
SELF-DUAL SUBSTITUTIONS IN SMALL DIMENSIONS

VALÉRIE BERTHÉ AND DIRK FRETTLÖH

Abstract. There are several notions of the ’dual’ of a word/tile substitution. We show that
the most common ones are equivalent for substitutions in dimension one, where we restrict
ourselves to the case of two letters/tiles. Furthermore, we obtain necessary and sufficient
conditions for substitutions being selfdual in this case.
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1. Introduction

Substitutions are simple but powerful tools to generate a large number of nonperiodic struc-
tures with a high degree of order. Examples include infinite words (e.g., the Thue Morse
sequence), infinite tilings (e.g., Penrose tilings) and discrete point sets (e.g., models of atomic
positions in quasicrystals). Here we consider several instances of the concept of substitutions:

(a) word substitutions
(b) endomorphisms of the free group F2 = 〈a, b|∅〉
(c) tile-substitutions
(d) dual maps of substitutions

Each of the concepts above gave rise to the concept of a dual substitution. Our first goal
is to show the full equivalence of the distinct concepts of dual substitution in the contexts
above for the case of two letters (tiles,...) in dimension one. Thus we will exclusively study
substitutions on two letters (tiles, ...), and for the sake of clarity, we will define every term
for this special case only.

Let us mention that there is a wealth of results for symbolic substitutions on two letters, thus
for tile-substitutions in R1 with two tiles. For a start see [15] and references therein. The
following theorem lists some interesting results which emerged in the work of many authors
during the last decades.

Theorem 1.1. Let σ be a primitive symbolic substitution on two letters. Let Xσ be the
associated hull. Then the following are equivalent:

(1) Each biinfinite word u ∈ Xσ is Sturmian, i.e., u contains exactly n+1 different words
of length n for all n ∈ N.

(2) The endomorphism σ : F2 → F2 is invertible, i.e., σ ∈ Aut(F2).
(3) Each tiling generated by σ is a cut-and-project tiling which window is an interval.
(4) There is k ≥ 1 such that the substitution σk is conjugate to Ga1G̃a2Ga3 · · · G̃ak , where

k, ai ∈ N ∪ {0}, G : a→ a, b→ ab, G̃ : a→ a, b→ ba.

The equivalence of (2) and (4) follows from [22]. The equivalence of (2) and (3) appears
in [10] and relies on earlier results, see references in [10]. The equivalence of (1) and (3) is
somehow folklore, see for instance [15], or Section 2.3 below.

2. Word substitutions

2.1. Basic definitions. Let A = {a, b} be an alphabet, let A∗ be the set of all finite words
over A, and let AZ = {(ui)i∈Z |ui ∈ A} be the set of all biinfinite words overA. A substitution
σ is a map from A to A? \ {ε}, where ε denotes the empty word. By concatenation, a
substitution extends to a map from A? to A?, and to a map from AZ to AZ. Thus a
substitution can be iterated. For instance, consider the Fibonacci substitution

(1) σ : A → A?, σ(a) = ab, σ(b) = a.

We abbreviate this long notation by σ : a→ ab, b→ a. Then, σ(a) = ab, σ2(a) = σ(σ(a)) =
σ(ab) = σ(a)σ(b) = aba, σ3(a) = abaab, and so on. In order to rule out certain non-interesting
cases, for instance E : a 7→ b, b 7→ a, that just exchanges letters a and b, the following definition
is useful.
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Definition 2.1. Let σ be a substitution defined on A. The substitution matrix Mσ ∈ N2×2

associated with σ is defined as its Abelianisation , i.e.,

(Mσ) = (|σ(j)|i)1≤i,j≤2,

where |w|i stands for the number of occurrences of the letter i of w. Furthermore, the length
of w is denoted by |w|.
A substitution σ on A is called primitive, if Mn

σ > 0 for some n ∈ N.
A substitution σ is called unimodular if its substitution matrix Mσ has determinant 1 or −1.

In the sequel, we will consider unimodular primitive substitutions only. The requirement of
primitivity is a common one, essentially this rules out some pathological cases. The require-
ment of unimodularity is a restriction which we use because we will focus on the case where
the substitution is invertible. Actually we will focus on biinfinite words that are preserved
by some unimodular primitive two-letter substitution σ, that is, biinfinite words u ∈ AZ such
that σ(u) = u. It is easy to see that for non-primitive substitutions, such a fixed word can only
attain simple forms like . . . aaa.aaa . . . or . . . bbb.aaa . . .. In contrast, primitive substitutions
yield a wealth of biinfinite words.

Since we will consider fixed points of a substitution, it is beneficial to consider the set

(2) Xσ = {u | each subword of u is a subword of σn(a) or σn(b) for somen}.
We will call Xσ the hull of the substitution σ.

Remark 2.2. For any substitution σ and for all n ≥ 1 holds: Xσn = Xσ [15].

In contrast, the hull Xu of a biinfinite word u is defined as the closure of the orbit {w | ∃k ∈
Z, ∀i ∈ Z : wi = ui+k } of u in a certain topology, see [15]. For primitive substitutions, it is
easy to see that Xu = Xσ for all u ∈ Xσ, hence the two meanings of the term hull coincide in
our context:

Proposition 2.3. For a primitive substitution σ, Xσ is determined by each u ∈ Xσ uniquely.

Let σ be a primitive substitution. By Perron Frobenius’ Theorem, its substitution matrix
Mσ admits a dominant eigenvalue λ > 1. We call it substitution factor. Let α ∈ (0, 1) such
that the vector (1 − α, α) is equal to the eigenvector of Mσ associated with the eigenvalueλ
normalised so that the sum of its coordinates equals 1. The number α is called frequency of
the substitution. Indeed, every biinfinite word in Xσ has well defined letter frequencies which
are equal respectively to 1− α and α [16].

2.2. Substitutions as endomorphisms of F2. Naturally, any word substitution on A
gives rise to an endomorphism σ of F2, the free group on two letters. (Note that not
every endomorphism of F2 gives rise to a proper word substitution, consider for instance
σ : a→ ab−1, b→ b−1). If this endomorphism σ happens to be an automorphism, then σ is
said to be invertible.

It is well-known that the set of invertible word substitutions on a two-letter alphabet is a
monoid, with one set of generators being

E : a 7→ b, b 7→ a, G : a 7→ a, b 7→ ab, G̃ : a 7→ a, b 7→ ba.

For references, see [22] and Chap. 2 in [11].
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We say that two given substitutions σ and σ′, σ′ are conjugate, if for some word w ∈ {a, b}∗,
one has either σ(a)w = wσ′(a), σ(b)w = wσ′(b) or σ′(a)w = wσ(a), σ′(b)w = wσ(b). One
checks easily that σ and σ′ are conjugate if and only if σ = ϕσ′ for some inner automorphism
ϕ of F2.

