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I Lonely vertex theorem

I Bilipschitzequivalence of Delone sets

I Perfect colourings

I Highly symmetric FCs for planar lattices
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There is no lonely vertex in a locally finite tiling of Rd by convex
polytopes (F-Glazyrin 2008)

(I.e., no x ∈ Rd is vertex of exactly one tile)
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Bilipschitzequivalence of Delone sets
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Delone sets D, E are called
bilipschitz-equiv, if there is a
bijection f : D → E , such that
f and f −1 are both Lipschitz
continuous.

There are Delone sets in R2

which are not bilipsch-equiv
(Burago-Kleiner, C. McMullen
1997)
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D, E are in bounded distance,
if there is a bijection
f : D → E , C > 0, such that
d(x , f (x)) < C for all x ∈ D.

Bounded distance implies
bilipschitz equivalence.

Certain Delone sets (particular
”model sets”) are bilipschitz
equiv to Z2.

(Dolbilin, F, Garber, work in
progress)
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Perfect colourings of hyperbolic tilings (F 2008)
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Point lattice Γ in Rd : the Z-span of d linearly independent vectors.

Fundamental cell of Γ: Rd/Γ.

(x,0)

(y,z)
F

Point group P(Γ) of Γ: All linear isometries f with f (Γ) = Γ.
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Trivially, each lattice Γ has a fundamental cell whose symmetry
group is P(Γ).

For instance, take the Voronoi cell of a lattice point x . (That is
the set of points closer to x than to each other lattice point.)
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Main result

Theorem (Elser, F)

Let Γ ⊂ R2 be a lattice, but not a rhombic lattice. Then there is a
fundamental cell F of Γ whose symmetry group S(F ) is strictly
larger than P(Γ): [S(F ) : P(Γ)] = 2.

’Rhombic lattice’ means here: one with basis vectors of equal
length, but neither a square lattice nor a hexagonal lattice.
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Generic lattice:

(x,0)

(y,z)
F
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Generic lattice:

(x,0)

(y,z)
F
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Square lattice (Veit Elser):
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Hexagonal lattice (Elser-Cockayne, Baake-Klitzing-Schlottmann):
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Rectangular lattice
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Application: Minimal matchings

Consider the square lattice Z2, and R45Z2, the square lattice
rotated by 45◦.

Problem: Find a perfect matching between Z2 and R45Z2 with
maximal distance not larger than C > 0. How small can C be?

That is, find f : Z2 → R45Z2, where f is bijective and

∀x ∈ Z2 : d(x , f (x)) ≤ C

for C as small as possible.

(It is easy to see that C ≥
√
2
2 = 0.7071....)
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?
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Dirk Frettlöh Highly symmetric fundamental cells for planar lattices



. .

Naively: difficult.

Using the 8-fold fundamental cell F yields a matching with
C = 0.92387....

How?

I Consider Z2 + F . Each x + F (x ∈ Z2) contains exactly one
point of Z2 in its centre.

I F is also fundamental cell for R45Z2. Thus each x + F
(x ∈ Z2) contains exactly one point x ′ ∈ R45Z2.

I Let f (x) = x ′.
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This (and its analogues) yields good matchings for

I Z2 and R45Z2: C = 0.92387....

I The hexagonal lattice H and R30H: C = 0.78867...

I A rectangular lattice P and R90P: C ≤ 1√
2

√
5+1
2 b.

(b is the length of the longer lattice basis vector of P.)
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What next?

I Rhombic lattices?
I Discrete Geometry:

I Higher dimensions, root lattices
I Hyperbolic spaces

I Fractals:
I Iterated function systems
I Dimension of the boundaries
I Connectivity

I Optimization:
I Better matchings
I Finite subsets of Z2 and R45Z2
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