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Tilings




Here: infinite tilings. Focus on shape and symmetry.

Definitions:
» tiling: covering of R? (resp. RY) by tiles without overlaps
> tile: compact set T with T=T.
Often a (convex) polygon (resp. polytope).
> vertex of a tile: vertex of a polygon.

> vertex of a tiling: isolated point of the intersection of > 3
(resp. > d + 1) tiles.
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Here: infinite tilings. Focus on shape and symmetry.

Definitions:

>

>

tiling: covering of R? (resp. RY) by tiles without overlaps
tile: compact set T with T=T.

Often a (convex) polygon (resp. polytope).

vertex of a tile: vertex of a polygon.

vertex of a tiling: isolated point of the intersection of > 3
(resp. > d + 1) tiles.

k-periodic tiling T there are k linearly independent vy, ... vk
with T +v ="T. (k=2 (resp. k = d): crystallographic)

T is non-periodic: T + v =T implies v = 0.

locally finite: each ball intersect only finitely many tiles
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Not locally finite:

(0,0)

R

Problem 0: In a locally finite tiling by convex polygons, is there a
point that is vertex of exactly one tile?
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Not locally finite:

(0,0)

R

Problem 0: In a locally finite tiling by convex polygons, is there a
point that is vertex of exactly one tile?

Solved: No! “The lonely vertex problem” (in any dimension)

Problem 1: (Danzer's problem) In a locally finite tiling by convex
polygons, are there always triangles of arbitrary large area
containing no vertex?
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Problem 2: Which pentagons do tile the plane?
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2-periodic (= crystallographic) tiling:
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1-periodic tiling:

Open problems in the mathem



non-periodic tiling:
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Problem 3: (Aperiodic Monotile) Is there a single tile shape that
allows only non-periodic tilings of R??
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Problem 3: (Aperiodic Monotile) Is there a single tile shape that
allows only non-periodic tilings of R??
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Problem 4: (Periodic Monotile) Which (convex) tile shapes allow
only 2-periodic tilings of R??

(Seuare, rectangle, regular hexagon, ... full list?)
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Problem 5: (Danzer-Griinbaum-Shephard) Is there a locally finite
tiling by tiles such that the tiles

> have 5-fold rotational symmetry, and
» have diameter at most 1, and

> are topological disks?
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Problem 5: (Danzer-Griinbaum-Shephard) Is there a locally finite
tiling by tiles such that the tiles

> have 5-fold rotational symmetry, and
» have diameter at most 1, and

> are topological disks?

Not a tiling!
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Not locally finite!
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570 LUDWIG DANZER, BRANKO GRUNBAUM, AND G. C. SHEPHARD

Diameter not bounded!
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Problem 6: Same question for 7-fold, 8-fold, ... symmetry.

If we drop “topological disk” then 8-fold and 12-fold is possible.
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Problem 7: Can a fundamental cell of a lattice have more
symmetry than the point group?
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Problem 7: Can a fundamental cell of a lattice have more
symmetry than the point group?

Lattice T in RY: the Z-span of d linearly independent vectors.

Fundamental cell of T: RY/T.
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Problem 7: Can a fundamental cell of a lattice have more
symmetry than the point group?

Lattice T in RY: the Z-span of d linearly independent vectors.

Fundamental cell of T: RY/T.
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Point group P(T") of I': All g € O(d,R) with gl' =T.
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Trivially, each lattice ' has a fundamental cell whose symmetry
group is P(I).

For instance, take the Voronoi cell of a lattice point x. (That is
the set of points closer to x than to each other lattice point.)
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Theorem (Elser, F)

Let T C R? be a lattice, but not a rhombic lattice. Then there is a
fundamental cell F of T whose symmetry group S(F) is strictly
larger than P(T"): [S(F): P(I')] =2.

Theorem (F)

Let T C R3 be a lattice, but not a cubic lattice. Then there is a
fundamental cell F of T whose symmetry group S(F) is strictly
larger than P(T'):  [S(F): P(T")] = 2.

Problem 7 still open for:
» rhombic lattices in R?
b cubic lattices in 3
» anything in RY, d > 4
> even more symmetry: [S(F): P(I')] > 2
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Spiral tilings:
Fibonacci numbers: F,=F,_ 1+ F, 2, A =1, [Lb=1.

1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,...

2
11
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Padovan numbers: Py=Pi =Py =1, P, = P,_>+ P,_s.

1,1,1,2,2, 3,45, 7,9, 12, 16, 21, 28, 37, 49, 65, 86, 114, ...
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Problem 8: Which recursive integer sequences can be realised as
spiral tilings?

(And what means “realised”?)
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Pinwheel substitution tiling:

The angle o is
irrational; that is,

a ¢ mQ.
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IS
Which tile shapes do forbid infinitely many orientations?

Theorem (F.-Harriss, 2013)

Let T be a tiling in R? with finitely many tile shapes, all centrally
symmetric convex polygons (i.e., P = —P). Then each prototile
occurs in a finite number of orientations in T .
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Which tile shapes do forbid infinitely many orientations?

Theorem (F.-Harriss, 2013)

Let T be a tiling in R? with finitely many tile shapes, all centrally
symmetric convex polygons (i.e., P = —P). Then each prototile
occurs in a finite number of orientations in T .

» Problem 9: The same for non-convex
» Problem 10: The same for higher dimensions
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Literature:

» Griinbaum & Shephard: Tilings and Patterns
» Croft, Falconer & Guy: Unsolved Problems in Geometry
» Baake & Grimm: Aperiodic Order
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THANK YOU!
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