Let us note that we can extend the notion of substitution matrix to endomorphisms of the
free group by taking here again the Abelianisation. Let σ be an endomorphism of the free
group on two letters F2 over the alphabet {a, b}. The (i, j)-entry of the substitution matrix
Mσ ∈ Z2×2 associated with σ is defined as the number of occurrences of the letter i in σ(j)
minus the number of occurrences of the letter i−1 in σ(j), where i, j ∈ {a, b}.
Recall the following theorem of Nielsen [14]: given two automorphisms σ and σ′ of the free
group F2, they have the same substitution matrix if and only if σ = ϕσ′ for some inner
automorphism of F2. We thus conclude in terms of substitutions (see [18] for a combinatorial
proof):

Theorem 2.4. Given two invertible substitutions σ and σ′, they are conjugate if and only if
they have the same substitution matrix.

2.3. Sturmian words. Sturmian words are infinite words over a binary alphabet that have
exactly n + 1 factors of length n for every positive integer n. Sturmian words can also be
defined in a constructive way as follows. Let 0 < α < 1. Let T1 = R/Z denote the one-
dimensional torus. The rotation of angle α of T1 is defined by Rα : T1 → T1, x 7→ x+α. For
a given real number α, we introduce the following two partitions of T1:

Ia = [0, 1− α), Ib = [1− α, 1); Ia = (0, 1− α], Ib = (1− α, 1].

Tracing the two-sided orbit of Rn
α(%), we define two biinfinite words for % ∈ T1:

sα,%(n) =
{
a if Rn

α(%) ∈ I1,
b if Rn

α(%) ∈ I2,

sα,%(n) =
{
a if Rn

α(%) ∈ I1,
b if Rn

α(%) ∈ I2.

It is well known ([6, 13]) that a biinfinite word is a Sturmian word if and only if it is equal
either to sα,% or to sα,% for some irrational number α. The word sα,% is called lower Sturmian
word whereas the word sα,% is called upper Sturmian word. The notation cα stands in all
that follows for sα,α = sα,α. This particular Sturmian word is called characteristic word. A
detailed description of Sturmian words can be found in Chapter 2 of [11], see also [15].

Note that frequently Sturmian words are defined as one-sided infinite words. For our purposes
it is rather natural to consider biinfinite Sturmian words.

Example 2.5. The Fibonacci sequences arising from the Fibonacci substitution (1) are Stur-
mian words with parameter α =

√
5+1
2 .

3. Tile-substitutions

3.1. Substitution tilings. Rather than substituting symbolic objects, like word substitu-
tions, tile-substitutions replace geometric objects (tiles) by larger geometric objects (collec-
tions of tiles). A tiling of Rd is a collection (t1, t2, . . .) of compact sets ti, such that the union



SELF-DUAL SUBSTITUTIONS IN SMALL DIMENSIONS 5

⋃
ti is Rd and the interiors of the tiles a pairwise disjoint. Whereas in R1 there is a natural

correspondence between biinfinite words and tilings (just assign to each letter an interval of
specified length), in higher dimensions tilings show a richer structure. One motivation to
study tilings is that they can serve as models for quasicrystals (for instance Penrose tilings,
see [2]). One aim of this paper is to connect the theories of nonperiodic tilings to the theory
of combinatorics of words.

As in the case of biinfinite words, substitutions are a powerful method to generate interesting
tilings. In general, a tile-substitution in Rd is given by a set of prototiles T1, . . . , Tm ⊂ Rd, a
substitution factor λ > 1, and a rule how to dissect each expanded prototile λTj into isometric
copies of some prototiles Ti. Here, we restrict ourselves to two prototiles. Moreover, we want
to consider tilings of the line only. (For the discussion of analogues of some results of the
present paper for the case of plane tilings, see [8]). The precise definition of a tile-substitution
in Rd goes as follows.

Definition 3.1. A (self-similar) tile-substitution in Rd is defined via a set of prototiles and
a map σ. Let T1, T2, . . . Tm be nonempty compact sets — the prototiles — in Rd, such that
the closure of the interior of each Ti is Ti itself. Let

(3) λTj =
m⋃

i=1

Ti +Dij (1 ≤ j ≤ m),

where the union is not overlapping (i.e., the interiors of the tiles in the union are pairwise
disjoint); and each Dij is a finite (possibly empty) subset of Rd, called digit set. Then

σ(Tj) := {Ti +Dij | i = 1 . . .m}
is called a tile-substitution.

By σ(Tj + x) := σ(Tj) + λx and σ({T, T ′}) := {σ(T ), σ(T ′)}, σ extends in a natural way to
all sets {Ti(k) + xk}k∈I .

Example 3.2. Consider the square of the Fibonacci substitution from Equation (1): σ2 :
a → aba, b → ab. We will realize it as a tiling by assigning the unit interval to the letter
b and the longer interval [0, τ ] to the letter a, where τ =

√
5+1
2 , see Figure 1. So, let T1 =

[0, τ ], T2 = [0, 1]. Then τ2T1 = [0, 2τ + 1], τ2T2 = [0, τ + 1], thus

τ2T1 = T1 ·∪ T2 + τ ·∪ T1 + τ + 1; τ2T2 = T1 ·∪ T2 + τ,

where A ·∪B denotes the union of A and B where the interiors of A and B are disjoint.
Therefore the last equation yields a tile-substitution %:

%(T1) = {T1, T2 + τ, T1 + τ + 1}, σ(T2) = {T1, T2 + τ}.
For an illustration of this substitution, see Figure 1. It corresponds to the squared Fibonacci
substitution σ2, compare (1). This substitution % can be encoded in the digit sets D1,1 =
{0, τ + 1},D2,1 = {τ},D1,2 = {0},D2,2 = {τ}. This can be written conveniently as a digit set
matrix:

(4) D =
({0, τ + 1} {0}

{τ} {τ}
)
.

By comparison with 2.1 we note that we can derive the substitution matrix from the digit set
matrix simply as follows: Mσ = (|Dij |)1≤i,j≤2.



6 V. BERTHÉ AND D. FRETTLÖH

T2

T1

Figure 1. The Fibonacci tile-substitution σ (box top left), some iterates of
σ on T2, and the generation of a Fibonacci tiling as a cut-and-project tiling
(right). The interval W defines a horizontal strip, all lattice points within this
strip are projected down to the line.

Remark 3.3. Any self-similar tile-substitution is uniquely defined by its digit set matrix D.

This holds because one can derive the substitution factor λ and the prototiles Ti from the
digit set matrix D. This is not only true for two tiles in one dimension, but for any self-similar
tile-substitution in Rd. For details, see [8]. Here we just mention two facts: the substitution
factor λ is the larger eigenvalue of the substitution matrix Mσ = (|Dij |)ij . And the prototiles
are the unique compact solution of the multi component IFS (iterated function system) which
is obtained by dividing (3) by λ.

