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1. Substitution tilings with tiles in infinitely many orientations

2. Dense tile orientations (DTO)

3. Tilings with rotational symmetry and DTO

Dirk Frettlöh Substitution tilings with dense tile orientations



.

Substitution tiling with substitution factor 2:

Factor    2

Substitution matrix here M =
(
2 2
1 3

)
.

Fact: if λ is the substitution factor, then λ2 is the largest
eigenvalue of the substitution matrix.
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Usually, tiles occur in finitely many different orientations only.
Not always. Cesi’s example (1990):

A substitution σ is primitive, if for any tile T there is k ≥ 1 such
that σk(T ) contains all tile types.
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Conway’s Pinwheel substitution (1991):

1

2
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1

2

. . .

α The angle α is
irrational; that is,
α /∈ πQ.
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Obvious generalizations: Pinwheel (n, k)

3

1

3

2

n = 3, k = 1 n = 3, k = 2
etc.
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Unknown (< 1996, communicated to me by Danzer):

(+ obvious generalizations)
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C. Goodman-Strauss, L. Danzer (ca. 1996):
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Pythia (m, j), here: m = 3, j = 1.
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Dense Tile Orientations (DTO)

For all examples: the orientations are dense in [0, 2π[.

Even more: The orientations are equidistributed in [0, 2π[.

Theorem (F. ’08)

In each primitive substitution tiling with tiles in infinitely many
orientations, the orientations are equidistributed in [0, 2π[.

Recall: (αj)j is equidistributed in [0, 1[, if for all 0 ≤ a < b < 1
holds:

lim
n→∞

1

n

n∑
j=1

1[a,b](αj) = b − a
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Here: in a tiling T = T1,T2, . . . the orientations of the tiles are
equidistributed, if for all 0 ≤ a < b < 2π

lim
n→∞

1

n

n∑
j=1

1[a,b](α(Tj)) =
b − a

2π

where α(Tj) is the angle of tile Tj (wrt some fixed copy of Tj).

Because the sum is not absolutely convergent, the order matters!

Here it is OK to order the tiles wrt distance from 0.
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Proof needs:
Weyl’s criterion: (an) equidistributed mod 1 iff

∀ ` ∈ Z \ {0} : lim
n→∞

1

n

n∑
j=1

e2πi`aj = 0.

Perron’s Theorem: M ∈ Rn×n ≥ 0 (i.e., non-negative entries
only) and Mk > 0 for some k, then

I There is a biggest eigenvalue µ ∈ R with µ > 0

I µ has a positive eigenvector v

I lim
n→∞

1
µnM

n exists, the columns are multiples of v

I If 0 ≤ A ≤ M, A 6= M, then the biggest eigenvalue of A is less
than µ.
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Sketch of proof: Let M be the substitution matrix, with biggest
eigenvalue µ.

Let A(`) =

(Mkm∑
j=1

e iα(Tj )`

)
km

(` ∈ Z)

be the matrix containing the orientations α(Tj) times `.
(Hence A(0) = M).

By irrationality of the angles

|A(`)|n ≤ Mn and |A(`)|n 6= Mn (from some n on)

We need to show:

lim
n→∞

(A(`)n)km
(Mn)km

= 0
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We show:

lim
n→∞

(A(`)n)km
(Mn)km

= 0

by:

∣∣∣∣(A(`)n)km
(Mn)km

∣∣∣∣ ≤ (|A(`)|n)km
(Mn)km

=
(|A(`)|n)km

ηn
ηn

(Mn)km
≤ c

(
η

µ

)n
(n→∞)→ 0.

(Where η is eigenvalue of |A(`)|, hence η < µ)

Corollary

In each primitive substitution tiling with tiles in infinitely many
orientations, the orientations are dense in [0, 2π[.
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Dirk Frettlöh Substitution tilings with dense tile orientations



.

So far: tiles are always triangles. No wonder:

Theorem (F.-Harriss, 2013)

Let T be a tiling in R2 with finitely many prototiles (i.e., finitely
many different tile shapes). Let all prototiles be centrally
symmetric convex polygons. Then each prototile occurs in a finite
number of orientations in T .
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Some people (e.g. Lorenzo Sadun, UT Austin) compute
cohomologies of tiling spaces (...which means: consider the set of all

tilings to a given substitution. Define when two tilings are “close”. This

yields a topological object which has cohomologies)

Question: Are there tilings with DTO and n-fold rotational
symmetry for n ≥ 3?

Answer: Yes. At least for n ∈ {3, 4, 5, 6, 7, 8}.
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n = 3 n = 4
sqrt(5)

1

1

1

2
sqrt(5)

1

2

sqrt(7)

1

1
sqrt(7)
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Considering the analogues for larger n

sqrt(5)

1

1

1

2
sqrt(5)

1

2

sqrt(7)

1

1
sqrt(7)
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E.g.
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...we found (rediscovered?):

Theorem (F.-Say-Awen-de las Peñas 2017)

In a parallelogram with edge lengths 1 and 2, and interior angle β:
If β = 2π

n (n ≥ 4) then α /∈ πQ.

α
1

2

1
2π2

n
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Embed the parallelogram in the complex plane:

I lower left vertex: 0

I upper left vertex: ξn := e2πi/n

I upper left vertex: z := 2 + ξn

α ∈ πQ ⇒ ∃m : zm ∈ R ⇒
(

z
|z|)

m = ±1 ⇒ zm

|z|m = ±1

⇒ z2m

|z|2m = 1 ⇒ zmzm

zmzm = 1 ⇒ zm

zm = 1 ⇒
(
z
z

)m
= 1

i.e., z
z is a complex mth root of unity.

Clearly, z
z ∈ Q(ξn).

Theorem: All roots of unity in Q(ξn) are of the form ±ξkn .

Hence m = n, or m = 2n (if m is even and n is odd)
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Dirk Frettlöh Substitution tilings with dense tile orientations



.

Embed the parallelogram in the complex plane:

I lower left vertex: 0

I upper left vertex: ξn := e2πi/n

I upper left vertex: z := 2 + ξn

α ∈ πQ ⇒ ∃m : zm ∈ R ⇒
(

z
|z|)

m = ±1 ⇒ zm

|z|m = ±1

⇒ z2m

|z|2m = 1 ⇒ zmzm

zmzm = 1 ⇒ zm

zm = 1 ⇒
(
z
z

)m
= 1

i.e., z
z is a complex mth root of unity.

Clearly, z
z ∈ Q(ξn).

Theorem: All roots of unity in Q(ξn) are of the form ±ξkn .

Hence m = n, or m = 2n (if m is even and n is odd)
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1α
1

2

2π2
n

π
n

α
1

1

π
2n

α
1

1

h h

h

h

P21PP

m = n: α < π
n (too small!), m = 2n: π

2n < α < π
n

Hence α /∈ πQ.
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Thank you!
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