD. Take note that λ′ ∈ Λ

acts on λD ∈ O by sending it to its image under λ′.

In this work, the methodology for determining the subgroups of the Cox-

eter groups and their subgroups is based on concepts in color symmetry theory.

In particular, we look at colorings of T and ΛD when determining the subgroups

of Γ and Λ, respectively.
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We now give the definition of a coloring of the Λ-orbit of D for a subgroup

Λ of Γ as follows.

Let C = {c1, c2, . . . , cn} be a set of n colors and O = ΛD = {λD|λ ∈ Λ},

where Λ is a subgroup of Γ. An onto function ι : O → C is called an n-coloring of

O if each λD ∈ O is assigned a color in C.

The coloring determines a partition P = {ι−1(ci)|ci ∈ C} where ι−1(ci) is

the set of elements of O assigned a color ci. Equivalently, we may think of the

coloring as a partition of O.

We look at n-colorings of O where for every pair of colors ci, cj ∈ C there is

a λ ∈ Λ such that cj = λci. We call such colorings Λ-transitive n-colorings of O.

To arrive at such a coloring consider the following result:

Lemma 4.2 Let P = {X1, X2, . . . , Xn} be a partition of O into n sets. Suppose Λ

acts transitively on P, then P = {λΩD|λ ∈ Λ} for some index n subgroup Ω of Λ.

Proof Assume that D ∈ X1 and let Ω = StabΛ(X1). Since Λ acts transitively

on O and Λ acts transitively on P, then X1 = ΩD and each set in P is equal to

λX1 for some λ ∈ Λ. Thus, P = {λΩD|λ ∈ Λ}. Moreover, by the orbit-stabilizer

theorem, n = |P| = [Λ : StabΛ(X1)] = [Λ : Ω].

Suppose Ω is an index n subgroup of Λ with {λ′1, λ′2, . . . , λ′n} a complete set

of left coset representatives of Ω in Λ. We can define a coloring ι : O = ΛD →

C = {c1, c2, . . . , cn} by ι(x) = ci if x ∈ λ′iΩD. Clearly, ι−1(ci) = λ′iΩD and P =
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{ι−1(c1), . . . , ι−1(cn)} = {λ′1ΩD,λ′2ΩD, . . . , λ′nΩD}. The group Λ acts transitively on

P with λ ∈ Λ sending λ′iΩD to its image λλ′iΩD. Consequently, we get a transitive

action of Λ on C by defining for λ ∈ Λ, λci = cj if and only if λι−1(ci) = ι−1(cj).

The n-coloring of O determined by ι is Λ-transitive.

As a consequence of the above discussions, we have the following result

which will be the basis of our methodology in studying the subgroup structure

of Coxeter groups and their subgroups.

Theorem 4.3 Let Λ be a subgroup of Γ and O = {λD|λ ∈ Λ} the Λ-orbit of D.

(i) Suppose Ω is an index n subgroup of Λ. Let {λ′1, λ′2, . . . , λ′n} be a complete set

of left coset representatives of Ω in Λ and {c1, c2, . . . , cn} a set of n colors. Then

the assignment λ′iΩD 7→ ci defines an n-coloring of O which is Λ-transitive.

(ii) In a Λ-transitive n-coloring of O, the elements of Λ which fix a specific color

in the colored set O form an index n subgroup of Λ.

Remark: Note that given a subgroup Ω of Λ of index n and a set of n colors

{c1, c2, . . . , cn}, there corresponds (n − 1)! Λ-transitive n-colorings of O with Ω

fixing c1. In a Λ-transitive n-coloring of O with Ω fixing c1, the set of Coxeter

polytopes ΩD is assigned c1 and the remaining n−1 colors are distributed among

the λ′iΩD, λ′i ∈ Λ.
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4.2 Index n Subgroups of Coxeter Groups and their Subgroups

Let Λ be a subgroup of the Coxeter group Γ where Λ is generated by

λ1, λ2, . . . , λl and O the Λ-orbit of D. In this section, Theorem 4.3 is applied

to formulate a method for determining the index n subgroups of Λ distinct up

to conjugacy in Λ. In obtaining these subgroups, we construct all Λ-transitive

n-colorings of O using the set C = {c1, c2, . . . , cn} of colors where all elements

of Λ effect permutations of C and Λ acts transitively on C. Denote the colors

c1, c2, . . . , cn respectively by 1, 2, . . . , n. For each such coloring of O, a homomor-

phism π : Λ→ Sn is defined where for each λ ∈ Λ, π(λ) is the permutation of the

colors in O effected by λ. Since Λ = 〈λ1, λ2, · · · , λl〉, π is completely determined

when π(λ1), π(λ2), . . . , π(λl) are specified. To construct the coloring, a fundamen-

tal region D of the tessellation T is considered and assigned color c1.

We come up with a set P of permutation assignments to λ1, λ2, · · · , λl cor-

responding to the Λ-transitive n-colorings of O that will give rise to the index n

subgroups of Λ distinct up to conjugacy in Λ. An element τ of the set P is such

that τ = {τ̂1, . . . , τ̂l} where τ̂i = π(λi), i = 1, . . . , l.

To arrive at the set P aided by the software GAP4 (Groups, Algorithms,

Programming) [34], the process consists of the following steps:

(1) We refer to [15] for a list L of transitive subgroups of Sn. From L, the

set T = {T1,T2, . . . ,Tk} is formed consisting of groups in L that can be
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generated by elements of order ϑ1, ϑ2, . . . , ϑr or their factors where ϑi is the

order of λi, i = 1, . . . , r. In particular, if Λ = Γ, a GAP4 routine called

TranSub (Appendix A) is used to help determine the list T consisting of

groups in L that can be generated by order 2 elements.

(2) For each of the groups T1,T2, . . . ,Tk ∈ T, the GAP4 routine Coloring (Ap-

pendix B) determines respectively the sets P1,P2, . . . ,Pk. For Tj ∈ T, j =

1, . . . , k, the set Pj consists of permutation assignments to λ1, . . . , λl such

that π(Λ) ∼= Tj.

(3) Now by the remark in the previous section, corresponding to an index n

subgroup Ω of Λ, there are (n − 1)! Λ-transitive n-colorings of O with Ω

fixing c1. That is, (n − 1)! permutation assignments will yield the same

subgroup. The GAP4 routine Coloring eliminates in each Pj, j = 1, . . . , k,

permutation assignments that will yield the same subgroup. To arrive at

a list of possible permutation assignments in each Pj that will yield dis-

tinct subgroups of Λ, we consider the set J = {j ∈ Sn|j(1) = 1}. Note that

for a particular permutation assignment τ ∈ P, jτ j−1 will yield the same

subgroup for all j ∈ J.

(4) After step (3), our sets P1,P2, . . . ,Pk now consist of possible permutation as-

signments that will yield distinct subgroups of Λ. The next step would be

to narrow down the elements of each set Pj, j = 1, . . . , k to arrive at permu-
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tation assignments that will possibly give rise to subgroups of Λ distinct

up to conjugacy in Λ. Still using the GAP4 routine Coloring, a set P′j from

each Pj is obtained consisting of these permutation assignments. Then the

set P′ = ∪P′j is obtained.

(5) As a last step, we use the GAP4 routine Sieve (Appendix C). This routine

checks each entry τ ′ in P′ to ensure that it satisfies the divisibility condi-

tions relative to the defining relations of Λ. For example, when Λ = Γ,

we check whether for each τ ′ in P′ the order of the permutation π(λiλj) is

a divisor of the order of λiλj, i, j = 1, . . . , l. All permutation assignments

satisfying the order conditions form the set P.

The diagram in Figure 4.1 summarizes the process discussed above for

constructing the colorings that will give rise to the index n subgroups of Λ dis-

tinct up to conjugacy in Λ.
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Figure 4.1: Outline of steps in constructing Λ-transitive n-colorings of O.
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4.3 Some Examples on Index 5 Subgroups of Coxeter Groups

To illustrate the process of obtaining the subgroups of a Coxeter group,

let us determine the index 5 subgroups of a Coxeter group generated by five

reflections. Consider

Γ(5) = Γ(h21, h31, h41, h51, h23, h24, h25, h34, h35, h45) =〈
R1, R2, R3, R4, R5

∣∣∣∣∣∣∣∣∣
R1

2 = R2
2 = R3

2 = R4
2 = R5

2 = (R2R1)h21 = (R3R1)h31

= (R4R1)h41 = (R5R1)h51 = (R2R3)h23 = (R2R4)h24 =

(R2R5)h25 = (R3R4)h34 = (R3R5)h35 = (R4R5)h45 = e

〉
.

The first step is to obtain the set T consisting of the transitive subgroups

of S5 that may be generated by order 2 elements. The set L consists of the

following transitive subgroups of S5; namely, S5 itself, the cyclic group C5, the

alternating group A5, the dihedral group D5, and the group F5, a group of order

20 isomorphic to AGL1(5) a 1-dimensional affine group over a field of order 5.

Note that C5 and F5 cannot be generated by elements of order 2. Thus, T =

{T1 = S5,T2 = A5,T3 = D5}. (See Table 4.1)

Next, using the GAP4 routine Coloring, we determine the sets P1, P2 and

P3 consisting of permutation assignments to P,Q,R, S and T such that π(Γ(5)) ∼=

S5, A5 and D5, respectively. We obtain a total of 10068840, 988440, and 45720

permutation assignments in P1, P2 and P3, respectively.
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Transitive

subgroups of S5 Order Generators

T1 S5 120 {(45), (34), (13)(24)}

T2 A5 60 {(23)(45), (24)(35), (12)(45)}

T3 D5 10 {(23)(45), (12)(34)}

Table 4.1: The elements of T in the routine to arrive at index 5 subgroups of Γ(5).
For each group, a set of generators is given.

In this example, J = {(25), (45), (35), (23), (34), (24), (23)(45), (253), (254),

(345), (354), (234), (24)(35), (235), (243), (245), (2354), (2453), (2435), (2543), (2534),

(2345), (25)(34)}. There are (5−1)! = 24 Γ(5)-transitive 5-colorings of T giving rise

to an index 5 subgroup of Γ(5); that is, there are 24 permutation assignments that

will yield the same index 5 subgroup of Γ(5). After the GAP4 routine Coloring

eliminates the permutation assignments that will yield the same subgroups,

there are a total of 419535, 41185, and 1905 permutation assignments in P1, P2

and P3, respectively.

The next step will be to arrive at the sets P′1, P′2 and P′3 consisting of permu-

tation assignments that will possibly yield subgroups distinct up to conjugacy in

Γ(5).

Let us first consider the set P1 consisting of permutation assignments such

that π(Γ(5)) ∼= S5. Suppose τ1 ∈ P1 gives rise to an index 5 subgroup Ω1 of Γ(5).



54

Then the permutation assignments

(12345)τ1(12345)−1, (13524)τ1(13524)−1,

(14253)τ1(14253)−1, (15432)τ1(15432)−1

will yield conjugate subgroups of Ω1 in Γ(5). Hence there are 10068840÷ (5×24) =

83907 possible distinct subgroups of index 5 in Γ(5) up to conjugacy.