In analogy to word substitutions, we want to deal with the space Xσ of all substitution tilings
arising from a given tile-substitution.

Definition 3.4. Let σ be a primitive tile-substitution with prototiles T1, T2. The tiling space
Xσ is the set of all tilings T , such that each finite patch of T is contained in some translate
of σn(T1) or σn(T2).

3.2. Cut and project tilings. Certain substitution tilings can be obtained by a cut and
project method. There is a large number of results about such cut and project sets, or model
sets, see [12] and references therein. In our setting, it is pretty simple to explain, compare
Figure 1. Let G = H = R, let π1 : R2 → G, π2 : R2 → H be the canonical projections, and
let Λ be a lattice in R2, such that π1 : Λ → G is one-to-one, and π2(Λ) is dense in H. Then,
choose some compact set W ⊂ H, and let

V = {π1(x) |x ∈ Λ, π2(x) ∈W}.
Then V is a cut and project set (or model set). Since V is a discrete point set in R = G, it
induces a partition of R into intervals. Regarding these (closed) intervals yields a tiling of R.
Such a tiling is called cut and project tiling.

Given a substitution σ which is known to yield cut and project tilings, one can construct
Λ and W out of σ in a standard way. In general, Λ and W are not unique. The following
construction has the advantage that everything can be expressed in some algebraic number
field, which allows the use of algebraic tools. For clarity, we explain the construction for the
case of G = H = R only.

Start with a symbolic substitution σ. Consider the substitution matrix Mσ with eigenvalues
λ > λ′ /∈ Z. Since Mσ is an integer matrix, λ is an quadratic irrational. (The case where λ
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is an integer requires that the internal space H is non Euclidean, see [3], citesing2). Since
our substitutions will always be unimodular in the sequel, this case cannot occur here.) Let(

1
`

)
be the left eigenvector to the larger eigenvalue λ. It is known (and easy to see) that

this eigenvector yields the ’natural’ lengths of the prototiles. Thus let T1 = [0, 1], T2 = [0, `].
Since λ is a quadratic irrational, ` is of the form α + β

√
k, where k is a square-free integer,

α, β ∈ Z (respectively α, β ∈ 1
Z , α + β ∈ Z, if k ∼= 1 mod 4). Now, let Λ = 〈( 1

1

)
,
(

`
`′

)〉Z,
where `′ denotes the algebraic conjugate α− β

√
k of λ.

Now, consider the set V of endpoints of the intervals in a tiling in Xσ. Wlog, let one endpoint
be 0. Then all other endpoints are of the form a+ b` ∈ Z[`]. Now, let

Λ = 〈v, w〉, where v =
(

1
1

)
, w =

(
`
`′

)
.

Any point a+ b` ∈ V has a unique preimage in Λ, namely, av + bw. Thus, each point a+ b`
in V has a unique counterpart in the internal space H, namely π2 ◦ π−1

1 (a + b`) = a + b`′.
The window W is now obtained as the closure of π2 ◦ π−1

1 (V ). The fact that V is a cut and
project tiling guarantees that W is indeed compact. The map π2 ◦ π−1

1 can be conveniently
abbreviated by ?. For instance, we may write shortly W = cl(V ?). In our case, the star map
is just mapping an element of Z[`] to its Galois dual.

Now we can define the star-dual of a tile-substitution. In our framework, this is exactly
the same as Thurston’s Galois dual substitution, see [20], [21]. In general, star-duality is a
generalization of Galois duality [8]. Recall that any self-similar tile-substitution is uniquely
defined by its digit set matrix D (Remark 3.3). The star-dual substitution of a self-similar
cut and project tiling is obtained by applying the star map to DT .

Definition 3.5. Let σ be a self-similar substitution yielding cut and project tilings, with digit
set matrix (Dij)ij. Then the star-dual substitution of σ is the unique substitution defined by
(D?

ij)
T
ij.

Here A? means the application of the star map to each element of A ∈ Z[λ]. This definition
together with Definition 3.4 defines the star-dual tiling space Xσ? .

Example 3.6. The star-dual of the squared Fibonacci substitution in Example 5.5 is easily
obtained by applying the star map to the transpose of the digit set matrix in (4). We obtain

(DT )? =
({0, 1− τ−1} {−τ−1}

{0} {−τ−1}
)
.

4. Dual maps of substitutions

4.1. Generalized substitutions. We follow here the formalism introduced in [1, 17] defined
originally on a d-letter alphabet. We restrict ourselves here to the case d = 2. Let A be the
finite alphabet {a, b}.
We denote by L the Abelianisation map from A∗ to Z2: if w is a word in A∗, then L(w) is
the vector that counts the number of occurrence of each letter in w, i.e., L : A∗ → Z2, w 7→
(|w|a, |w|b). There is an obvious commutative diagram, where Mσ stands for the substitution
matrix of σ:
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A∗ σ−→ A∗
L ↓ ↓ L
Z2 Mσ−→ Z2.

Finite strand. Let (ea, eb) stand for the canonical basis of R2. It is natural to associate with
each finite word w = w1w2 . . . wn on the two-letter alphabet A a path in the two-dimensional
space, starting from 0 and ending in L(w), with vertices in L(w1 . . . wi) for i = 1 . . . n: we
start from 0, advance by ~ei if the first letter is i, and so on.

More generally, we define the notion of strand by following the formalism of [4]. A finite strand
is a subset of R2 defined as the image by a piecewise isometric map γ : [i, j] → R2, where
i, j ∈ Z, which satisfies the following: for any integer k ∈ [a, b), there is a letter x ∈ {a, b}
such that γ(k + 1) − γ(k) = ex. If we replace [i, j] by Z, we get the notion of biinfinite
strand. A strand is thus a connected union of segments with integer vertices which projects
orthogonally in a one-to-one way on the line x = y. The path associated with a finite word
w such as defined in the previous paragraph is a finite strand.

Any biinfinite strand defines a biinfinite word w = (wk)k∈Z ∈ {a, b}Z that satisfies γ(k +
1)− γ(k) = ewk

. The corresponding map which sends biinfinite strands on biinfinite words is
called strand coding.

This allows us to define a map on strands, coming from the substitution, by taking the strand
for w to the strand for σ(w). In fact, this map can be made in a linear map, in the following
way. Let σ be a substitution on A. We will take the notation for i ∈ {a, b}

σ(i) = w(i) = w
(i)
1 . . . w

(i)
li

= p(i)
n w(i)

n s(i)n ,

for 1 ≤ n ≤ li, where li is the length of σ(i), p(i)
n is the prefix of length n−1 of σ(i) (the empty

word for n = 1), and s(i)n is the suffix of length li − n of σ(i) (the empty word for n = li).

