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S(X): full symmetry group of some pattern X (including
reflections).

R(X): proper symmetry group of some pattern X (without
reflections).
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S(X): full symmetry group of some pattern X (including
reflections).

R(X): proper symmetry group of some pattern X (without
reflections).

Perfect colouring: Colouring of some pattern X, where each
f € S(X) acts as a global permutation of colours.

Chirally perfect: dito for R(X).
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Perfect colouring of (4*) with two colours:
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Not a perfect colouring of (44):
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Chirally perfect colouring of (4*) with five colours:
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Perfect colouring of (83%) with three colours:
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Questions:  Given some nice pattern X,

1. for which number of colours does there exist a perfect
colouring?

how many for a certain number of colours?

what is the algebraic structure of the colour symmetry group?
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Questions:  Given some nice pattern X,

1. for which number of colours does there exist a perfect
colouring?

2. how many for a certain number of colours?

3. what is the algebraic structure of the colour symmetry group?

Well known for lattices, regular tilings etc. in R, R3, ...

(Belov & Shubnikov, ... van der Waerden, Schwarzenberger, ...
Griinbaum & Shephard, Conway)

Few is known for regular tilings in H?
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Regular tiling (p?): edge-to-edge tiling by regular p-gons, where g
tiles meet at each vertex.

In R?: three regular tilings: (4%), (3°%), (63).
In S2: five regular tilings: (3%), (43), (3%), (5%), (3°).

In H?: Infinitely many regular tilings: (p9), where % +% < %
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Regular hyperbolic tiling (8%):
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Perfect colourings (F. 2008):

(4%) | 1,2,4,8,9,16,18,25,32,36, ...
1,2,4,6,8,16,18,24,25,32, ...
1,3,4,9,12,16,25,27,36,. ..
1,8,15,22,24,30,362,44,50°, . ..
1,22,28°,37,42% 44,497 50°, . ..
1,3,6,12,17,21% 24 25° 273 20% 314 33° 370 308 ...
1,2,4,8,10%,12,14,16°,18,20% 243,255 26,28!% 29,302, ...
1,2,6,11,12,16°,213,22% 24,267 28, . ..
1,5%,10% 11,157,16,207, 213,22, 25°7 26,273,30%, ..
1,2,4,6,8,10%,127,13% 14,15%,16%3,1813,1919 2023 2110 .
1,2,3,5,6%,9%, 101, 11%,127,13%,14°, 1510 16°,17°,18%°, . ..
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Chirally perfect colourings (F. 2008):

(4% | 1,2,4,5,8,9,10,13,16,17, 18, 20,25%, 26,29,32, ...
1,2,4,6,7,8,13,14,16,18,19,24,25,26,28,31, ...
1,3,4,7,9,12,13,16, 19, 21, 25,27, 28,31, 36, 37, ..
1,8,9,15%,227 24, ...
1,7,8,14% 212 227 .
1,3,6,9,10,12,13%,15,17°,18% 19, . ..
1,2,4,8% 10%,12,13%,14%,16%2,17°,18,19°, ...
1,2,6%,113,12° 16%%, 174, ...
1,5°%,6,10°, 113,155 162,174, ..
1,2,4°,6,7%,83,9%, 100 121 .
1,2,3,5,6%,7%,8,9%,103,11°, 1215 ..
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Perfect colouring of (4°) with five colours (R. Liick, Stuttgart):
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Perfect colouring of (4°) with 25 colours (R. Liick, Stuttgart):
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How to obtain these values?

The (full) symmetry group of a regular tiling (p9) is a Coxeter
group:

Gp.q = (a,b,c|a®> = b? = c? = (ab)P = (ac)?® = (bc)? = id)
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Left coset colouring of (p9):

Let F be the fundamental triangle.

» Choose a subgroup S of G, 4 such that a,bc S
» Assign colour 1 to each f F (f € S)

» Analoguosly, assign colour i to the i-th coset S; of S

Yields a colouring with [Gp 4 : S] colours.
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How to count perfect colourings now?

» Show that each of these colourings is perfect (simple)
» Show that each perfect colouring is obtained in his way

» Count subgroups of index k in Gp, 4 (hard)
Using GAP vyields the tables above.
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Nonperiodic tilings: Ammann-Beenker




Nonperiodic tilings: Danzer's k7 /7
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What are colour symmetries/perfect colourings here?

» Fourier space approach (Mermin, Lifshitz)

» Cyclotomic integers (Moody, Baake)
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What are colour symmetries/perfect colourings here?

» Fourier space approach (Mermin, Lifshitz)

» Cyclotomic integers (Moody, Baake)

Consider Z[&,], &, = €2™/", as a point set in the plane.

» n = 4: square lattice
» n=3,n=06: hexagonal lattice

» n=>5n2>7: dense point sets
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What are colour symmetries/perfect colourings here?

» Fourier space approach (Mermin, Lifshitz)
» Cyclotomic integers (Moody, Baake)

Consider Z[&,], &, = €2™/", as a point set in the plane.

» n = 4: square lattice
» n=3,n=06: hexagonal lattice
» n=>5n2>7: dense point sets

Consider colourings of Z[¢,], the tilings inherit the colours from
those.
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Ideals in the ring Z[€,] generate colourings.

If Z[£,] has class number one, each ideal is a principal ideal,
generated by some g € Z[,].

Thm (Bugarin, de las Pefias, F 2009) Let Z[¢,] have class number
one, C a colouring of Z[&,].

» C is generated by an ideal, iff C is chirally perfect.

» C generated by an ideal (q) is perfect, iff q is balanced.

q balanced: in the unique factorization

o= T1 o T <45 I of

pi€EP pjeC PkER

holds: ﬁj =j-
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Ideals in the ring Z[€,] generate colourings.

If Z[£,] has class number one, each ideal is a principal ideal,
generated by some g € Z[,].

Thm (Bugarin, de las Pefias, F 2009) Let Z[¢,] have class number
one, C a colouring of Z[&,].

» C is generated by an ideal, iff C is chirally perfect.

» C generated by an ideal (q) is perfect, iff q is balanced.

q balanced: in the unique factorization
o IB— P 4,
g=c [ p" [T wo@s [T Ak
pi€EP pjeC PkER
holds: ﬁj =j-

E.g.: n =4 (square lattice):
» 4 colours: ¢ =2 = (1+i)(1— /) balanced
» 5 colours: ¢ = (2 + i) not balanced
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