Next, in the set P2 consisting of permutation assignments such that π(Γ(5)) ∼=

A5, assume τ2 ∈ P2 gives rise to an index 5 subgroup Ω2 of Γ(5). The permutation

assignments

(14253)τ2(14253)−1, (13524)τ2(13524)−1,

(12345)τ2(12345)−1, (15432)τ2(15432)−1

yield conjugate subgroups of Ω2 in Γ(5) and there are 988440 ÷ (5 × 24) = 8237

possible distinct subgroups of index 5 in Γ(5) up to conjugacy.

Finally, in the set P3 consisting of permutation assignments such that

π(Γ(5)) ∼= D5, consider τ3 ∈ P3 which gives rise to an index 5 subgroup Ω3 of

Γ(5). The permutation assignments

(13542)τ3(13542)−1, (15234)τ3(15234)−1,

(14325)τ3(14325)−1, (12453)τ3(12453)−1

yield conjugate subgroups of Ω3 in Γ(5). Thus, there are 45720 ÷ (5 × 24) = 381

possible distinct subgroups of index 5 in Γ(5) up to conjugacy.
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Hence, P′ has 83907 + 8237 + 381 = 93525 elements. This implies that

if h21, h31, h41, h51, h23, h24, h25, h34, h35, h45 are all divisible by 2, 3, 4, and

5, then Γ(5) = Γ(h21, h31, h41, h51, h23, h24, h25, h34, h35, h45) has 93525 index 5 sub-

groups; 83907 subgroups such that π(Γ(5)) ∼= S5, 8237 such that π(Γ(5)) ∼= A5 and

381 such that π(Γ(5)) ∼= D5. Let us state this result formally in the following

theorem.

Theorem 4.4 The Coxeter group Γ(h21, h31, h41, h51, h23, h24, h25, h34, h35, h45) gener-

ated by five reflections R1, R2, R3, R4, R5 with defining relations

R1
2 = R2

2 = R3
2 = R4

2 = R5
2 = (R2R1)h21 = (R3R1)h31 = (R4R1)h41 = (R5R1)h51

= (R2R3)h23 = (R2R4)h24 = (R2R5)h25 = (R3R4)h34 = (R3R5)h35 = (R4R5)h45 = e

has 93525 index 5 subgroups if h21, h31, h41, h51, h23, h24, h25, h34, h35, h45 are all

divisible by 2, 3, 4, and 5.

We now look at two special cases of Γ(h21, h31, h41, h51, h23, h24, h25, h34, h35, h45).

In the first case, we consider hyperbolic Coxeter groups having compact and

noncompact hyperbolic Coxeter simplices in H4 as fundamental polytopes. In

the second case, we consider examples of hyperbolic Coxeter groups with singly

truncated tetrahedra as fundamental polytopes.
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We first determine the index 5 subgroups of the Coxeter group

Γ(3, 2, 2, 2, 3, 2, 2, 3, 4, 2) =〈
R1, R2, R3, R4, R5

∣∣∣∣∣∣∣∣∣
R1

2 = R2
2 = R3

2 = R4
2 = R5

2 = (R2R1)3 = (R3R1)2

= (R4R1)2 = (R5R1)2 = (R2R3)3 = (R2R4)2 =

(R2R5)2 = (R3R4)3 = (R3R5)4 = (R4R5)2 = e

〉
.

This group has a noncompact Coxeter simplex in H4 as fundamental polytope.

Given the set P′ consisting of 93525 possible index 5 subgroups of Γ(3, 2, 2, 2,

3, 2, 2, 3, 4, 2), we use the GAP4 routine Sieve to obtain the set P.

We obtain the permutation assignment τ = {(45), (34), (23), (12), (1)} ∈ P.

In this case π(R1) = (45), π(R2) = (34), π(R3) = (23), π(R4) = (12), π(R5) =

(1), which implies π(R2R1) = (354), π(R3R1) = (23)(45), π(R4R1) = (12)(45),

π(R5R1) = (45), π(R2R3) = (234), π(R2R4) = (12)(34), π(R2R5) = (34) , π(R3R4) =

(123), π(R3R5) = (23), and π(R4R5) = (12). Note that order 2 elements of S5

are assigned to the images of R1, R2, R3, R4, R5 under π. Moreover, observe that

the order of π(R2R1) is 3, π(R3R1) is 2, π(R4R1) is 2, π(R5R1) is 2, π(R2R3) is 3,

π(R2R4) is 2, π(R2R5) is 2 , π(R3R4) is 3, π(R3R5)) is 2 and π(R4R5) is 2 which, re-

spectively, divides the orders of R2R1, R3R1, R4R1, R5R1, R2R3, R2R4, R2R5, R3R4,

R3R5 and R4R5. Thus, the permutation assignment τ corresponds to an index 5

subgroup of Γ(3, 2, 2, 2, 3, 2, 2, 3, 4, 2). In fact this is its only index 5 subgroup.

From our calculations, the only other hyperbolic Coxeter group (with a

simplex in H4 as fundamental polytope) having an index 5 subgroup is Γ(3, 2, 2, 2,
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3, 2, 3, 3, 2, 3). This index 5 subgroup corresponds to the permutation assignment

{(45), (34), (23), (12), (23)}. This result has also been obtained using the GAP4

routine Sieve on the set of 93525 permutation assignments P′.

Table 4.2: The permutation assignments corresponding to the index 5 subgroups
of the truncated Coxeter tetrahedron groups Γi,v(v), i = 1, 2, . . . , 9, listed in Table
3.5.

For the next case, we look at the singly truncated tetrahedron groups

given in Table 3.5. Using the GAP4 routine Sieve, the permutation assignments

that give rise to index 5 subgroups of each of the groups are given in Table 4.2.

From the set of 93525 permutation assignments in P′, we arrive at two permuta-

tion assignments that give rise to index 5 subgroups of the groups Γ1,6(6), Γ2,4(5),

Γ4,6(6), Γ5,2(5), Γ6,6(6) and Γ9,3(5), while we obtain one permutation assignment
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for the groups Γ8,4(4) and Γ3,3(5), and three permutation assignments for the

group Γ7,3(5).

4.4 Index 6 Subgroups of Γ0(r′, q′, p′)

Let us now explain the process involved in obtaining index 6 subgroups of

the orientation preserving subgroup Γ0(r′, q′, p′) of a triangle group Γ(r′, q′, p′). In

particular, we are going to derive the index 6 subgroups of the modular group

32∞.

Our first step is to obtain the set L consisting of the transitive subgroups

of S6. From [15], the set L consists of 16 groups: the symmetric group S6, the

dihedral group D6, the alternating group A6, two groups of order 6, C6 and S3(6)

(isomorphic to Z6 and S3, respectively), the order 12 group A4(6) (isomorphic to

A6∩S4), three order 24 groups 2A4(6), S4(6d) and S4(6c) (isomorphic to C2 wr3 C3,

A6 ∩ (S2 wr3 S3) and S4, respectively), the order 18 group F18(6) (isomorphic to C3

wr2 C2), two order 36 groups F18(6) : 2 and F36(6) (isomorphic to A6∩ (S3 wr2 C2)),

the order 48 group 2S4(6) (isomorphic to S2 wr3 S3), the order 60 group A5(6)

(isomorphic to PSL2(5), a 2-dimensional projective special linear group over a

field of order 5), the order 72 group F36(6) : 2 (isomorphic to S3 wr2 S3) and an

order 120 group S5(6) (isomorphic to PGL2(5), a 2-dimensional projective general

linear group over a field of order 5). All of these subgroups may be generated by
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a permutation of order 2 and another one of any order. Hence, the collection

T of transitive subgroups that we will use in the computation consists of all 16

transitive subgroups of S6. We let T1 = C6, T2 = S3(6), T3 = D6, T4 = A4(6),

T5 = F18(6), T6 = 2A4(6), T7 = S4(6d), T8 = S4(6c), T9 = F18(6) : 2, T10 = F36(6),

T11 = 2S4(6), T12 = A5(6) T13 = F36(6) : 2, T14 = S5(6), T15 = A6, and T16 = S6.

(See Table 4.3 for the generators of these subgroups.)

Using the GAP routine Coloring, we determine the sets P1, P2, . . . , P16

where each Pj consists of permutation assignments to Q′P ′ and R′P ′ such that

π(Γ0(r′, q′, p′)) ∼= Tj, for j = 1, . . . , 16. The number of permutation assignments in

each set Pj is also given in Table 4.3.

There are (6− 1)! = 120 permutation assignments that will yield the same

subgroup of Γ0(r′, q′, p′). (The elements of the set J are listed in Table 4.4.) We

use the GAP4 routine Coloring to eliminate the permutation assignments which

will yield the same subgroup.

The next step is to arrive at the sets P′1, P′2, . . . , P′16 consisting of permuta-

tion assignments that will possibly yield subgroups distinct up to conjugacy in

Γ0(r′, q′, p′) still with the aid of GAP4. For each set Pj, j = 1, . . . , 16, we consider

a set J′j consisting of conjugating elements. Let j ∈ J′j. If τ ′ ∈ Pj is a permu-

tation assignment that gives rise to a subgroup Ω′ of Γ(r′, q′, p′), then jτ ′j−1 is a

permutation assignment that gives rise to a conjugate subgroup of Ω′. The sets

of conjugating elements to be used in this step are listed in Table 4.5.
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We also give in Table 4.5 the number of permutation assignments in each

P′j which will possibly give rise to the subgroups of Γ0(r′, q′, p′) distinct up to

conjugacy in Γ0(r′, q′, p′). We obtain the set P′1 with 12 permutation assignments,

P′2 with 3, P′3 with 6, P′4 with 4, P′5 with 12, P′6 with 12, P′7 with 9, P′8 with 9,

P′9 with 3, P′10 with 12, P′11 with 18, P′12 with 19, P′13 with 24, P′14 with 57, P′15

with 106, and P′16 with 381. Thus, P′ has a total of 675 elements. This gives us

the following theorem for the index 6 subgroups of the orientation preserving

subgroup Γ0(r′, q′, p′) of the triangle group Γ(r′, q′, p′).

Theorem 4.5 The group Γ0(r′, q′, p′) generated by Q′P ′, R′P ′ with defining rela-

tion

(Q′P ′)r
′
= (R′P ′)q

′
= (Q′R′)p

′
= e

has 675 index 6 subgroups if r′, q′, p′ are all divisible by 2, 3, 4, 5 and 6.

Finally, we now proceed to obtain the index 6 subgroups of the modular

group Γ0(∞, 2, 3). Using the GAP4 routine Sieve, we verify the order conditions.

