Substitution tilings with dense tile orientations

Dirk Frettlöh

Technische Fakultät Universität Bielefeld

UT Brownsville 17. February 2017

- 1. Substitution tilings with tiles in infinitely many orientations
- 2. Dense tile orientations (DTO)
- 3. Tilings with rotational symmetry and DTO

Substitution tiling with *substitution factor* 2:

Substitution tiling with substitution factor 2:

Substitution matrix here $M = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$.

Fact: if λ is the substitution factor, then λ^2 is the largest eigenvalue of the substitution matrix.

Usually, tiles occur in finitely many different orientations only. Not always. Cesi's example (1990):

A substitution σ is *primitive*, if for any tile T there is $k \geq 1$ such that $\sigma^k(T)$ contains all tile types.

Conway's Pinwheel substitution (1991):

Obvious generalizations: Pinwheel (n, k)

Unknown (< 1996, communicated to me by Danzer):

(+ obvious generalizations)

C. Goodman-Strauss, L. Danzer (ca. 1996):

Pythia (m, j), here: m = 3, j = 1.

Dense Tile Orientations (DTO)

For all examples: the orientations are dense in $[0, 2\pi[$.

Even more: The orientations are equidistributed in $[0, 2\pi[$.

Theorem (F. '08)

In each primitive substitution tiling with tiles in infinitely many orientations, the orientations are equidistributed in $[0, 2\pi[$.

Dense Tile Orientations (DTO)

For all examples: the orientations are dense in $[0, 2\pi[$.

Even more: The orientations are equidistributed in $[0, 2\pi[$.

Theorem (F. '08)

In each primitive substitution tiling with tiles in infinitely many orientations, the orientations are equidistributed in $[0, 2\pi[$.

Recall: $(\alpha_j)_j$ is *equidistributed* in [0,1[, if for all $0 \le a < b < 1$ holds:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n 1_{[a,b]}(\alpha_j)=b-a$$

Here: in a tiling $\mathcal{T} = \mathcal{T}_1, \mathcal{T}_2, \ldots$ the orientations of the tiles are equidistributed, if for all $0 \le a < b < 2\pi$

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n 1_{[a,b]}(\alpha(T_j))=\frac{b-a}{2\pi}$$

where $\alpha(T_j)$ is the angle of tile T_j (wrt some fixed copy of T_j).

Here: in a tiling $\mathcal{T}=\mathcal{T}_1,\mathcal{T}_2,\ldots$ the orientations of the tiles are equidistributed, if for all $0 \leq a < b < 2\pi$

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n 1_{[a,b]}(\alpha(T_j))=\frac{b-a}{2\pi}$$

where $\alpha(T_j)$ is the angle of tile T_j (wrt some fixed copy of T_j).

Because the sum is not absolutely convergent, the order matters! Here it is OK to order the tiles wrt distance from 0. Proof needs:

Weyl's criterion: (a_n) equidistributed mod 1 iff

$$\forall \ell \in \mathbb{Z} \setminus \{0\} : \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} e^{2\pi i \ell a_j} = 0.$$

Proof needs:

Weyl's criterion: (a_n) equidistributed mod 1 iff

$$\forall \ell \in \mathbb{Z} \setminus \{0\} : \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} e^{2\pi i \ell a_j} = 0.$$

Perron's Theorem: $M \in \mathbb{R}^{n \times n} \ge 0$ (i.e., non-negative entries only) and $M^k > 0$ for some k, then

- ▶ There is a biggest eigenvalue $\mu \in \mathbb{R}$ with $\mu > 0$
- $ightharpoonup \mu$ has a positive eigenvector v

Proof needs:

Weyl's criterion: (a_n) equidistributed mod 1 iff

$$\forall \ell \in \mathbb{Z} \setminus \{0\} : \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} e^{2\pi i \ell a_j} = 0.$$

Perron's Theorem: $M \in \mathbb{R}^{n \times n} \ge 0$ (i.e., non-negative entries only) and $M^k > 0$ for some k, then

- ▶ There is a biggest eigenvalue $\mu \in \mathbb{R}$ with $\mu > 0$
- $\triangleright \mu$ has a positive eigenvector ν
- $\lim_{n\to\infty}\frac{1}{\mu^n}M^n$ exists, the columns are multiples of v
- ▶ If $0 \le A \le M$, $A \ne M$, then the biggest eigenvalue of A is less than μ .

Sketch of proof: Let M be the substitution matrix, with biggest eigenvalue μ .