Definition 4.1. We denote by (W, i) ∈ Z2 × A an elementary strand (that is, a segment
from W to W + ei); we denote by G the real vector space of formal finite weighted sums of
elementary strands. Let E1(σ) be the linear map defined on G by:

E1(σ)(W, i) =
li∑

n=1

((Mσ.W + L(p(i)
n ), w(i)

n ).

We call E1(σ) one-dimensional extension of σ,

It is easily checked that this formula is such that σ takes the finite strand corresponding to a
word w to the finite strand corresponding to σ(w).

Definition 4.2. Let σ be a primitive substitution. The strand space Xσ is the set of bi-
infinite strands η such that each finite substrand ξ of η is a substrand of some E1(σ)n(W,x),
for W ∈ Z2, n ∈ N and x ∈ {a, b}.

4.2. Dual maps. From now on, we suppose that σ is a unimodular substitution. Upon
considering the square of σ, we will often take as assumption that σ has determinant +1.
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We want to study the dual map E∗1(σ) of E1(σ), as a linear map on G. We thus denote by
G∗ the space of dual maps with finite support (that is, dual maps that give value 0 to all but
a finite number of the vectors of the canonical basis).

The space G∗ has a natural basis (W, i∗), for i = a, b, defined as the map that gives value 1
to (W, i) and 0 to all other elements of G. It is possible to give a geometric meaning to this
dual space: for i = a, b, we represent the element (W, i∗) by the finite strand defined as the
lower face perpendicular to the direction ~ei of the unit square with lowest vertex W .

The map E1(σ) has a dual map, which is easily computed:

Theorem 4.3. [1] Let σ be a unimodular substitution. The dual map E∗1(σ) is defined on G∗
by

E∗1(σ)(W, i∗) =
∑

n,j:w
(j)
n =i

(
M−1

σ (W + L(s(j)n )), j∗
)
.

Furthermore, if τ is also a unimodular substitution, then

E∗1(σ ◦ τ) = E∗1(τ) ◦ E∗1(σ).

Example 4.4. Let G : a 7→ a, b 7→ ab. One has MG

(
1 1
0 1

)
and M−1

G =
(

1 −1
0 1

)
. We

deduce that
{
E1(G)∗(0, a)∗ = (0, a)∗ + (−ea + eb, b)∗
E1(G)∗(0, b)∗ = (0, b)∗.

Let G̃ : a 7→ a, b 7→ ba. One has MG = MG̃. Hence
{
E1(G̃)∗(0, a)∗ = (0, a)∗ + (0, b)∗

E1(G̃)∗(0, b)∗ = (ea, b)∗.

Let E : a 7→ b, b 7→ a. One has ME

(
0 1
1 0

)
and M−1

E =
(

0 1
1 0

)
. We thus get

{
E1(E)∗(0, a)∗ = (0, b∗)
E1(E)∗(0, b)∗ = (0, a)∗.

To be more precise, the map E∗1(σ) is defined in [1] with −L(p(j)
n ) instead of L(s(j)n ), whereas,

for i = a, b, the element (W, i∗) is represented by the finite strand defined as the upper face
perpendicular to the direction ~ei of the unit square with lowest vertex W . Nevertheless, an
easy computation shows that both formula coincide.

Dual strands. We can also define a notion of strand associated with this dual formalism.
A finite dual strand is a subset of R2 defined as the image by a piecewise isometric map
γ : [i, j] → R2, where i, j ∈ Z, which satisfies the following: for any integer k ∈ [a, b), there is
a letter x ∈ {a, b} such that

γ(k + 1)− γ(k) = ex if x = a, γ(k + 1)− γ(k) = −ex, otherwise.

If we replace [i, j] by Z, we get the notion of biinfinite dual strand. Any biinfinite dual strand
defines a biinfinite word (wk)k∈Z ∈ {a, b}Z that satisfies γ(k+ 1)− γ(k) = ewk

. Similarly, any
finite dual strand s defines a finite word w as follows: let γ be a piecewise isometric map
γ : [i, j] → R2, where i, j ∈ Z, whose image equals s which satisfies for any integer k ∈ [a, b),
there is a letter x ∈ {a, b} such that γ(k + 1) − γ(k) = ex if x = a, γ(k + 1) − γ(k) =
−ex, otherwise. We set w1 = γ(i+ 1)− γ(i), · · · , wj−i = γ(j)− γ(j− 1). This definition does
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not depend on the choice of γ. The map ψ∗ that sends finite dual strands on words in A∗ is
called dual coding.

Theorem 4.5. [1] Let τ be a unimodular substitution. The map E∗1(τ) maps any finite
substrand of Sα on a finite substrand of Sα. Furthermore, if (V, i∗) and (W, j∗) are two
distinct segments included in some Sα, for α ∈ (0, 1), then their images by E∗1(τ) have disjoint
interiors.

Finite dual substrands of Sα are preserved under the action of an invertible two-letter sub-
stitution (a different proof of this result can be found in [7]):

Proposition 4.6. Let σ be a two-letter substitution. The map E∗1(σ) maps every finite strand
onto a finite strand if and only if σ is invertible.

Proof. We first check that the the generators E,G, G̃ of the monoid of invertible two-letter
substitutions map every finite dual strand made of two adjacent segments onto a finite dual
strand (see also Figure ???):



E∗1(G)((x, a∗) + (x, b∗)) = (0, a∗) + (0, b∗) + (−ea + eb, b
∗)

E∗1(G)((x, a∗) + (x+ eb, a
∗)) = (0, a∗) + (−ea + eb, a

∗) + (−ea + eb, b
∗) + (−2ea + 2eb, b∗)

E∗1(G)((x, b∗) + (x+ ea, b
∗)) = (0, b∗) + (ea, b∗)

E∗1(G)((x, b∗) + (x+ ea − eb, a
∗)) = (0, b∗) + (ea, b∗) + (2ea − eb, a

∗).




E∗1(G)((x, a∗) + (x, b∗)) = (0, a∗) + (0, b∗) + (−ea + eb, b
∗

E∗1(G)((x, a∗) + (x+ eb, a
∗)) = ((0, a∗) + (0, b∗) + (−ea + eb, a

∗) + (−ea + eb, b
∗)

E∗1(G)((x, b∗) + (x+ ea, b
∗)) = (ea, b∗) + (2ea, b∗)

E∗1(G)((x, b∗) + (x+ ea − eb, a
∗)) = (ea, b∗) + (2ea − eb, a

∗) + (2ea − eb, b
∗).





E∗1(E)((x, a∗) + (x, b∗)) = (0, a∗) + (0, b∗)
E∗1(E)((x, a∗) + (x+ eb, a

∗)) = ((0, b∗) + (ea, b∗)
E∗1(E)((x, b∗) + (x+ ea, b

∗)) = (0, a∗) + (eb, a∗)
E∗1(E)((x, b∗) + (x+ ea − eb, a

∗)) = (0, a∗) + (−ea + eb, b
∗).