Specifically, we collect the permutation assignments where the order of π(R′P ′)

divides 2 and the order of π(Q′R′) divides 3. Of the 675 permutation assign-

ments in P′, we have 8 such permutation assignments and they are such that

π(Γ0(r′, q′, p′)) is isomorphic to either C6, S3, A4(6), F18(6), 2A4(6), S4(6c), S4(6d) or

A5(6). Hence, we have 8 permutation assignments in P that give rise to index 6

subgroups of the modular group Γ0(3, 2,∞) which we present in Table 4.6.
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Transitive Cardinality of

subgroups of S6 Order Generators set Pj

T1 C6 6 {(123456)} 1440

T2 S3(6) 6 {(135)(246), (16)(25)(34)} 360

T3 D6 12 {(123456), (16)(25)(34)} 2160

T4 A4(6) 12 {(25)(36), (135)(246)} 1440

T5 F18(6) 18 {(135), (14)(25)(36)} 2880

T6 2A4(6) 24 {(14), (135)(246)} 4320

T7 S4(6d) 24 {(25)(36), (135)(246), (26)(35)} 3240

T8 S4(6c) 24 {(25)(36), (135)(246), (14)(26)(35)} 3240

T9 F18(6) : 2 36 {(135), (26)(35), (14)(25)(36)} 2160

T10 F36(6) 36 {(135), (26)(35), (14)(2563)} 8640

T11 2S4(6) 48 {(14), (135)(246), (26)(35)} 6480

T12 A5(6) 60 {(12345), (16)(25)} 13680

T13 F36(6) : 2 72 {(135), (35), (14)(25)(36)} 17280

T14 S5(6) 120 {(12345), (16)(23)(45)} 41040

T15 A6 360 {(123), (134), (145), (156)} 76320

T16 S6 720 {(12), (13), (14), (15), (16)} 228960

Table 4.3: Column 1-2. The elements of T in the routine to arrive at index 6
subgroups of Γ0(r′, q′, p′); Column 3. A set of generators for each group; Column
4. The number of elements in Pj.
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{(56), (45), (456), (465), (46), (34), (34)(56), (345), (3456), (3465), (346), (354), (3564),

(35)(46), (3546), (3654), (364), (365), (36), (3645), (36)(45), (23), (23)(56), (23)(45),

(23)(46), (234), (234)(56), (2345), (23456), (23465), (2346), (2354), (23564), (235), (263),

(23546), (23654), (2364), (2365), (236), (23645), (236)(45), (243), (243)(56), (2453), (24563),

(2463), (24), (24)(56), (245), (2456), (2465), (246), (24)(35), (24)(356), (2435), (24356),

(246)(35), (24)(365), (24)(36), (24365), (2436), (26)(35), (245)(36), (24536), (2543), (25643),

(253)(46), (25463), (254), (2564), (25), (256), (25)(46), (2546), (2534), (25634), (25)(34),

(25346), (25364), (254)(36), (25)(364), (25436), (25)(36), (2536), (26543), (2643), (2653),

(26453), (263)(45), (2654), (264), (265), (26), (2645), (26)(45), (26534), (2634), (265)(34),

(26)(345), (264)(35), (26354), (26435), (26)(354), (35), (356), (23)(456), (23)(465), (26)(34)

(2356), (235)(46), (24653), (24635), (2635), (253), (2563), (25)(346), (26345), (256)(34)}

Table 4.4: The set J in the routine to arrive at index 6 subgroups of Γ0(r′, q′, p′)
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π(Γ0(r′, q′, p′)) Order The set J′j No. of elements in P′j
C6 6 J′1 = {} 12 = 1440÷ (1× 120)

S3(6) 6 J′2 = {} 3 = 360÷ (1× 120)

D6 12 J′3 = {(153)(264), (135)(246)} 6 = 2160÷ (3× 120)

A4(6) 12 J′4 = {(153)(264), (135)(246)} 4 = 1440÷ (3× 120)

F18(6) 18 J′5 = {(14)(25)(36)} 12 = 2880÷ (2× 120)

2A4(6) 24 J′6 = {(135)(246), (153)(264)} 12 = 4320÷ (3× 120)

S4(6d) 24 J′7 = {(153)(264), (135)(246)} 9 = 3240÷ (3× 120)

S4(6c) 24 J′8 = {(153)(264), (135)(246)} 9 = 3240÷ (3× 120)

F18(6) : 2 36 J′9 = {(163452), (135)(264), 3 = 2160÷ (6× 120)

(14)(23)(56), (153)(246), (125436)}

F36(6) 36 J′10 = {(1452)(36), (15)(24), 12 = 8640÷ (6× 120)

(1254)(36), (1654)(23), (13)(26)}

2S4(6) 48 J′11 = {(135)(246), (153)(264)} 18 = 6480÷ (3× 120)

A5(6) 60 J′12 = {(156342), (164)(253), 19 = 13680÷ (6× 120)

(13)(26)(45), (146)(235), (124365)}

F36(6) : 2 72 J′13 = {(152436), (123)(465), 24 = 17280÷ (6× 120)

(14)(26)(35), (132)(456), (163425)}

S5(6) 120 J′14 = {(123564), (136)(254), 57 = 41040÷ (6× 120)

(15)(26)(34), (163)(245), (146532)}

A6 360 J′15 = {(164325), (142)(356), 106 = 76320÷ (6× 120)

(13)(26)(45), (124)(365), (152346)}

S6 720 J′16 = {(146325), (162)(354), 318 = 228960÷ (6× 120)

(13)(24)(56), (126)(345), (152364)}

Table 4.5: Column 1-2. The elements of T in the routine to arrive at index 6
subgroups of Γ0(r′, q′, p′); Column 3. The set J′j of conjugating elements. Column
4. The number of elements in P′j.
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π(Γ0(r′, q′, p′)) π(Q′P ′) π(R′P ′) π(Q′R′)

C6 (123456) (14)(25)(36) (153)(264)

S3(6) (12)(34)(56) (13)(25)(46) (154)(236)

A4(6) (123)(456) (25)(36) (153)(264)

F18(6) (123456) (12)(34)(56) (246)

2A4(6) (12)(3546) (13)(24) (146)(235)

S4(6c) (2356) (12)(36)(45) (126)(345)

S4(6d) (3546) (13)(24)(56) (136)(245)

A5(6) (23564) (12)(34) (124)(356)

Table 4.6: The permutation assignments which give rise to the index 6 sub-
groups of Γ0(∞, 2, 3).



Chapter 5

EXTRACTING THE GENERATORS OF THE SUBGROUPS

This chapter presents a method for obtaining a set of generators of the sub-

groups of Coxeter groups or the subgroups of subgroups of Coxeter groups. The

process which we call the GenTree(Ω) construction starts with a permutation as-

signment corresponding to a subgroup Ω of Λ, and arrives at a generating set for

Ω. We first discuss the GenTree(Ω) construction, then apply this to determine a

set of generators for the subgroups derived in Sections 4.3 and 4.4.

5.1 Assumptions for the GenTree(Ω) Construction

In the previous section, we discussed a method for determining the index n

subgroups of Λ = 〈λ1, λ2, . . . , λl〉, a subgroup of the Coxeter group Γ. The method

produced a set P which consists of the permutation assignments corresponding

to the Λ-transitive n-colorings of the Λ-orbit of D that will give rise to index n

subgroups of Λ, distinct up to conjugacy in Λ. For such colorings, a homomor-

phism π : Λ → Sn is defined. Now, let τ = {τ̂1, τ̂2, . . . , τ̂l} ∈ P, where τ̂i = π(λi),

for i = 1, 2, . . . , l. The goal of this chapter is to obtain a set of generators for a
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subgroup Ω of Λ corrresponding to τ in terms of the generators of Λ. To come up

with this set, the method used involves constructing trees which consist of paths

that represent generators of Ω. The collection of trees with such paths will be

referred to as the GenTree corresponding to Ω, denoted by GenTree(Ω).

In the discussions throughout this chapter, we assume the conditions and

notations given in the previous paragraph.

5.2 Vertices, Edges, Paths and Trees in the GenTree(Ω) Construction

Let S = {λ1, λ2, . . . , λl} and S−1 = {λ1
−1, λ2

−1, . . . , λl
−1}. Define the set of

vertices V as

V =

(x, y)

∣∣∣∣∣∣ x ∈ S ∪ S−1 and y = (y1, y2)

where y2 = π(x)(y1) for y1 ∈ {1, . . . , n}

 .

Given a vertex v = (x, (y1, y2)), x is referred to as the generator of v and (y1, y2) as

the ordered pair of v. We define the inverse of the vertex v, denoted by v−1, as

(x−1, (y2, y1)). Note that π(x−1)(y2) = [π(x)]−1(y2) = y1.

Define the set of rootsW as the set

W = {(x1, y1) ∈ V | y1 = (1, y2)}.

An edge is defined by two vertices (x1, (y1, y2)) and (x2, (y2, y3)) provided that

x1x2 6= e (identity in Γ) and π(x1x2) 6= (1) (identity permutation).
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For every root wk ∈ W, a tree denoted by tk is constructed consisting of

paths pkj with wk as the initial node. A vertex in a path is considered a terminal

node if its ordered pair is (y1, 1) for some y1 ∈ {1, 2, . . . , n}.

A path pkj is a sequence of vertices v1, v2, . . . , vz denoted by v1 → v2 → · · · → vz

where v1 = (x1, (1, y2)) and vz = (xz, (y1, 1)) for y1, y2 ∈ {2, 3, . . . , n}. The inverse of

the path pkj is denoted by pkj
−1 and is defined as the sequence vz

−1, vz−1
−1, . . . , v1

−1

and denoted by vz
−1 → vz−1

−1 → · · · → v1
−1. A subpath of pkj is a subsequence of

the sequence v1, v2, . . . , vz of vertices in pkj.

Note that a path is constructed such that π(x1)π(x2) · · · π(xz) = 1. In which

case, we can think of a given path as corresponding to an element ω = x1x2 · · · xz ∈

Ω.

To illustrate the above ideas, let us consider the following example.

Consider the regular hexagon consisting of copies of a triangle 4 shown

in Figure 5.1 (a). The symmetry group G of the hexagon is the dihedral group

D6 of order 12 generated by the 60◦-counterclockwise rotation a about the center

of the hexagon and the reflection b with axis along the horizontal line through

the center satisfying the relations a6 = b2 = (ab)2 = e.

A G-transitive 3-coloring of the hexagon corresponding to an index 3 sub-

group of G is shown in Figure 5.1 (b). Consider the permutation assignment τ1 =

{(123), (13)} corresponding to this coloring where a sends color 1 to 2, 2 to 3 and 3

to 1 while b interchanges colors 1 and 3 (colors 1, 2, 3 correspond respectively to
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white, green, yellow in Figure 5.1 (b)). If π : G→ S3 is the homomorphism defined

by the G-transitive coloring of the hexagon, we have π(a) = (123) and π(b) = (13).

Let Ω1 be the index 3 subgroup of G arising from τ1. The set of vertices V1

in the construction of GenTree(Ω1) is given by {(a, (1, 2)), (a−1, (2, 1)), (a, (2, 3)),

(a−1, (3, 2)), (a, (3, 1)), (a−1, (1, 3)), (b, (1, 3)), (b, (2, 2)), (b, (3, 1))}. Moreover, the set

of rootsW1 is {(a, (1, 2)), (b, (1, 3))}. The trees t1 and t2 are constructed with paths

having as initial nodes the roots w1 = (a, (1, 2)) and w2 = (b, (1, 3)), respectively.

Figure 5.1: (a) A regular hexagon with symmetry group G = D6; (b) A G-
transitive 3-coloring of the hexagon arising from the permutation assignment
τ1 = {(123), (13)}.