Let
$$A(\ell) = \left(\sum_{j=1}^{M_{km}} \mathrm{e}^{i\alpha(T_j)\ell}\right)_{km} \qquad (\ell \in \mathbb{Z})$$

be the matrix containing the orientations $\alpha(T_j)$ times ℓ . (Hence A(0) = M).

Sketch of proof: Let M be the substitution matrix, with biggest eigenvalue μ .

Let
$$A(\ell) = \left(\sum_{j=1}^{M_{km}} \mathrm{e}^{i\alpha(T_j)\ell}\right)_{km} \qquad (\ell \in \mathbb{Z})$$

be the matrix containing the orientations $\alpha(T_j)$ times ℓ . (Hence A(0) = M).

By irrationality of the angles

$$|A(\ell)|^n \le M^n$$
 and $|A(\ell)|^n \ne M^n$ (from some n on)

We need to show:

$$\lim_{n\to\infty}\frac{(A(\ell)^n)_{km}}{(M^n)_{km}}=0$$

We show:

$$\lim_{n\to\infty}\frac{(A(\ell)^n)_{km}}{(M^n)_{km}}=0$$

by:

$$\left|\frac{(A(\ell)^n)_{km}}{(M^n)_{km}}\right| \leq \frac{(|A(\ell)|^n)_{km}}{(M^n)_{km}} = \frac{(|A(\ell)|^n)_{km}}{\eta^n} \frac{\eta^n}{(M^n)_{km}} \leq c \left(\frac{\eta}{\mu}\right)^n \stackrel{(n\to\infty)}{\to} 0.$$

(Where η is eigenvalue of $|A(\ell)|$, hence $\eta < \mu$)

We show:

$$\lim_{n\to\infty}\frac{(A(\ell)^n)_{km}}{(M^n)_{km}}=0$$

by:

$$\left|\frac{(A(\ell)^n)_{km}}{(M^n)_{km}}\right| \leq \frac{(|A(\ell)|^n)_{km}}{(M^n)_{km}} = \frac{(|A(\ell)|^n)_{km}}{\eta^n} \frac{\eta^n}{(M^n)_{km}} \leq c \left(\frac{\eta}{\mu}\right)^n \stackrel{(n\to\infty)}{\to} 0.$$

(Where η is eigenvalue of $|A(\ell)|$, hence $\eta < \mu$)

Corollary

In each primitive substitution tiling with tiles in infinitely many orientations, the orientations are dense in $[0, 2\pi[$.

So far: tiles are always triangles. No wonder:

Theorem (F.-Harriss, 2013)

Let \mathcal{T} be a tiling in \mathbb{R}^2 with finitely many prototiles (i.e., finitely many different tile shapes). Let all prototiles be centrally symmetric convex polygons. Then each prototile occurs in a finite number of orientations in \mathcal{T} .

Some people (e.g. Lorenzo Sadun, UT Austin) compute cohomologies of tiling spaces (...which means: consider the set of all tilings to a given substitution. Define when two tilings are "close". This yields a topological object which has cohomologies)

Some people (e.g. Lorenzo Sadun, UT Austin) compute cohomologies of tiling spaces (...which means: consider the set of all tilings to a given substitution. Define when two tilings are "close". This yields a topological object which has cohomologies)

Question: Are there tilings with DTO and n-fold rotational symmetry for $n \ge 3$?

Answer: Yes. At least for $n \in \{3, 4, 5, 6, 7, 8\}$.

Considering the analogues for larger n

E.g.

...we found (rediscovered?):

Theorem (F.-Say-Awen-de las Peñas 2017)

In a parallelogram with edge lengths 1 and 2, and interior angle β : If $\beta = \frac{2\pi}{n}$ ($n \ge 4$) then $\alpha \notin \pi \mathbb{Q}$.

- lower left vertex: 0
- upper left vertex: $\xi_n := e^{2\pi i/n}$
- upper left vertex: $z := 2 + \xi_n$

- lower left vertex: 0
- upper left vertex: $\xi_n := e^{2\pi i/n}$
- upper left vertex: $z := 2 + \xi_n$

$$\alpha \in \pi \mathbb{Q}$$

- lower left vertex: 0
- upper left vertex: $\xi_n := e^{2\pi i/n}$
- upper left vertex: $z := 2 + \xi_n$

$$\alpha \in \pi \mathbb{Q} \Rightarrow \exists m : z^m \in \mathbb{R}$$

- lower left vertex: 0
- upper left vertex: $\xi_n := e^{2\pi i/n}$
- upper left vertex: $z := 2 + \xi_n$

$$\alpha \in \pi \mathbb{Q} \Rightarrow \exists m : \ z^m \in \mathbb{R} \Rightarrow \left(\frac{z}{|z|}\right)^m = \pm 1$$