Hence the generators map finite dual strands onto connected unions of unit segments with
integer vertices. It remains to check that these unions are indeed dual strands. This is
a consequence of Theorem 4.5 since they all are substrands of Sα. We deduce that the
generators map finite dual strands onto finite dual strands.

Let τ be a two-letter substitution that maps every finite dual strand onto a finite dual one.
Now, if σ = τ ◦G, then we deduce from E∗1(τ) = E∗1(G)◦E∗1(τ), that the map E∗1(σ) also maps
every finite dual strand onto a connected union of unit segments, and hence by Theorem 4.5,
one a finite dual strand. The same holds true for the other generators. We thus conclude by
induction on the length of a decomposition on the generators E,G, G̃. ¤

We now can introduce the notion of dual strand space:

Definition 4.7. Let σ be a primitive invertible substitution over a two-letter alphabet. The
dual strand space X∗

σ is the set of bi-infinite strands η such that each finite substrand ξ of η
is a substrand of some E∗1(σ)n(W,x∗), for W ∈ Z2, n ∈ N and x ∈ {a, b}.
Definition 4.8. Let σ be a primitive invertible substitution over a two-letter alphabet. The
dual substitution σ∗ is defined on the alphabet {a, b} as

σ∗(x) = ψ∗(E∗1(σ)(0, x∗)) for x = a, b.
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The dual frequency of α∗ of σ is defined as the frequency of σ.

Let us observe that the substitution matrix of σ∗ is the transpose of the substitution matrix
of σ. Hence the dual substitution factor λ∗ of σ is equal to the substitution factor of σ.

Example 4.9. One has (G∗) : a 7→ ba, b 7→ b, (G̃∗) : a 7→ ab, b 7→ b and E∗ : a 7→ b, b 7→ a.

Theorem 4.10. Let σ be a primitive invertible substitution over a two-letter alphabet. The
dual of σ is invertible. Furthermore, σ is conjugate to the substitution τ if and only if σ∗ is
conjugate to τ∗.

Proof. Consider G ◦ τ . Recall that
{
E1(G)∗(0, a)∗ = (0, a)∗ + (−ea + eb, b)∗
E1(G)∗(0, b)∗ = (0, b)∗.

One has
E∗1(σ) ◦E∗1(G)(0, a∗) = E∗1(σ)(0, a)∗ + E∗1(σ)(−ea + eb, b

∗).

The dual strands E∗1(σ)(0, a)∗ and E∗1(σ)(−ea +eb, b
∗) have disjoint interiors by Theorem 4.5.

Furthermore, E∗1(σ)(−ea + eb, b
∗) is located of the left of E∗1(σ)(0, a)∗. Indeed we recall that

λ is the maximal eigenvalue of Mσ. Its algebraic conjugate λ′ is also an eigenvalue of Mσ. By
Perron-Frobenius’ theorem, we have λ > 1. Now λλ′ = detMσ = 1 implies 0 < λ′.

We thus deduce that for x = a, b

ψ∗(E∗1(σ) ◦E∗1(G)(0, x∗)) = ψ∗(E∗1(G ◦ σ)(0, x∗)).

The same holds for G̃ and E.

One checks that G∗ , G̃∗, and E∗ (see Example 4.9) are invertible substitutions. We conclude
here again by induction.

Now σ is conjugate to τ if and only if σ and τ have the same substitution matrix, which is
also equivalent to σ∗ and τ∗ having the same substitution matrix (by transposition), and thus
to σ∗ and τ∗ being conjugate by Theorem 2.4. ¤

4.3. Arithmetic duality. Let us now express the notion of duality in terms of continued
fraction expansion.

Theorem 4.11. Let σ be a primitive invertible substitution over {a, b}. The continued frac-
tion expansion of the dual frequency α∗ of α satisfies

(1) If α < 1/2, then α = [0; 1 + n1, n2, · · · , nk, nk+1 + n1], with nk+1 ≥ 0 and n1 ≥ 1
• α∗ = [0; 1, nk+1, nk, · · · , n2, n1 + nk+1] if nk+1 ≥ 1
• α∗ = [0; 1, nk, · · · , n2, n1] otherwise.

(2) If α > 1/2, then α = [0; 1, n2, n3, · · · , nk−1, nk + n2], with nk ≥ 0 and α∗ = [0; 1 +
nk, nk−1, · · · , n3, n2 + nk].

Proof. We follow here the proof of Theorem 3.7 of [5] (see also the proof of Theorem 2.3.25
of [11]). We define

G : 0 7→ 0, 1 7→ 01, D : 0 7→ 10, 1 7→ 1, E : 0 7→ 1, 1 7→ 0.

Let α∗ = [0;m1,m2, · · · ]. One has σ(cα) = cα and σ∗(cα∗) = cα∗ .



12 V. BERTHÉ AND D. FRETTLÖH

One has G∗ = D and E∗ = E. The substitution σ can be decomposed as

σ = Gn1EGn2 · · ·EGnk+1 ,

with k ≥ 1, n1, nk+1 ≥ 0, n2, · · · , nk ≥ 1. One has

σ∗ = Dnk+1E · · ·EDn1 .

Furthermore G ◦ E = E ◦D, and D ◦ E = E ◦G. Let θm := Gm−1EG, for m ≥ 1. One has
θm(cα) = c1/(m+α). Furthermore, G(cα) = c 1

1+1/α
.

• We first assume n1 > 0. From D ◦ E = E ◦G, we deduce that

σ∗ = EGnk+1 · · ·EGn1E,

and thus

E ◦ σ∗ ◦E = Gnk+1E · · ·EGn1 = θ1+nk+1
θnk

· · · θn2G
n1−1.

Let 1− α∗ = [0;m′
1,m

′
2, · · · ]. From E ◦ σ∗ ◦ E(c1−α∗) = c1−α∗ , we deduce that

1− α∗ = [0; 1 + nk+1, nk, · · · , n1 − 1 +m′
1,m

′
2, · · · ],

and thus m′
1 = 1 +nk+1, m′

2 = nk, · · · ,m′
k+1 = n1 +nk+1, and m′

k+j = m′
j , for j ≥ 2.

We deduce that

1− α∗ = [0; 1 + nk+1, nk, · · · , n1 + nk+1].

We thus deduce that

α∗ = [0; 1, nk+1, nk, · · · , n2, n1 + nk+1] if nk+1 > 0

and that
α∗ = [0; 1, nk, · · · , n2, n1] if nk+1 = 0.

• We now assume n1 = 0. One has

σ∗ = Dnk+1E · · ·Dn2E = EGnk+1 · · ·EGn2 .

– We assume nk+1 > 0. Hence

σ∗ = θ1θnk+1
· · · θn3G

n2−1.