To branch out from a root w to a vertex: connect w to vertex v ∈ V when-

ever wv 6= e and π(wv) 6= (1). Therefore, we connect w1 = (a, (1, 2)) to the ver-

tices (a, (2, 3)) and (b, (2, 2)). Similarly, we connect w2 = (b, (1, 3)) to the vertices

(a, (3, 1)) and (a−1, (3, 2)). Then, we branch out to the next set of vertices using

the same criteria. We continue branching out until all the paths in t1 and t2 have
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reached terminal nodes. Both trees have five paths each as shown in Figure 5.2.

Figure 5.2: The trees t1 and t2 given the permutation assignment τ1 =
{(1, 2, 3), (1, 3)} corresponding to the subgroup Ω1 of G = D6.

By the nature of the construction of the trees given the permutation as-

signment τ1, we can verify using Figure 5.2 that we have considered all se-

quences v1 = (x1, y1)→ v2 = (x2, y2)→ · · · → vz = (xz, yz) such that π(x1)π(x2) · · · π(xz)

= (1) using the vertices of V1. This means that the paths in Figure 5.2 correspond
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to the elements of Ω1. That is, Ω1 = {e, a3, a2b, a5b}.

In the next section, we discuss the branching out rules of GenTree(Ω)

which when applied will result in the construction of paths corresponding to

a set of generators of Ω.

5.3 Branching Out Rules for GenTree(Ω)

Before we present the branching out rules of GenTree(Ω), some definitions

are in order.

Consider the paths p : v1 → v2 → · · · → vz and p′ : v′1 → v′2 → · · · → v′z′ in

the construction of GenTree(Ω). We define the product p × p′ of the paths p and

p′ as the sequence v1, v2, . . . , vz, v
′
1, v
′
2, . . . , v

′
z′, where p× p′ is denoted by the path

v1 → v2 → · · · → vz → v′1 → v′2 → · · · → v′z′. In the resulting path, we eliminate

the subpath vj = (xj, yj)→ · · · → v′j′ = (x′j′ , y
′
j′) where xj · · · x′j′ = e or π(xj · · · x′j′) = (1).

If such subpath arises, p×p′ is given by v1 → v2 → · · · → vj−1 → v′j′+1 → v′j′+2 → · · ·

→ v′z′. The product of three or more paths is defined similarly. Note that if

ωp, ωp′ ∈ Ω correspond to the paths p and p′, respectively, then the path p × p′

corresponds to ωp · ωp′ ∈ Ω.

A path which is a product of two or more paths is said to be a redundant

path. A node or vertex v is considered a dead node if every path that passes

through v is a redundant path.
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In the previous example, we showed how to construct trees given a per-

mutation assignment τ1 giving rise to an index 3 subgroup Ω1. The trees have

paths which represent elements of Ω1, and some paths are redundant. In the dis-

cussion that follows, we are going to present our first set of rules for branching

out from vertex to vertex so that in the construction of the trees, we eliminate

redundant paths, and eventually arrive at a generating set for Ω. To illustrate

our ideas, we use the trees given in Figure 5.2, which appear in Figure 5.3 with

the redundant paths shown in blue.

Suppose in the construction of paths we obtain a subpath v1 → v2 → · · · → vi

where the ordered pair of vi is of the form (r, r), r ∈ {1, 2, . . . , n}. In this case, we

branch from vi using the inverse of the subpath from the root v1 to vi−1. We state

this as our first braching out rule.

Consider the vertex v2 = (b, (2, 2)) of the tree t1 in Figure 5.3. There are

three paths containing the subpath (a, (1, 2)) → (b, (2, 2)) namely p13, p14 and

p15. Now, the product p15 × p12 × p21 yields the path (a, (1, 2)) → (b, (2, 2)) →

(a−1, (2, 1)) → (a, (1, 2)) → (a, (2, 3)) → (b, (3, 1)) → (b, (1, 3)) → (a, (3, 1)) which is

exactly the path p13 given by (a, (1, 2))→ (b, (2, 2))→ (a, (2, 3))→ (a, (3, 1)). Thus,

we can say that p13 is a redundant path. Similarly, the path p14 is redundant

since the product p15×p12 yields p14. Hence, it is enough to consider the path p15.

Note that in p15, we branch out from v2 = (b, (2, 2)) to (a−1, (2, 1)).

Let us now investigate what happens when we have two vertices vi and v′i′
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Figure 5.3: The trees t1 and t2 given τ1 corresponding to the subgroup Ω1 of
G = D6. The redundant paths are labeled blue.
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on different subpaths v1 → v2 → · · · → vi and v′1 → v′2 → · · · → v′i′ where v′i′ = vi
−1.

In Figure 5.3, consider the vertices v2 = (a, (2, 3)) of tree t1 and v′2 = (a−1, (3, 2))

of tree t2 where v′2 = v2
−1 ((a, (2, 3))−1 = (a−1, (3, 2))). We are going to show that

the vertex v′2 = (a−1, (3, 2)) is a dead node; that is, all the paths containing the

subpath v′1 → v′2, namely p22, p23, p24 and p25, are redundant.

First, note that the path p12
−1 is given by (b, (1, 3))→ (a−1, (3, 2))→ (a−1, (2,

1)) which is exactly the path p22. Moreover, the product p12
−1×p15×p12×p21 yields

the path (b, (1, 3)) → (a−1, (3, 2)) → (b, (2, 2)) → (a, (2, 3)) → (a, (3, 1)) which is the

same as the path p23. Likewise, it is easy to show that p24 = p12
−1 × p15 × p12 and

p25 = p12
−1 × p15. Indeed, (a−1, (3, 2)) is a dead node since the paths p22, p23, p24

and p25 are redundant.

Now, consider the paths passing through v2 = (a, (2, 3)), namely p11 and

p12. It can be shown that p11 is redundant since it is exactly the same as the

product p12 × p21. In this case, we only consider the path p12.

In general, when we have two nodes vi and v′i′ on different subpaths v1 → v2

→ · · · → vi and v′1 → v′2 → · · · → v′i′ where v′i′ = vi
−1, one of them, say v′i′ can be

shown to be a dead node. Meanwhile, all paths containing the subpath v1 → v2 →

· · · → vi are redundant except the path where we branch out from vi using the

inverse of the subpath from v′1 to v′i′−1. This is our second branching out rule.

In Figure 5.3, we see that the paths p12, p15 and p21 (labeled orange) remain

after all the redundant paths are eliminated. We have shown that we can ex-



74

press all redundant paths as products of these paths or their inverses. In order

to come up with a generating set for Ω, the redundant paths are removed.

Figure 5.4: Two possible sets of the trees in the construction of GenTree(Ω1).

Let us now illustrate how to construct GenTree(Ω1) using Rules 1 and 2.

We start with the roots (a, (1, 2)) and (b, (1, 3)). Then connect the root (a, (1, 2))

to the vertices (a, (2, 3)) and (b, (2, 2)). By Rule 1, branch out from the vertex

(b, (2, 2)) to (a−1, (2, 1)). Next connect the root (b, (1, 3)) to the vertices (a, (3, 1))

(which is a terminal node) and (a−1, (3, 2)). Using Rule 2, we consider (a−1, (3, 2))
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a dead node since its inverse (a, (2, 3)) already appeared in t1. Thus, branch out

from (a, (2, 3)) to (b−1, (3, 1)). In Figure 5.4 (a), we present GenTree(Ω1). The

generating set obtained for Ω1 is {a2b, a5b}.

Now, suppose that in applying Rule 2 we consider the node (a, (2, 3)) as

the dead node, instead of the node (a−1, (3, 2)). Then we obtain the trees given in

Figure 5.4 (b). In this case, we get the same set of generators for Ω1.

To illustrate the next set of branching out rules, let us look at the following

example. Consider the permutation assignment τ2 = {(123), (23)} corresponding

to the G-transitive 3-coloring given in Figure 5.5 where a sends colors 1 to 2, 2

to 3 and 3 to 1 while b interchanges colors 2 and 3 (colors 1, 2, 3 correspond to

white, green, yellow, respectively). We still refer to G as the symmetry group of

the regular hexagon.

Figure 5.5: A G-transitive 3-coloring of the hexagon arising from the permuta-
tion assignment τ2 = {(123), (23)}.

In the construction of GenTree(Ω2), where τ2 gives rise to the subgroup Ω2

of G, the set of vertices V2 is {(a, (1, 2)), (a−1, (2, 1)), (a, (2, 3)), (a−1, (3, 2)), (a, (3, 1)),
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(a−1, (1, 3)), (b, (2, 3)), (b, (3, 2))} and we have the root (a, (1, 2)). The tree con-

structed is given in Figure 5.6.

Figure 5.6: The tree t1 given the permutation assignment τ2 = {(123), (23)} cor-
responding to the subgroup Ω2 of G = D6.

Observe that if one continues to branch out from the green nodes, one

arrives at the situation depicted in Figure 5.7. In Figure 5.7 (a), the vertex

(b, (3, 2)) reappears if branching out is continued; a sequence of vertices (b, (3, 2)),

(a, (2, 3)), (b, (3, 2)), (a, (2, 3)), . . . is obtained. Similarly, in Figure 5.7 (b), the

vertex (a−1, (3, 2)) reappears and results in a sequence of vertices (a−1, (3, 2)),

(b, (2, 3)), (a−1, (3, 2)), (b, (2, 3)), . . ..
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Figure 5.7: The sequence of vertices arising from the green nodes in t1 given in
Figure 5.6

In the discussion that follows, we give some steps on how these scenarios

are avoided. These will constitute the remaining branching out rules. To facili-

tate the discussion, we use the tree in Figure 5.6 which is redrawn in Figure 5.8

with the redundant paths labeled blue.

Figure 5.8: The tree t1 given τ2 corresponding to the subgroup Ω2 of G = D6. The
redundant paths are labeled in blue.
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Suppose in the construction of the paths, two vertices have the same or-

dered pair, we can choose to branch out from only one of them and consider the

other as a dead node. This will be our third branching out rule.

For instance in Figure 5.8, we have the vertices (b, (2, 3)) and (a, (2, 3)). It

can be shown that (a, (2, 3)) is a dead node. Observe that the paths p′′15, p′′16, and

p′′17 can be expressed respectively as p′′12
−1 × p′′11, p′′12

−1 and p′′12
−2 × p′′11.

Note that (b, (2, 3)) appears twice in Figure 5.8. If we continue branching

out from the vertex (b, (2, 3)) (colored blue in Figure 5.8) more paths will arise

which can be shown to be products of p′′11 and p′′12. Hence, in this case, we consider

this a dead node and we choose to branch out only from the first occurence of

the vertex (b, (2, 3)) in the tree. Note that it is also possible to branch out from

(a, (2, 3)) and consider (b, (2, 3)) a dead node.

Now suppose we have two consecutive vertices vi and vi+1 in a subpath

v1 → v2 → · · · → vi → vi+1 where vi = (xi, (y1, y2)) and vi+1 = (xi+1, (y2, y1)). Then

branch out from vi+1 using the inverse of the subpath from the root v1 to vi−1.

This is our fourth branching out rule.