- lower left vertex: 0
- upper left vertex: $\xi_n := e^{2\pi i/n}$
- upper left vertex: $z := 2 + \xi_n$

$$\alpha \in \pi \mathbb{Q} \Rightarrow \exists m : \ z^m \in \mathbb{R} \Rightarrow \left(\frac{z}{|z|}\right)^m = \pm 1 \Rightarrow \frac{z^m}{|z|^m} = \pm 1$$

- lower left vertex: 0
- upper left vertex: $\xi_n := e^{2\pi i/n}$
- upper left vertex: $z := 2 + \xi_n$

$$\alpha \in \pi \mathbb{Q} \Rightarrow \exists m : z^m \in \mathbb{R} \Rightarrow \left(\frac{z}{|z|}\right)^m = \pm 1 \Rightarrow \frac{z^m}{|z|^m} = \pm 1$$

 $\Rightarrow \frac{z^{2m}}{|z|^{2m}} = 1$

- lower left vertex: 0
- upper left vertex: $\xi_n := e^{2\pi i/n}$
- upper left vertex: $z := 2 + \xi_n$

$$\alpha \in \pi \mathbb{Q} \Rightarrow \exists m : \ z^m \in \mathbb{R} \Rightarrow \left(\frac{z}{|z|}\right)^m = \pm 1 \Rightarrow \frac{z^m}{|z|^m} = \pm 1$$

$$\Rightarrow \frac{z^{2m}}{|z|^{2m}} = 1 \Rightarrow \frac{z^m z^m}{z^m \overline{z}^m} = 1$$

- lower left vertex: 0
- upper left vertex: $\xi_n := e^{2\pi i/n}$
- upper left vertex: $z := 2 + \xi_n$

$$\alpha \in \pi \mathbb{Q} \Rightarrow \exists m : \ z^m \in \mathbb{R} \Rightarrow \left(\frac{z}{|z|}\right)^m = \pm 1 \Rightarrow \frac{z^m}{|z|^m} = \pm 1$$
$$\Rightarrow \frac{z^{2m}}{|z|^{2m}} = 1 \Rightarrow \frac{z^m z^m}{z^m \overline{z}^m} = 1 \Rightarrow \frac{z^m}{\overline{z}^m} = 1$$

- lower left vertex: 0
- upper left vertex: $\xi_n := e^{2\pi i/n}$
- upper left vertex: $z := 2 + \xi_n$

$$\alpha \in \pi \mathbb{Q} \Rightarrow \exists m : \ z^m \in \mathbb{R} \Rightarrow \left(\frac{z}{|z|}\right)^m = \pm 1 \Rightarrow \frac{z^m}{|z|^m} = \pm 1$$
$$\Rightarrow \frac{z^{2m}}{|z|^{2m}} = 1 \Rightarrow \frac{z^m z^m}{z^m \overline{z}^m} = 1 \Rightarrow \left(\frac{z}{\overline{z}}\right)^m = 1$$

- lower left vertex: 0
- upper left vertex: $\xi_n := e^{2\pi i/n}$
- upper left vertex: $z := 2 + \xi_n$

$$\alpha \in \pi \mathbb{Q} \Rightarrow \exists m : z^m \in \mathbb{R} \Rightarrow \left(\frac{z}{|z|}\right)^m = \pm 1 \Rightarrow \frac{z^m}{|z|^m} = \pm 1$$

$$\Rightarrow \frac{z^{2m}}{|z|^{2m}} = 1 \Rightarrow \frac{z^m z^m}{z^m \overline{z}^m} = 1 \Rightarrow \left(\frac{z}{\overline{z}}\right)^m = 1$$

i.e., $\frac{z}{\overline{z}}$ is a complex *m*th root of unity.

Clearly, $\frac{z}{\overline{z}} \in \mathbb{Q}(\xi_n)$.

Theorem: All roots of unity in $\mathbb{Q}(\xi_n)$ are of the form $\pm \xi_n^k$.

Hence m = n, or m = 2n (if m is even and n is odd)

$$m = n$$
: $\alpha < \frac{\pi}{n}$ (too small!),

$$n = n$$
. $\alpha < \frac{1}{n}$ (100 small.),

Hence
$$\alpha \notin \pi \mathbb{Q}$$
.

$$m=2n$$
: $\frac{\pi}{2n}<\alpha<\frac{\pi}{n}$