Consequently [0;m1,m2, · · · ] = [0; 1, nk+1, · · · , n3, n2 − 1 +m1,m2, · · · ]. We de-
duce that m1 = 1, m2 = nk+1, · · · ,mk = n3, mk+1 = n2, and mk+j = mj+1, for
j ≥ 1. We thus get

α∗ = [0; 1, nk+1, · · ·n3, n2].

– We now assume nk+1 = 0. One has

σ∗ = EDnkE · · ·Dn2E = GnkE · · ·EGn2 = θ1+nk
· · · θn3G

n2−1.

We deduce that [0;m1,m2, · · · ] = [0; 1+nk, · · · , n3, n2−1+m1,m2, · · · ] and thus

α∗ = [0; 1 + nk, nk−1, · · · , n3, n2 + nk].

In conclusion, we have proved that

(1) α∗ = [0; 1, nk+1, nk, · · · , n2, n1 + nk+1] if α = [0; 1 + n1, n2, · · · , nk, nk+1 + n1], with
n1 > 0 and nk+1 > 0.

(2) α∗ = [0; 1, nk, · · · , n2, n1] if α = [0; 1 + n1, n2, · · · , nk, n1].
(3) α∗ = [0; 1, nk+1, · · ·n3, n2] if α = [0; 1, n2, · · · , nk, nk+1].
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(4) α∗ = [0; 1 + nk, nk−1, · · · , n3, n2 + nk] if α = [0; 1, n2, n3, · · · , nk−1, nk + n2].

¤
Theorem 4.12. Let σ be a primitive two-letter invertible substitution. Let α be its frequency
and α′ its algebraic conjugate.

• Let α = [0; 1 + n1, n2, · · · , nk, nk+1 + n1], with nk+1 ≥ 0 and n1 ≥ 1. Then

α∗ =
α′

2α′ − 1
.

• Let α = [0; 1, n2, n3, · · · , nk−1, nk + n2], with nk ≥ 1. Then

α∗ =
1− α′

2α′ − 1
.

Proof. We first note that if γ = [a1, · · · , an], then −1/γ′ = [an, · · · , a1]:

• If α < 1/2, then α = [0; 1+n1, n2, · · · , nk, nk+1 + n1], with nk+1 ≥ 0 and n1 ≥ 1. Let

γ = [n2, · · · , nk, nk+1 + n1].

We have 1/α = 1 + n1 + 1/γ and 1/α′ = 1 + n1 + 1/γ′. One has

−1/γ′ = [nk+1 + n1, nk, · · · , n2].

We deduce that −(1/γ′ + n1 + nk+1) = [0;nk, · · · , n2, n1 + nk+1].
– If nk+1 ≥ 1, then α∗ = [0; 1, nk+1, nk, · · · , n2, n1 + nk+1]. We deduce that

α∗

1− α∗
= nk+1 − (1/γ′ + n1 + nk+1) = 1− 1/α′,

and thus

α∗ =
α′

2α′ − 1
.

– If nk+1 = 0, then α∗ = [0; 1, nk, · · · , n2, n1]. One has−(1/γ′+n1) = [0;nk, · · · , n2, n1].
We deduce that

1/α∗ = 1− 1/γ′ − n1 = 2− 1/α′

and thus

α∗ =
α′

2α′ − 1
.

• If α > 1/2, then α = [0; 1, n2, n3, · · · , nk−1, nk + n2], with nk ≥ 1. Let

γ = [n3, · · · , nk−1, nk + n2].

We have α
1−α = n2 + 1/γ and α′

1−α′ = n2 + 1/γ′. One has

−1/γ′ = [nk + n2, nk−1, · · · , n3].

We deduce that −(1/γ′ + nk + n2) = [0;nk−1, · · · , n3, n2 + nk].
One has α∗ = [0; 1 + nk, nk−1, · · · , n3, n2 + nk]. Hence

1/α′ = 1 + nk − (1/γ′ + nk + n2) = 1− α′

2α′ − 1
,

and thus

α∗ =
1− α′

2α′ − 1
.
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¤

5. Relations between distinct concepts of ’dual substitution’

Let us recall that two substitutions are said to be conjugate up to an inner automorphism of
F2: σ ∼ σ′, if there exists w ∈ A∗ such that for

x ∈ {a, b}, w−1σ(x)w = σ′(x).

5.1. Sturmian substitutions and rigidity. We would like to compare the various notions
of duality we have introduced so far. For that purpose we need to introduce several analogous
equivalence relations among hulls, tiling spaces etc. We first recall the classical rigidity result
for two-letter primitive substitutions (Theorem 5.1below).

The following result is due to P. Séébold [18], see also [9]. Here we provide an alternative and
simple proof.

Theorem 5.1. Let σ, σ′ be primitive invertible substitutions on the alphabet A = {a, b}.
Then, Xσ = Xσ′ if and only if there are k, n such that σk ∼ (σ′)m.

In plain words, this theorem states that two substitutions are conjugate (up to powers) if
and only if their hulls are equal. In even different words (compare Proposition 2.3): if u is a
biinfinite word obtained by a primitive substitution on two letters, where the substitution is
unknown, then u determines the substitution uniquely, up to conjugation and up to powers
of the substitution factor.

Corollary 5.2. Let σ, σ′ be primitive invertible substitutions on the alphabet A = {a, b} with
the same substitution factor. Then, σ ∼ σ′ if and only if Xσ = Xσ′. Furthermore, Xσ = Xσ′

if and only if σ and σ′ have the same density α.

Proof. First we prove that if σ ∼ σ′, then Xσ = Xσ′ .

Let σ ∼ σ′. This means there is w such that σ′(x) = w−1σ(a)w for x = a, b. Consequently, for
each finite word u = (u1, u2, . . . , un) holds σ′(u) = w−1σ(u1)ww−1σ(u2)ww−1 · · ·ww−1σ(un)w =
w−1σ(u)w, since each w but the leftmost one is cancelled by a w−1. Therefore, (σ′)n(u) =
w−nσn(u)wn for all u ∈ A∗, n ∈ N. Thus, any biinfinite word

⋃
k∈N σ

nk(u) which is a fixed
point of some σn is also a fixed point of (σ′)n. By the definition of equality for hulls, it follows
Xσ = Xσ′ .

For the other direction, we first note that if λ ∈ R\Q is the eigenvalue of a 2×2 integer matrix
M (so λ = a+ b

√
k ∈ Z[

√
k], k square-free), then the algebraic conjugate of λ, λ′ = a− b

√
k,

is the second eigenvalue of M . If v = (1, v2) is an eigenvalue of M corresponding to λ, then
v′ = (1, v′2), where v′2 denotes the algebraic conjugate of v2, is an eigenvector corresponding
to λ′. We then need the following lemma.