To illustrate this rule, let us consider the consecutive vertices (b, (2, 3)) and

(a−1, (3, 2)) in Figure 5.8. We branch out from vertex (a−1, (3, 2)) to (a−1, (2, 1))

which results in a path p′′12. Note that the path p′′14 is redundant since it can be

expressed as the product p′′12 × p′′11. Moreover, if we continue branching out from

the vertex (a−1, (3, 2)) (colored green), then more paths arise which can be shown
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to be products of p′′12 and p′′11.

Now, let us constructGenTree(Ω2) using the above rules. We start with the

root (a, (1, 2)). It is possible to connect this vertex to (b, (2, 3)) and (a, (2, 3)). By

Rule 3, one of the vertices (b, (2, 3)) and (a, (2, 3)) may be considered a dead node,

say (a, (2, 3)). From the vertex (b, (2, 3)), we reach the terminal node (a, (3, 1))

giving rise to the path p′′11. Moreover, we can also connect (b, (2, 3)) to (a−1, (3, 2)),

and applying Rule 4 connect (a−1, (3, 2)) to (a−1, (2, 1)) resulting in the path p′′12.

Observe that the paths p′′11 and p′′12 correspond to the elements b and a3b which

generate Ω2. In Figure 5.9, we present GenTree(Ω2) after getting rid of the re-

dundant paths.

Figure 5.9: GenTree(Ω2).

Taking into consideration the situations in the previous discussion, we

have the following branching out rules for GenTree(Ω).
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Theorem 5.1 (The Branching Out Rules for GenTree(Ω))

The following rules in the construction of GenTree(Ω) eliminate the redun-

dant paths.

Rule 1. In the subpath v1 → v2 → · · · → vi where vi has ordered pair (r, r), r ∈ {1, 2,

. . . , n}, branch out from vi using the inverse of the subpath from v1 to vi−1.

Rule 2. If two nodes vi and v′i′ are on two different subpaths v1 → v2 → · · · → vi and

v′1 → v′2 → · · · → v′i′, repectively, such that v′i′ = vi
−1, then one of vi and v′i′ can

be considered a dead node, say v′i′. Then branch out from vi using the inverse

of the subpath from v′1 to v′i′−1.

Rule 3. If two (or more) nodes have the same ordered pairs (r, t) where r 6= t, we can

choose to branch out from only one of them and consider the other a dead

node.

Rule 4. If two consecutive nodes vi and vi+1 of a subpath v1 → v2 → · · · → vi → vi+1

are such that vi = (xi, (r, t)) and vi+1 = (xi+1, (t, r)), where r, t ∈ {1, 2, . . . , n},

then branch out from vi+1 using the inverse of the subpath from v1 to vi−1.

Proof

Rule 1. Let vi = (xi, (r, r)) and p : v1 → · · · → vi−1 → vi → vi+1 → · · · → vz be the path

containing the subpath v1 → v2 → · · · → vi such that vi+1 = vi−1
−1, vi+2 = vi−2

−1,

. . . , vz−1 = v2
−1, vz = v1

−1.
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Assume that there exists another path p′, distinct from p containing the

subpath v1 → v2 → · · · → vi. That is, p′ : v1 → v2 → · · · → vi → v′i+1 → v′i+2

→ · · · → v′z′ with v′i+1 6= vi+1. We will show that p′ is redundant.

Consider the path p′′ : v1 → · · · → vi−1 → v′i+1 → · · · → v′z′ containing the

subpaths v1 → · · · → vi−1 of p and v′i+1 → v′i+2 → · · · → v′z′ of p′.

Figure 5.10: Diagram for Rule 1.

Note that p×p′′ is given by v1 → · · · → vi−1 → vi → vi−1
−1 → · · · → v1

−1 → v1 →

· · · → v′i−1 → v′i+1 → · · · → v′z′ and will yield v1 → v2 → · · · → vi → v′i+1 → v′i+2 →

· · · → v′z′ which is exactly the path p′. Thus, p′ is a redundant path.

Rule 2. Let q : v1 → · · · → vi−1 → vi = v′i′
−1 → v′i′−1

−1 → · · · → v′1
−1 be the path con-

taining the subpath v1 → · · · → vi−1 → vi and the inverse of the subpath

v′1 → v′2 → · · · → v′i′. Then, the path q−1 : v′1 → · · · → v′i′−1 → v′i′ → vi−1
−1 → · · ·

→ v1
−1 contains the subpath v′1 → v′2 → · · · → v′i′.

Suppose there is another path also containing the subpath v′1 → v′2 → · · · → v′i′
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Figure 5.11: Diagram for Rule 2.
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but different from q−1; say, q′ : v′1 → · · · → v′i′−1 → v′i′ → v′i′+1 → · · · → v′z′ with

v′i′+1 6= vi−1
−1.

Consider another path q′′ : v1 → · · · → vi−1 → v′i′+1 → · · · → v′z′, where q′′ =

q×q′. Observe that q−1×q′′ yields the path v′1 → · · · → v′i′−1 → v′i′ → v′i′+1 → · · ·

→ v′z′ which is exactly the path q′. Thus, q′ is redundant.

Now, we want to show that any path containing the subpath v1 → · · · → vi−1

→ vi different from q is a redundant path. Let q(3) : v1 → · · · → vi−1 → vi → vi+1

→ · · · → vz with vi+1 6= v′i′−1
−1.

Consider the path q(4) : v′1 → · · · → v′i′−1 → vi+1 → · · · → vl. It can be verified

that q(3) = q× q(4).

Rule 3. Suppose we have two nodes vi and v′i′ in the subpaths v1 → · · · → vi−1 → vi

and v′1 → · · · → v′i′−1 → v′i′, respectively, such that vi = (xi, (r, t)) and v′i′ = (x′j, ((t, r))),

r, t ∈ {1, 2, . . . , n}.

Let r : v1 → · · · → vi−1 → vi → v′i′
−1 → v′i′−1

−1 → · · · → v′1
−1 contain the sub-

path v1 → · · · → vi−1 → vi and the inverse of the subpath v′1 → v′2 → · · · → v′i′.

Then, the path r−1 : v′1 → · · · → v′i′−1 → v′i′ → vi
−1 → vi−1

−1 → · · · → v1
−1 con-

tains the subpath v′1 → v′2 → · · · → v′i′.

Suppose there is another path r′ also containing the subpath v′1 → v′2 → · · ·

→ v′i′ but different from r−1; say, r′ : v′1 → · · · → v′i′−1 → v′i′ → v′i′+1 → · · · → v′z′

with v′i′+1 6= vi
−1.
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Figure 5.12: Diagram for Rule 3.

Consider another path r′′ : v1 → · · · → vi−1 → vi → v′i′+1 → · · · → v′z′. Observe

that r−1 × r′′ yields the path v′1 → · · · → v′i′−1 → v′i′ → v′i′+1 → · · · → v′z′ which

is exactly the path r′. Thus, r′ is redundant.

Rule 4. Suppose we have two consecutive nodes vi and vi+1 in the subpath v1 → · · · →

vi−1 → vi → vi+1 such that vi = (xi, (r, t)) and vi+1 = (xi+1, (t, r)), r, t ∈ {1, 2, . . . , n}.

Let the path s : v1 → · · · → vi−1 → vi → vi+1 → vi−1
−1 · · · → v1

−1 containing

the subpath v1 → · · · → vi−1 → vi → vi+1.

Assume there is another path s′ containing the subpath v1 → · · · → vi−1 → vi

→ vi+1 but different from s. That is, s′ : v1 → · · · → vi−1 → vi → vi+1 → vi+2 →

· · · → vz such that vi+2 6= vi−1
−1. We will show that s′ is a redundant path.

Consider the path s′′ : v1 → · · · → vi−1 → vi+2 → · · · → vz. Observe that s′ =
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Figure 5.13: Diagram for Rule 4.

s× s′′. Thus, s′ is redundant.

5.3 Some GenTree(Ω) Construction Examples

In this section, we use GenTree(Ω) to get a set of generators for the sub-

groups derived in the previous chapter.

First, we illustrate the derivation of a generating set for the index 5 sub-

group Ω′ of the Coxeter group Γ(3, 2, 2, 2, 3, 2, 2, 3, 4, 2) generated by the reflections

R1, R2, R3, R4 and R5 which are reflections in the hyperplanes containing the

sides of a noncompact Coxeter simplex in H4.

Consider the permutation assignment τ ′ = {(45), (34), (23), (12), (1)} ∈ P

corresponding to the index 5 subgroup Ω′ of Γ(3, 2, 2, 2, 3, 2, 2, 3, 4, 2) obtained from

theGAP4 routine Coloring as discussed in Section 3.2. From τ ′, we obtain the fol-
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lowing set of roots {(R4, (1, 2)), (R1, (1, 1)), (R2, (1, 1)), (R3, (1, 1)), (R5, (1, 1))}. Ob-

serve that all roots except (R4, (1, 2)) have ordered pairs (1, 1) which implies that

their corresponding generators are also generators of Ω′.

Figure 5.14: The GenTree(Ω′) where τ ′ = {(45), (34), (23), (12), (1)}.

Meanwhile, we connect (R4, (1, 2)) to the vertices (R1, (2, 2)), (R2, (2, 2)),(R3,

(2, 3)) and (R5, (2, 2)). Using Rule 1, we connect each of (R1, (2, 2)), (R2, (2, 2)),

and (R5, (2, 2)) to (R4, (2, 1)) resulting respectively in the paths q1, q2, and q3.

We connect the vertex (R3, (2, 3)) to the vertices (R1, (3, 3)), (R2, (3, 4)), (R4, (3, 3))
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and (R5, (3, 3)). Then we connect each of the vertices (R1, (3, 3)), (R4, (3, 3)) and

(R5, (3, 3)) to the subpath (R3, (3, 2)), (R4, (2, 1)) which respectively yields the

paths q4, q5, and q6. We connect the vertex (R2, (3, 4)) to the vertices (R1, (4, 5)),

(R3, (4, 4)), (R4, (4, 4)) and (R5, (4, 4)). We connect each of the vertices (R3, (4, 4)),

(R4, (4, 4)) and (R5, (4, 4)) to the subpath (R2, (4, 3)), (R3, (3, 2)), (R4, (2, 1)) by ap-

plying Rule 1 which respectively yields the paths q11, q12, and q13. We connect the

vertex (R1, (4, 5)) to the vertices (R2, (5, 5)), (R3, (5, 5)), (R4, (5, 5)) and (R5, (5, 5)).

By Rule 1, we connect each of the vertices (R2, (5, 5)), (R3, (5, 5)), (R4, (5, 5)) and

(R5, (5, 5)) to the subpath (R1, (5, 4)), (R2, (4, 3)), (R3, (3, 2)), (R4, (2, 1)) resulting

in the paths q7, q8, q9, and q10. We give in Figure 5.14 GenTree(Ω′). Hence, Ω′

has a generating set {R1, R2, R3, R5, R4R3R5R3R4}.

Figure 5.15: The GenTree(Ω′′) where τ ′′ = {(1), (23)(45), (12)(45),(14)(23), (1)}.

