Highly symmetric fundamental cells for planar lattices

Dirk Frettlöh

Institut für Mathematik und Informatik Universität Greifswald

FU Berlin, 15 Jun 2011

- Lonely vertex theorem
- ► Bilipschitzequivalence of Delone sets
- ▶ Perfect colourings
- ▶ Highly symmetric FCs for planar lattices

There is no **lonely vertex** in a locally finite tiling of \mathbb{R}^d by convex polytopes (F-Glazyrin 2008)

(I.e., no $x \in \mathbb{R}^d$ is vertex of exactly one tile)

Bilipschitzequivalence of **Delone sets**

Delone sets D, E are called bilipschitz-equiv, if there is a bijection $f: D \to E$, such that f and f^{-1} are both Lipschitz continuous.

There are Delone sets in \mathbb{R}^2 which are not bilipsch-equiv (Burago-Kleiner, C. McMullen 1997)

D, E are in bounded distance, if there is a bijection $f: D \to E$, C > 0, such that d(x, f(x)) < C for all $x \in D$.

Bounded distance implies bilipschitz equivalence.

Certain Delone sets (particular "model sets") are bilipschitz equiv to \mathbb{Z}^2 .

(Dolbilin, F, Garber, work in progress)

Perfect colourings of hyperbolic tilings (F 2008)

Point lattice Γ in \mathbb{R}^d : the \mathbb{Z} -span of d linearly independent vectors.

Fundamental cell of Γ : \mathbb{R}^d/Γ .

Point lattice Γ in \mathbb{R}^d : the \mathbb{Z} -span of d linearly independent vectors.

Fundamental cell of Γ : \mathbb{R}^d/Γ .

Point group $P(\Gamma)$ of Γ : All linear isometries f with $f(\Gamma) = \Gamma$.

Trivially, each lattice Γ has a fundamental cell whose symmetry group is $P(\Gamma)$.

For instance, take the Voronoi cell of a lattice point x. (That is the set of points closer to x than to each other lattice point.)

Main result

Theorem (Elser, F)

Let $\Gamma \subset \mathbb{R}^2$ be a lattice, but not a rhombic lattice. Then there is a fundamental cell F of Γ whose symmetry group S(F) is strictly larger than $P(\Gamma)$: $[S(F):P(\Gamma)]=2$.

'Rhombic lattice' means here: one with basis vectors of equal length, but neither a square lattice nor a hexagonal lattice.

Generic lattice:

Generic lattice:

Square lattice (Veit Elser):

Hexagonal lattice (Elser-Cockayne, Baake-Klitzing-Schlottmann):

Rectangular lattice

Application: Minimal matchings

Consider the square lattice \mathbb{Z}^2 , and $R_{45}\mathbb{Z}^2$, the square lattice rotated by 45° .

Problem: Find a perfect matching between \mathbb{Z}^2 and $R_{45}\mathbb{Z}^2$ with maximal distance not larger than C > 0. How small can C be?

Application: Minimal matchings

Consider the square lattice \mathbb{Z}^2 , and $R_{45}\mathbb{Z}^2$, the square lattice rotated by 45° .

Problem: Find a perfect matching between \mathbb{Z}^2 and $R_{45}\mathbb{Z}^2$ with maximal distance not larger than C > 0. How small can C be?

That is, find $f: \mathbb{Z}^2 \to R_{45}\mathbb{Z}^2$, where f is bijective and

$$\forall x \in \mathbb{Z}^2: d(x, f(x)) \leq C$$

for C as small as possible.

(It is easy to see that $C \geq \frac{\sqrt{2}}{2} = 0.7071....$)

Naively: difficult.

Using the 8-fold fundamental cell F yields a matching with C=0.92387...

How?

Naively: difficult.

Using the 8-fold fundamental cell F yields a matching with C=0.92387...

How?

- ▶ Consider $\mathbb{Z}^2 + F$. Each x + F ($x \in \mathbb{Z}^2$) contains exactly one point of \mathbb{Z}^2 in its centre.
- ▶ F is also fundamental cell for $R_{45}\mathbb{Z}^2$. Thus each x + F $(x \in \mathbb{Z}^2)$ contains exactly one point $x' \in R_{45}\mathbb{Z}^2$.
- ▶ Let f(x) = x'.

This (and its analogues) yields good matchings for

- $ightharpoonup \mathbb{Z}^2$ and $R_{45}\mathbb{Z}^2$: C=0.92387....
- ▶ The hexagonal lattice H and $R_{30}H$: C = 0.78867...
- ▶ A rectangular lattice P and $R_{90}P$: $C \leq \frac{1}{\sqrt{2}} \frac{\sqrt{5}+1}{2} b$.

(b is the length of the longer lattice basis vector of P.)

What next?

- Rhombic lattices?
- ▶ Discrete Geometry:
 - ► Higher dimensions, root lattices
 - Hyperbolic spaces
- Fractals:
 - Iterated function systems
 - Dimension of the boundaries
 - Connectivity
- Optimization:
 - Better matchings
 - ▶ Finite subsets of \mathbb{Z}^2 and $R_{45}\mathbb{Z}^2$