Lemma 5.3. Let M,M ′ be two primitive 2×2 matrices with the same pair of real eigenvalues
λ > λ′ and the same pair of eigenvectors v = (1, v2) and v′ = (1, v′2). Then M = M ′.

Proof. By assumption, there is A ∈ GL(2,R) such that A−1MA =
(

λ 0
0 λ′

)
. By elementary

linear algebra, the columns of A are eigenvectors of M . Therefore, A can be written as
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A = rÃ with Ã =
( 1 s

v2 sv′2

)
, r 6= 0 6= s. We obtain M = A

(
λ 0
0 λ′

)
A−1 = Ã

(
λ 0
0 λ′

)
Ã−1. A simple

computation yields M = 1
v2−v′2

( v2λ′−v′2λ λ−λ′

v2v′2(λ′−λ) v2λ−v′2λ′
)
, which is independent of r and s.

Let M ′ be another matrix with the same eigenvalues and the same eigenvectors. Then, the
above holds also for M ′. It follows M = M ′. ¤

Back to the proof of Theorem 5.1. Let σ, σ′ such that Xσ = Xσ′ . Let u ∈ Xσ. Let us recall
that the the vector of frequencies (fa, fb) of letters in u is an eigenvector of the (up to here
unknown) substitution matrix Mσ. In the normed eigenvector f−1

a (fa, fb) = (1, `) we have
` = a+ b

√
k, a, b ∈ Z (resp. a, b ∈ 1

2Z, a− b ∈ Z, if k ≡ 1 mod 4). Since σ is invertible, Mσ

is unimodular. The (up to here unknown) substitution factor λ is therefore a unit in Z[
√
k].

It is well known that the unit group of Z[
√
k] is generated by a fundamental unit z. (This is a

consequence of the fact that there is a fundamental unit for the solution of the corresponding
Pell’s equation, or a consequence of Dirichlet’s unit theorem, see for instance []). Thus λ is a
power of the generating element z. Let λ = zn, where n is arbitrary but fixed. By conjugacy,
we obtain the second eigenvalue, and the second eigenvector of Mσ. By the Lemma 5.3, Mσ

and Mσ′ have thus the same substitution matrix. By the fact that all invertible substitutions
with the same substitution matrix are conjugate (see Theorem 2.4), the claim of the theorem
follows. ¤

Let us note that the assumption that σ is invertible is crucial in Theorem 5.1 as shown
by the following example (see also [9]). Consider on the alphabet {a, b} the following two
substitutions:

σ : a 7→ ab, b 7→ baabbaabbaabba, σ′ : a 7→ abbaab, b 7→ baabbaabba.

One has σ(ab) = σ′(ab) and σ(ba) = σ′(ba). We deduce that σ and σ′ have the same fixed
point beginning by a. Nevertheless, σ and σ′ are neither conjugate, nor conjugate to a power
of a common substitution, since their substitution matrices are not conjugate in GL(2,Z).

5.2. Conjugation and equivalence. In order to compare strand or tiling spaces with their
duals, we introduce a new type of conjugation of substitutions in Aut(F2) w.r.t. certain outer
automorphisms.

Definition 5.4. Let 〈E, I〉 be the group of (outer) automorphisms of F2 generated by

E : a 7→ b, b 7→ a, I : a 7→ a−1, b 7→ b.

We say that two automorphisms σ and σ′ of F2 are equivalent: σ ∼= σ′, if

τ−1στ ∼ σ′ for some τ ∈ 〈E, I〉.

In other words, σ and σ′ are equivalent if they are conjugate as two-letter alphabet substitu-
tions up to a renaming of the letters.

If τ = E, then the frequency α of σ satisfies: α = 1− α′, where α′ is the frequency of σ′.

Let us note that if σ is an invertible substitution of the two-letter alphabet A, then its inverse
yields another substitution, but now on the two-letter alphabet {a−1, b}. Indeed this can be
easily checked by an induction on the length of a decomposition of σ on the set of generators
{E,G, G̃}. Hence, there exists τ ∈ 〈E, I〉 such that τ−1σ−1τ is a substitution over A. We
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call this new substitution inverse substitution of σ. We thus can define the hull X−1
σ of the

inverse of an invertible substitution over A.

Example 5.5. With σ being the Fibonacci substitution, the map σ2 is the substitution
% := σ2 : a → aba, b → ab. Then, %−1 = a → b−1a, b−1 → b−1b−1a is a substitution on
{a, b−1}.

Theorem 2.4 extends in a natural with respect to the equivalence relation. We first introduce
the following equivalence relation on matrices: two 2× 2 matrices M and M ′ with entries in
Z are said to be equivalent: M ∼= M ′, if there exists a matrix Q in the set {(±1 0

0 ±1

)
,
(

0 ±1
±1 0

)}
such that M ′ = Q−1MQ.

Theorem 2.4 becomes: if σ is an invertible substitution over A and τ an endomorphism of
F2, one has τ ∼= σ if, and only if, their substitution matrices are equivalent.

We now extend the notion of conjugation to tilings, hulls and strand spaces by introducing
suitable equivalence classes on these spaces.

Two hulls Xσ,Xσ′ over two two-letter alphabets A and A′ are equivalent, if there is a letter-
to-letter morphism τ with τ(Xσ) = Xσ′ : Xσ

∼= Xσ. In particular, if σ′ is an automorphism
of F2 that is equivalent to an invertible primitive substitution σ, then we can define Xσ′ .
Furthermore, we have seen in the proof of Theorem 5.1 that if σ and σ′ are conjugate primitive
substitutions over {a, b}, then Xσ = Xσ′ .

Theorem 5.1 becomes for σ, σ′ two-letter invertible primitive substitutions: Xσ
∼= Xσ′ if and

only if there are k, n such that σk ∼= (σ′)m. In a more formal way, it reads:

Xσ
∼= Xσ′ iff ∃k, n ∈ N, τ ∈ {id, E} : τ−1σkτ ∼ (σ′)n.

Two tilings T , T ′ are said equivalent, if they are similar, i.e., there are c > 0, t ∈ R such that
cT + t = T ′.
Assume that T and T ′ are two equivalent tilings of two tiling spaces associated with two
primitive tile-substitutions σ and σ′. Then, by primitivity, all the tilings of both tilings
spaces are equivalent. The two tiling spaces Xσ and Xσ′ are said to be equivalent: Xσ

∼= Xσ′ .

By abuse of notation, we extend the notion of equivalence to the set of hulls, strand spaces,
dual strand spaces and tiling spaces by using the coding maps (tiling coding, strand coding,
dual strand coding). For instance, we say that a dual strand space is conjugate to a hull if
ψ∗(Xσ) is equivalent to Xσ. In particular, one has Xσ

∼= Xσ
∼= Xσ. One has also Xσ∗ ∼= X∗

σ.