We now consider the permutation assignment τ ′′ = {(1), (23)(45), (12)(45),

(14)(23), (1)} which gives rise to an index 5 subgroup Ω′′ of the truncated tetra-
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hedron group Γ7,3(5) = Γ(4, 2, 2, 0, 3, 3, 2, 5, 2, 2) and construct GenTree(Ω′′). Note

that π(Γ7,3(5)) ∼= A5. The roots ofGenTree(Ω′′) are the vertices (P, (1, 1)), (Q, (1, 1)),

(R, (1, 2)), (S, (1, 4)) and (T, (1, 1)). The generators of roots the (P, (1, 1)), (Q, (1, 1))

and (T, (1, 1)) are generators of Ω′′. We connect the root (R, (1, 2)) to the vertices

(P, (2, 2)), (Q, (2, 3)), (S, (2, 3)) and (T, (2, 2)). We branch out from each of (P, (2, 2))

and (T, (2, 2)), by Rule 1, to the vertex (R, (2, 1)) resulting respectively in the

paths q′1 and q′2. By Rule 3, we branch out from only one of the vertices (Q, (2, 3))

and (S, (2, 3)), say (S, (2, 3)). We connect it to the vertices (P, (3, 3)), (Q, (3, 2)),

(R, (3, 3)), and (T, (3, 3)). We branch out from each of (R, (3, 3)), (P, (3, 3)), and

(T, (3, 3)), by Rule 1, to the subpath (S, (3, 2)), (R, (2, 1)) which yields respectively

in the paths q′3, q′4, and q′6. On the other hand, we connect the vertex (Q, (3, 2)) to

the vertex (S, (2, 1)) by Rule 4 giving rise to the path q′5.

Similarly, we connect the root (S, (1, 4)) to the vertices (P, (4, 4)), (Q, (4, 5)),

(R, (4, 5)) and (T, (4, 4)). We branch out from each of (P, (4, 4)) and (T, (4, 4)) to

(S, (4, 1)) by Rule 1 giving rise respectively to the paths q′7 and q′8. By Rule 3, we

branch out from one of (Q, (4, 5)) and (R, (4, 5)). We branch out from (R, (4, 5)),

and connect it to the vertices (P, (5, 5)), (Q, (5, 4)), (S, (5, 5)) and (T, (5, 5)). We con-

nect each of (S, (5, 5)), (P, (5, 5)) and (T, (5, 5)) to the subpath (R, (5, 4)), (S, (4, 1))

resulting respectively in the paths q′9, q′10, and q′12 by Rule 1. By Rule 4, we con-

nect (Q, (5, 4)) to the vertex (S, (4, 1)) which yields the path q′11. In Figure 5.15

we present GenTree(Ω′′) which gives the generating set {P,Q, T, RSRSR, RSQR,
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SRQS} of Ω′′.

Table 5.1: The index 5 subgroup of some Coxeter groups Γ = 〈P,Q,R, S, T 〉 with
their generators.

In Table 5.1, we present the index 5 subgroups of some Coxeter groups

Γ = 〈P,Q,R, S, T 〉 derived in Section 3.3 together with their generating sets.
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Figure 5.16: The GenTree for the index 5 subgroup of Γ1,6(6) arising from
{(45), (34), (23), (1), (15)}.

Figure 5.17: The GenTree for the index 5 subgroup of Γ1,6(6) arising from
{(45), (34), (23), (12), (1)}.

Figure 5.18: The GenTree for the index 5 subgroup of Γ2,4(5) arising from
{(23)(45), (12)(45), (1), (24)(35), (1)}.
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Figure 5.19: The GenTree for the index 5 subgroup of Γ2,4(5) arising from
{(23)(45), (12)(45), (45), (24)(35), (1)}.

Figure 5.20: The GenTree for the index 5 subgroup of Γ3,3(5) arising from
{(45), (34), (23), (23), (15)}.
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Figure 5.21: The GenTree for the index 5 subgroup of Γ4,6(6) arising from
{(23)(45), (1), (1), (1), (12)(34)}.

Figure 5.22: The GenTree for the index 5 subgroup of Γ4,6(6) arising from
{(23)(45), (34), (45), (1), (12)}.
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Figure 5.23: The GenTree for the index 5 subgroup of Γ5,2(5) arising from
{(1), (1), (23)(45), (12)(34), (1)}.

Figure 5.24: The GenTree for the index 5 subgroup of Γ5,2(5) arising from
{(23)(45), (12)(45), (1), (1), (14)(25)}.
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Figure 5.25: The GenTree for the index 5 subgroup of Γ6,6(6) arising from
{(23)(45), (12)(34), (25)(34), (1), (1)}.

Figure 5.26: The GenTree for the index 5 subgroup of Γ6,6(6) arising from
{(23)(45), (12)(34), (25)(34), (1), (34)}.
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Figure 5.27: The GenTree for the index 5 subgroup of Γ7,3(5) arising from
{(23)(45), (1), (1), (1), (12)(34)}.

Figure 5.28: The GenTree for the index 5 subgroup of Γ7,3(5) arising from
{(23)(45), (34), (45), (45), (12)}.
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Figure 5.29: The GenTree for the index 5 subgroup of Γ8,4(4) arising from
{(23)(45), (12)(45), (1), (12)(45), (14)(25)}.

Figure 5.30: The GenTree for the index 5 subgroup of Γ9,3(5) arising from
{(23)(45), (12)(34), (25)(34), (25)(34), (1)}.
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Figure 5.31: The GenTree for the index 5 subgroup of Γ9,3(5) arising from
{(23)(45), (12)(34), (25)(34), (25)(34), (34)}.
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For our last example, we are going to derive a set of generators for each

of the index 6 subgroup Ω of the orientation-preserving group Γ0(3, 2,∞) by con-

structing its corresponding GenTree(Ω). In the following discussion, we are go-

ing to look closely at the construction of GenTree(Ω′′′) where Ω′′′ is the index 6

subgroup of Γ0(3, 2,∞), where π(Γ0(3, 2,∞)) ∼= F18(6), arising from the permuta-

tion assignment τ ′′′ = {(123456), (12)(34)(56)}.

From the permutation assignment τ ′′′ = {(123456), (12)(34)(56)}, we have

π(Q′P ′) = (123456), π(P ′Q′) = (165432) and π(R′P ′) = (12)(34)(56). The set of ver-

tices V ′′′ of GenTree(Ω′′′) is {(Q′P ′, (1, 2)), (P ′Q′, (2, 1)), (Q′P ′, (2, 3)), (P ′Q′, (3, 2)),

(Q′P ′, (3, 4)), (P ′Q′, (4, 3)), (Q′P ′, (4, 5)), (P ′Q′, (5, 4)), (Q′P ′, (5, 6)), (P ′Q′, (6, 5)),

(Q′P ′, (6, 1)), (P ′Q′, (1, 6)), (R′P ′, (1, 2)), (R′P ′, (2, 1)), (R′P ′, (3, 4)), (R′P ′, (4, 3)),

(R′P ′, (5, 6)), (R′P ′, (6, 5))}. Now, the set of roots forGenTree(Ω′′′) isW ′′′ = {(P ′Q′,

(1, 6)), (Q′P ′, (1, 2)), (R′P ′, (1, 2))}. Since the roots (Q′P ′, (1, 2)) and (R′P ′, (1, 2))

have the same ordered pair, by Rule 3, we use (R′P ′, (1, 2)) together with (P ′Q′,

(1, 6)) in the construction.

We connect the root (P ′Q′, (1, 6)) to the vertices (P ′Q′, (6, 5)) and (R′P ′, (6, 5)).

Since the vertices (P ′Q′, (6, 5)) and (R′P ′, (6, 5)) have the same ordered pair, by

Rule 3, we only branch out from one of them, say (R′P ′, (6, 5)), and so we connect

the vertex (R′P ′, (6, 5)) to (P ′Q′, (5, 4)) and (Q′P ′, (5, 6)). Appying Rule 5, since

(R′P ′, (6, 5)) and (Q′P ′, (5, 6)) are two consecutive vertices with reverse ordered

pairs, branch out from (Q′P ′, (5, 6)) to (Q′P ′, (6, 1)) arising in the path p41. We
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will show later that we can consider (P ′Q′, (5, 4)) a dead node.

Figure 5.32: The GenTree for the index 6 subgroup of Γ0(∞, 2, 3) where
π(Γ0(∞, 2, 3)) ∼= F18(6).

On the other hand, we connect the root (R′P ′, (1, 2)) to (Q′P ′, (2, 3)) and

(P ′Q′, (2, 1)) which yields the path q43. We connect (Q′P ′, (2, 3)) to (Q′P ′, (3, 4))

and (R′P ′, (3, 4)) but, by applying Rule 3, we only branch out from one of them,

say (Q′P ′, (3, 4)). Now, we connect (Q′P ′, (3, 4)) to (R′P ′, (4, 3)) and (Q′P ′, (4, 5)).

Since (Q′P ′, (3, 4)) and (R′P ′, (4, 3)) are two consecutive vertices with reverse

ordered pairs, by Rule 4, we connect (R′P ′, (4, 3)) to the subpath (P ′Q′, (3, 2)),

(R′P ′, (2, 1)) giving rise to the path q44. The vertex (Q′P ′, (4, 5)) has the same

ordered pair as the vertex (P ′Q′, (4, 5)), and so, by Rule 2, we can consider

(P ′Q′, (4, 5)) a dead node and connect (Q′P ′, (4, 5)) to the subpath (R′P ′, (5, 6)),

(Q′P ′, (6, 1)) which yields the path q45.

In Figure 5.32, we give GenTree(Ω′′′) with the corresponding elements in
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Ω′′′ of each path. Hence, we obtain the set

{R′Q′, P ′Q′P ′R′Q′P ′Q′P ′, P ′R′Q′P ′Q′P ′Q′R′Q′P ′}

as set of generators for Ω′′′.

In Table 5.2, we present the index 6 subgroups of Γ0(∞, 2, 3) together with

their generators.

Table 5.2: The index 6 subgroups of Γ0(∞, 2, 3) with their generators.
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Figure 5.33: The GenTree for the index 6 subgroup of Γ0(∞, 2, 3) where
π(Γ0(∞, 2, 3)) ∼= C6.

Figure 5.34: The GenTree for the index 6 subgroup of Γ0(∞, 2, 3) where
π(Γ0(∞, 2, 3)) ∼= S3.
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Figure 5.35: The GenTree for the index 6 subgroup of Γ0(∞, 2, 3) where
π(Γ0(∞, 2, 3)) ∼= A4(6).
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Figure 5.36: The GenTree for the index 6 subgroup of Γ0(∞, 2, 3) where
π(Γ0(∞, 2, 3)) ∼= 2A4(6).
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Figure 5.37: The GenTree for the index 6 subgroup of Γ0(∞, 2, 3) where
π(Γ0(∞, 2, 3)) ∼= S4(6c).

Figure 5.38: The GenTree for the index 6 subgroup of Γ0(∞, 2, 3) where
π(Γ0(∞, 2, 3)) ∼= S4(6d).
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Figure 5.39: The GenTree for the index 6 subgroup of Γ0(∞, 2, 3) where
π(Γ0(∞, 2, 3)) ∼= A5.



Chapter 6

TORSION-FREE SUBGROUPS OF COXETER GROUPS

In this chapter, we present a method for identifying subgroups of Coxeter groups

which are torsion-free; that is, subgroups which contain no nontrivial elements

of finite order. In identifying torsion-free subgroups the starting point would be

to work inside Γ0, the group of orientation-preserving isometries in Γ to avoid

the presence of reflections, which are order two elements.

6.1 Torsion-free Subgroups of Γ0

Let us consider the set P of permutation assignments corresponding to the

Γ0-transitive n-colorings of the Γ0-orbit of D that give rise to index n subgroups

of Γ0. We want to address the question: among these index n subgroups of Γ0,

which are torsion-free?

Let us first look at the following result which contributes to the solution

of the problem.

Theorem 6.1 Let τ be a permutation assignment in P which gives rise to an

index n subgroup Ω of Γ0. Suppose τ corresponds to an n-coloring of the Γ0-
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orbit of D where Γ0 acts transitively on the set of colors c1, c2, . . . , cn (denoted by

1, 2, . . . , n). Assume that for such a coloring, a homomorphism π : Γ0 → Sn is

defined. Consider x̃ ∈ Γ0.

(i) If π(x̃)(f) = f for f ∈ {2, . . . , n}, then σx̃σ−1 ∈ Ω where σ ∈ Γ0.

(ii) If π(x̃) has order ϑ then x̃ϑ ∈ Ω.

Proof

(i) Since Γ0 acts transitively on C, there exists σ ∈ Γ0 such that σc1 = cf , that

is, π(σ)(1) = f . This implies that π(σ−1)(f) = 1. Thus, [π(σx̃σ−1)](1) = 1 or

σx̃σ−1 ∈ Ω.

(ii) Note that π(x̃ϑ)(1) = [π(x̃)]ϑ(1) = 1. Thus x̃ϑ ∈ Ω.

Aside from the previous theorem, the following well-known result from

[54, 30, 13] will also be used in determining torsion-free subgroups of Γ0.

Lemma 6.2 An element ζ ∈ Γ0 is of finite order if and only if it is a conjugate to

a power of a relator of Γ0.

Let ỹ be a relator of Γ0 of order d. By Theorem 6.1 (i), if π(ỹ) fixes a number

from the set {2, 3, . . . , n}, then σ′ỹσ′−1 ∈ Ω for some σ′ ∈ Γ0. From Lemma 6.2,

σ′ỹσ′−1 has finite order and Ω is not torsion-free.

Moreover, suppose π(ỹ) is of order d′ < d. By Theorem 6.1 (ii) ỹd
′ ∈ Ω. Now,

since d′ divides d, we can write d = d′z′ where z′ is an integer not equal to 1 so
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that ỹd′ = ỹ
d
z′ . Note that (ỹd

′
)z
′

= (ỹ
d
z′ )z

′
= ỹd = e. This implies ỹd′ is of order z′

and thus is of finite order. Hence, Ω is not torsion-free.

Based on these arguments, we can conclude that Ω avoids any torsion

when for each relator ỹ of Γ0, π(ỹ) does not fix any number f ∈ {1, 2, . . . , n}, and

the order of π(ỹ) is equal to the order of ỹ. To satisfy these two conditions, π(ỹ)

should be a permutation having n
d

disjoint d-cycles.

Consider τ ∈ P. Suppose that, with respect to this permutation assign-

ment, each relator ỹ of Γ0 of order d is such that π(ỹ) is a permutation having n
d

disjoint d-cycles. Then we say that τ is a semiregular permutation assignment.

We now present the main theorem of this chapter.

Theorem 6.3 A subgroup Ω of Γ0 is torsion-free if and only if the permutation

assignment τ ∈ P that gives rise to Ω is a semiregular permutation assignment.

Proof

Suppose τ ∈ P is a semiregular permutation assignment that gives rise to

a subgroup Ω of Γ0. Consider z̃ an element of order g in Γ0. Then, by Lemma 6.2,

z̃ is a conjugate to a power of a relator, say ṽ; that is, z̃ = w̃ṽw̃−1 for some w̃ ∈ Γ0.

Since π(z̃) = π(w̃ṽw̃−1) = π(w̃)π(ṽ)π(w̃)−1 and π(ṽ) is a permutation having n
g

disjoint g-cycles, π(z̃) is a permutation having n
g

disjoint g-cycles. This implies

that z̃ does not fix 1. Thus, every element of finite order in Γ0 is not an element

of Ω and Ω is torsion-free.
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Conversely, suppose Ω is a torsion-free subgroup of Γ0. We want to show

that its corresponding permutation assignment τ ∈ P is semiregular.

Let ũ be an element of Γ0 of order g′. Since Ω is torsion-free, ũs′ ∈ Ω if

and only if g′ divides s′, that is ys′ = (yg
′
)r
′

= e, r′ ∈ Z. If s′ is not divisible by

g′, then π(ũs
′
) does not fix 1. Consequently, π(ũs

′
) does not fix j ∈ {1, 2, . . . , n}

since π(b̃ũs
′
b̃−1) does not fix 1 for any b̃ ∈ Γ0 by Theorem 6.1. Therefore, π(ũ) is

a permutation of order g′, and no nontrivial power of π(ũ) fixes any number in

{1, 2, . . . , n}. This implies that π(ũ) is a permutation having n
g′

disjoint g′-cycles.

Particularly, for every relator ã of order t′, π(ã) is necessarily represented as a

product of n
t′

disjoint t′-cycles. Hence, the permutation assignment τ correspond-

ing to the torsion-free subgroup Ω is semiregular.

At this point, it is naturally of interest to know what the smallest possible

index of a torsion-free subgroup of Γ0 is. A simple corollary to the previous

theorem gives us a useful lower bound.

Corollary 6.4 The index of any finite-index torsion-free subgroup of a group Γ0

is divisible by the lowest common multiple of the orders of the relators.

Proof Suppose Ω is an index n subgroup which arises from the permutation

assignment τ . By Theorem 6.3, τ is a semiregular permutation. Hence, for each

relator c̃ of order m′, π(c̃) is a permutation having n
m′

disjoint m′-cycles. Thus, n

is divisible by the lowest common multiple of the orders of the relators.
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To illustrate the process for determining torsion-free subgroups of a Cox-

eter group, let us consider the Euclidean triangle group ∗442 given by

Γ(2, 4, 4) = 〈P ′, Q′, R′|P ′ 2 = Q′ 2 = R′ 2 = (Q′P ′)2 = (R′P ′)4 = (Q′R′)4 = e〉.

The orientation-preserving subgroup of Γ(2, 4, 4) is

Γ0(2, 4, 4) = 〈Q′P ′, R′P ′|(Q′P ′)2 = (R′P ′)4 = (Q′R′)4 = e〉.

The group ∗442 using the International Union of Crystallographers (IUC) nota-

tion is the group p4m.

Now, the relators of Γ(2, 4, 4) are Q′P ′, R′P ′, and Q′R which are of orders

2,4 and 4, respectively. Hence, by Corollary 6.4, the torsion-free subgroups of

Γ0(2, 4, 4) is at least of index 4.

We consider the permutation assignments that give rise to index 4 sub-

groups of Γ0(2, 4, 4) up to conjugacy and determine which yield a torsion-free

subgroup. Using the method discussed in Chapter 4, we obtain the permutation

assignments presented in Table 6.1.

Consider the permutation assignment τ = {(12)(34), (1324)} from the list.

Consequently, π(Q′P ′) = (12)(34), π(R′P ′) = (1324) and π(Q′R′) = (1324). Since

Q′P ′ is of order 2, R′P ′ is of order 4 and Q′R′ is of order 4 and π(Q′P ′), π(R′P ′)

and π(Q′R′) are permutations having two 2-cycles, a 4-cycle and a 4-cycle, respec-

tively, then the permutation assignment τ is semiregular. Hence, this permuta-

tion assignment gives rise to an index 4 torsion-free subgroup Ω′ of Γ0(2, 4, 4).
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π(Γ0(2, 4, 4)) π(Q′P ′) π(R′P ′) π(Q′R′)

D4 (34) (1324) (13)(24)

D4 (34) (13)(24) (1324)

D4 (13)(24) (12) (1324)

Z4 (12)(34) (1324) (1324)

K4 (12)(34) (14)(23) (13)(24)

Table 6.1: Permutation assignments that give rise to the index 4 subgroups of
Γ0(2, 4, 4).

By constructing GenTree(Ω′) (given in Figure 6.1), we obtain a set of generators

{Q′R′P ′R′, R′P ′R′Q′, R′Q′R′P} for this subgroup.

Figure 6.1: The GenTree(Ω′) for τ = {(12)(34), (1324)} of Γ0(2, 4, 4).

Observe that the other permutation assignments appearing in Table 6.1

are not semiregular permutation assignments. Thus, Γ0(2, 4, 4) has only one

index 4 subgroup which is torsion-free. This torsion-free subgroup is more com-

monly known in IUC notation as p1 generated by two translations.

For our next example, let us consider the extended Hecke group ∗p′2∞
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given by

Γ(∞, 2, p′) = 〈P ′, Q′, R′|P ′ 2 = Q′ 2 = R′ 2 = (R′P ′)2 = (Q′R′)p
′
= e〉.

Its orientation preserving subgroup known as the Hecke group p′2∞ is

Γ0(∞, 2, p′) = 〈Q′P ′, R′P ′|(R′P ′)2 = (Q′R′)p
′
= e〉.

Let us focus on three examples of p′2∞, namely: the modular group 32∞

and the groups 42∞ and 62∞. By Corollary 6.4, the torsion-free subgroups of

these groups are at least of index 6, 4 and 6, respectively.

Based on the discussion in Section 4.4, we obtain the permutation assign-

ments in Table 6.2, Tables 6.3 and 6.4, Table 6.5 that will give rise to index 6,

index 6 and index 4 subgroups of Γ0(∞, 2, 3), Γ0(∞, 2, 6), Γ0(∞, 2, 4), respectively.

It is easy to verify that the permutation assignments

τ ′1 = {(123456), (14)(25)(36)},

τ ′2 = {(12)(34)(56), (13)(25)(46)},

τ ′3 = {(2356), (12)(36)(45)}

given in Table 6.2 are semiregular.

Hence, the index 6 subgroups

Ω′1 = 〈Q′P ′Q′R′Q′P ′, Q′R′Q′P ′Q′P ′〉,

Ω′2 = 〈Q′P ′Q′P ′, R′Q′P ′Q′R′P ′〉,
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Ω′3 = 〈Q′P ′, R′Q′P ′Q′P ′Q′P ′Q′R′P ′〉

which arise from τ ′1, τ ′2 and τ ′3, respectively, are torsion-free subgroups of

Γ0(∞, 2, 3).

Γ0(∞, 2, 3) π(Q′P ′) π(R′P ′) π(Q′R′)

C6 (123456) (14)(25)(36) (153)(264)

S3(6) (12)(34)(56) (13)(25)(46) (154)(236)

A4(6) (123)(456) (25)(36) (153)(264)

F18(6) (123456) (12)(34)(56) (246)

2A4(6) (12)(3546) (13)(24) (146)(235)

S4(6c) (2356) (12)(36)(45) (126)(345)

S4(6d) (3546) (13)(24)(56) (136)(245)

A5(6) (23564) (12)(34) (124)(356)

Table 6.2: Permutation assignments that give rise to the index 6 subgroup of
Γ0(∞, 2, 3).