Example 5.6. Our definitions of conjugate and equivalent take care that sequences are
related up to renaming of letters. For instance,

. . . abaababaabaabab . . . ∼= . . . ba−1bba−1ba−1bba−1bba−1ba−1 . . . ,

since one sequence is obtained from the other by replacing a with b, and b with a−1. Moreover,
we can compare tiling spaces with hulls of words and strand spaces. For instance, for Example
5.5 we obtain XFib2

∼= XFib2
∼= XFib2 .

5.3. Inversion and duality. We now can state the main theorem of this section:

Theorem 5.7. Let σ be a primitive invertible substitution on two letters. Then

X?
σ
∼= Xσ−1

∼= Xσ? .
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Furthermore, σ∗ ∼= σ−1.

Proof. In order to show the equivalence of σ? and E∗1(σ), note that it does not matter on
which lattice the paths in E1(σ) is defined: All lattices of full rank in R2 are isomorphic. So,
let the underlying lattice be Λ = 〈( 1

1

)
,
(

`
`?

)〉Z, rather than Z2. The substitution matrix Mσ

acts as an automorphism on Λ: The image of
(

1 `
1 `?

)( α
β

) ∈ Λ under Mσ is
(

1 `
1 `?

)
Mσ

( α
β

)
. [

Similar for Z[`] ]

In the next paragraph, the important idea is that M acts also as automorphism in Z[`], and
that a stepped path considered here is in one-to-one correspondence with a tiling of the line.

We proceed by translating the formal sum

E∗1(σ)(W, i∗) =
∑

n,j:w
(j)
n =i

(
M−1

σ (W + L(s(j)n )), j∗
)

into the language of digit sets and tile-substitutions, and into the internal space H, resp. into
the module Z[λ] ⊂ H. Then, multiplication by M−1

σ in the integers Z[λ], embedded in G, is
just multiplication by λ−1 in G. And, by construction of the lattice Λ, multiplication by M−1

σ

in the integers Z[λ], embedded in H, is multiplication by (λ−1)−1 = λ in H. Furthermore,
since

f : A? → Z2, f(u) = (#a in u,#b in u),
the term M−1

σ f(u), projected to H, reads in Z[`] as f(u) = (#a in u) + (#b in u)`?. The
formal sum above translates into

x+ T ?
i 7→ {λx+ T ?

j − tijn |n, j, such that the n-th letter in σ(j) is i},
where tijn denotes the ’prefix’ of the n-th letter, this means here: the digit dijn stared, that
is, d?

jin. In other words, this means

x+ T ?
i 7→ λx+ {T ?

j − d?
ji | i = 1, . . . ,m} = λx+ {T ?

j −D?
ji | i = 1, . . . ,m}.

This shows that σ? and E∗1(σ) are equivalent.

The equivalence Xσ−1
∼= Xσ∗ comes from the fact that σ−1 and σ∗ have equivalent Abelian-

isation matrices. Indeed, assume σ has determinant 1. The substitution matrix of σ−1 is
equal to

(
d −b
−c a

)
whereas σ∗ has as substitution matrix the transpose of Mσ. We conclude

by noticing that (
a b
c d

)
=

(
0 −1
1 0

)(
d −b
−c a

)(
0 1
−1 0

)

We can even say more: σ∗ = µ−1 ◦ σ−1µ for µ : a 7→ b−1, b 7→ a. Indeed we check it on the
generators E,G, G̃. We then prove it by induction by sing the fact that (σ ◦ τ)−1 = τ−1 ◦σ−1

and (σ ◦ τ)∗ = τ∗ ◦ σ∗. ¤

6. Selfduality

It is natural to ask which tiling spaces are selfdual, i.e., for which σ holds Xσ
∼= Xσ∗ .

Definition 6.1. A primitive invertible two-letter substitution is said selfdual, if σ = σ∗. The
hull of a primitive invertible two-letter substitution is said selfdual, if Xσ

∼= Xσ∗.
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According to Theorem 5.7, on a two-letter alphabet , selfduality for the hull Xσ means that

Xσ
∼= Xσ−1

∼= Xσ∗ ,

or equivalently σ ∼= σ∗, since σ and σ∗ have the same substitution factor.

By the equivalence of (a) and (b), it follows from [8]:

Proposition 6.2. If σ is selfdual, then P−1MσP = MT
σ for some permutation matrix P .

The following theorem gives necessary and sufficient conditions for a primitive invertible
substitution on two letters to be self-dual.

Theorem 6.3. Let P1 = id, P2 =
(

0 1
1 0

)
, Q1 =

(
1 0
0 −1

)
, and Q2 =

(
0 −1
1 0

)
. If σ is a two-letter

primitive invertible substitution with detMσ = 1, then TFAE

(1) σ is selfdual;
(2) Mσ is of the form

Mσ =
( m k

m2−1
k

m

)
or Mσ =

( m k

k k2+1
m

)
,

where k ≥ 1 divides m2 − 1, respectively m ≥ 1 divides k2 + 1.
(3) QT

i MσQi = (Mσ)−1 for i = 1 or i = 2;
(4) P T

i MσPi = (Mσ)T for i = 1 or i = 2.

Proof. Let us prove that (1) ⇒ (2). Let σ be selfdual. Consequently,

∃τ ∈ S, ∃w ∈ A∗, ∀x ∈ {a, b} : w−1τ−1
(
σ
(
τ(x)

))
w = σ−1(x).

It follows for the Abelianisation:

∀x ∈ {a, b} : −L(w) + (Mτ )−1MσMτ (ex) + L(w) = Mσ−1(ex),

thus (Mτ )−1MσMτ = Mσ−1 with Mτ in the set {(±1 0
0 ±1

)
,
(

0 ±1
±1 0

)}, that is, Mσ
∼= M−1

σ .

Since the matrices of M−1
σ and MT

σ are also equivalent, we deduce that Mσ
∼= MT

σ . One
checks that the only possible matrices for the congruence are the permutation matrices P1

or P2. From detM = 1, we then deduce that Mσ is either of the form M =
( m k

m2−1
k

m

)
or

M ′ =
( m k

k k2+1
m

)
.

Le us prove that (2) ⇒ (1). Let σ be invertible with substitution matrix of the form in
Theorem 6.3 (3). One checks that Mσ? = MT

σ
∼= Mσ. The claim follows from the extension

of Theorem 2.4 quoted in Section 5.2.

It is easily seen that (2) ⇔ (3) ⇔ (4) by simple computation. Indeed, compute the inverse

matrices: M−1 =
( m −k

−m2−1
k

m

)
, resp. M ′−1 =

( k2+1
m

−k

−k m

)
. These are obtained as Q−1

1 MQ1,

resp. Q−1
2 M ′Q2, with Qi as in the theorem. Obviously, QT

i = Q−1
i . ¤
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