Similarly, the permutation assignments τ ′′1 = { (135)(246), (14)(25)(36),

(165432) }, τ ′′2 = { (34)(56), (15)(23)(46), (154236) }, τ ′′3 = { (246), (12)(34)(56),

(123456) }, τ ′′4 = {(12)(3546), (13)(24)(56), (145236)} and τ ′′5 = {(23645), (12)(34)(56),

(124635)} in Tables 6.3 and 6.4, τ ′′′1 = {(34), (13)(24), (1324)} and τ ′′′2 = {(1234),

(13)(24), (1432)} in Table 6.5 are semiregular. Thus, Γ0(∞, 2, 6) has 5 index 6

torsion-free subgroups which arise from τ ′′1 , τ ′′2 , τ ′′3 ,τ ′′4 , τ ′′5 , and Γ0(∞, 2, 4) has 2

index 4 torsion-free subgroups which arise from τ ′′′1 ,τ ′′′2 .
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For our final example, we derive an index 96 torsion-free subgroup Ω∗ of

the triangle group ∗642 given by

Γ(2, 4, 6) = 〈P ′, Q′, R′|P ′2 = Q′2 = R′2 = (Q′P ′)2 = (R′P ′)4 = (Q′R′)6 = e〉.

This subgroup arises from a permutation assignment τ ∗ where

π(Q′P ′) = (1 18)(2 36)(3 10)(4 15)(5 33)(6 7)(8 42)(9 22)(11 39)(12 19)(13 24)

(14 28)(16 21)(17 25)(20 46)(23 43)(27 34)(29 48)(30 31)(32 37)(35 40)(38 47)(41 44);

π(R′P ′) = (1 7 19 13)(2 18 25 31)(3 36 40 11)(4 10 22 16)(5 15 28 34)(6 33 37 8)

(9 42 44 23)(12 39 47 20)(14 24 43 29)(17 21 46 26)(27 45 41 35)(30 48 38 32);

π(Q′R′) = (1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)

(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48).

Note that τ ∗ is a semiregular permutation assignment since π(Q′P ′), π(R′P ′),

and π(Q′R′) are permutations having respectively 24 disjoint 2-cycles, 12 disjoint

4-cycles, and 8 disjoint 6-cycles.

The Γ0(2, 4, 6)-transitive 48-coloring of the Γ0(2, 4, 6)-orbit of4 arising from

τ ∗ is given in Figure 6.2. The colors are labeled 1, 2, . . . , 48.
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Figure 6.2: A coloring that gives rise to the index 96 torsion-free subgroup of
Γ(2, 4, 6).
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Γ0(∞, 2, 6) π(Q′P ′) π(R′P ′) π(Q′R′)

C6 (1, 2, 3, 4, 5, 6) () (1, 2, 3, 4, 5, 6)

C6 (1, 2, 3, 4, 5, 6) (1, 4)(2, 5)(3, 6) (1, 5, 3)(2, 6, 4)

C6 (1, 3, 5)(2, 4, 6) (1, 4)(2, 5)(3, 6) (1, 6, 5, 4, 3, 2)

S3(6) (1, 2)(3, 4)(5, 6) (1, 3)(2, 5)(4, 6) (1, 5, 4)(2, 3, 6)

S3(6) (1, 4, 5)(2, 6, 3) (1, 2)(3, 4)(5, 6) (1, 3)(2, 5)(4, 6)

A4(6) (1, 2, 3)(4, 5, 6) (2, 5)(3, 6) (1, 5, 3)(2, 6, 4)

D6 (3, 4)(5, 6) (1, 5)(2, 3)(4, 6) (1, 5, 4, 2, 3, 6)

D6 (1, 2)(3, 6)(4, 5) (1, 3)(2, 5) (1, 5, 4, 2, 3, 6)

D6 (1, 5, 4, 2, 3, 6) (3, 4)(5, 6) (1, 6)(2, 4)(3, 5)

D6 (1, 5, 4, 2, 3, 6) (1, 2)(3, 6)(4, 5) (1, 4)(2, 6)

F18(6) (2, 4, 6) (1, 2)(3, 4)(5, 6) (1, 2, 3, 4, 5, 6)

F18(6) (1, 2, 3, 4, 5, 6) (1, 2)(3, 4)(5, 6) (2, 4, 6)

2A4(6) (1, 2, 3)(4, 5, 6) (3, 6) (1, 2, 6, 4, 5, 3)

2A4(6) (1, 2, 3, 4, 5, 6) (3, 6) (1, 2, 6)(3, 4, 5)

2A4(6) (1, 2, 3, 4, 5, 6) (2, 5)(3, 6) (1, 5, 3, 4, 2, 6)

S4(6c) (2, 3, 5, 6) (1, 2)(3, 6)(4, 5) (1, 2, 6)(3, 4, 5)

S4(6d) (3, 5, 4, 6) (1, 3)(2, 4)(5, 6) (1, 3, 6)(2, 4, 5)

2F18(6) (1, 2, 3, 4, 5, 6) (3, 5)(4, 6) (1, 2, 5, 4, 3, 6)

2S4(6) (3, 5, 4, 6) (1, 3)(2, 4) (1, 3, 5, 2, 4, 6)

2S4(6) (1, 2)(3, 5, 4, 6) (1, 3)(2, 4)(5, 6) (1, 4, 5, 2, 3, 6)

Table 6.3: Permutation assignments that give rise to the index 6 subgroups of
Γ0(∞, 2, 6).
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Γ0(∞, 2, 6) π(Q′P ′) π(R′P ′) π(Q′R′)

A5(6) (2, 3, 5, 6, 4) (1, 2)(3, 4) (1, 2, 4)(3, 5, 6)

2F36(6) (1, 4)(2, 5, 3, 6) (4, 5) (1, 5, 3, 6, 2, 4)

2F36(6) (1, 4)(2, 5, 3, 6) (1, 5)(2, 4)(3, 6) (1, 2)(4, 5, 6)

S5(6) (3, 4, 5, 6) (1, 3)(2, 6) (1, 3, 4, 5, 2, 6)

S5(6) (2, 3, 6, 4, 5) (1, 2)(3, 4)(5, 6) (1, 2, 4, 6, 3, 5)

S5(6) (1, 2, 3, 5, 6, 4) (2, 5)(3, 4) (1, 5, 6, 3, 2, 4)

S6 (2, 3)(4, 5, 6) (1, 2)(3, 4) (1, 2, 4, 5, 6, 3)

S6 (2, 3)(4, 5, 6) (1, 4)(3, 5) (1, 4, 3, 2, 5, 6)

S6 (2, 3)(4, 5, 6) (1, 4)(3, 6) (1, 4, 5, 3, 2, 6)

S6 (2, 3, 4, 5, 6) (1, 2) (1, 2, 3, 4, 5, 6)

S6 (2, 3, 4, 5, 6) (1, 2)(3, 6)(4, 5) (1, 2, 6)(3, 5)

S6 (1, 2, 3, 4, 5, 6) (3, 6)(4, 5) (1, 2, 6)(3, 5)

S6 (1, 2, 3, 4, 5, 6) (2, 3)(4, 6) (1, 3, 6)(4, 5)

S6 (1, 2, 3, 4, 5, 6) (2, 4)(5, 6) (1, 4, 6)(2, 3)

Table 6.4: Permutation assignments that give rise to the index 6 subgroups of
Γ0(∞, 2, 6).
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Γ0(∞, 2, 4) π(Q′P ′) π(R′P ′) π(Q′R′)

D4 (34) (13)(24) (1324)

D4 (13)(24) (34) (1423)

D4 (1324) (34) (14)(23)

D4 (1324) (13)(24) (34)

K4 (12)(34) (13)(24) (14)(23)

S4 (234) (12) (1234)

C4 (1234) () (1234)

C4 (1234) (13)(24) (1432)

Table 6.5: Permutation assignments that give rise to the index 4 subgroups of
Γ0(∞, 2, 4).



Chapter 7

CONCLUSION AND OUTLOOK

In this study, we have presented a method for characterizing the subgroups of

the Coxeter group Γ and its subgroups, where Γ is generated by reflections in

the hyperplanes containing the sides of a Coxeter polytope D.

The approach that we employ is geometric in nature, and uses tools in

color symmetry theory. In determining the index n subgroups of a subgroup Λ

of Γ, we constructed Λ-transitive n-colorings of the Λ-orbit of D. Most of the

information pertaining to the subgroups rely on the algebraic structure of π(Λ),

where π is the homomorphism that results from the action of Λ on the set of

colors in the Λ-orbit of D. The computations are aided by the GAP4 routines

TranSub, Coloring, Sieve and ListSG.

The process that we provide to come up with a particular subgroup Ω of

Λ includes arriving at a generating set for Ω. We also develop a method which

involves the construction of trees whose paths represent generators of Ω. The

explorations on the color permutation assignments to the generators of Λ that

give rise to subgroups of Λ led us to formulate the rules for the construction of

trees and allowed us to gain more insights on the nature of each subgroup. In
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fact, the other main result of this study which centers on determining whether a

subgroup Ω of Λ is torsion-free was largely motivated by such insights. We were

able to characterize color permutation assignments which give rise to torsion

free subgroups of Λ.

This study addresses the important problem of enumerating and charac-

terizing the subgroups of Coxeter groups and their subgroups. With the results

provided in this work, we are able to explore the subgroup structure of hyper-

bolic groups in higher dimension and derive higher index subgroups of Coxeter

groups and their subgroups. For example, we can continue the derivation of the

subgroups of Coxeter groups whose fundamental polytopes are simplices in Hd,

d = 5, 6, 7, 8, 9 and determine subgroups of hyperbolic groups in higher dimen-

sional space such as the quaternionic modular groups, and the higher dimen-

sional analogues of the modular and Picard groups. Moreover, it is now possible

to construct the subgroup lattice of Coxeter groups, such as that of the trian-

gle groups, which is essential in the study of crystal nets. It is suggested that

the method and algorithm given here be implemented on a high performance

computing system to accommodate these calculations.

The method and results given here pertaining to the derivation of sub-

groups of Coxeter groups and their subgroups will also provide a springboard in

studying the subgroup structure of other classes of symmetry groups in hyper-

bolic space.
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In recent years, the geometrical interest in the study of torsion-free sub-

groups of Coxeter groups and their subgroups is in manifold theory. Having

established means to identify torsion-free subgroups of Coxeter groups, it would

be interesting to explore its applications in the construction of manifolds. For

example, the torsion-free subgroups of finite index in the Picard group are the

fundamental groups of hyperbolic 3-manifolds.

The types of torsion-free crystallographic groups in Euclidean space (known

as Bieberbach groups) up to dimension 6 have already been classified [9]. As a

continuation of the study on the theory of Bieberbach groups, it will be interest-

ing to know the isomorphism types of such groups in dimension greater than 6.

We also hope to generalize the results we present here on torsion-free subgroups

to allow us to apply it to a larger class of crystallographic groups.



Appendix A

GAP4 ROUTINE: TranSub



Appendix B

GAP4 ROUTINE: Coloring
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Appendix C

GAP4 ROUTINE: Sieve
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Appendix D

GAP4 ROUTINE: ListSG
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formationen gegebenen regulären Gebietseintheilungen des Raumes, Ber.
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