Highly symmetric fundamental cells for lattices in \mathbb{R}^2 and \mathbb{R}^3

Dirk Frettlöh

Technische Fakultät Universität Bielefeld

University of the Philippines Manila 8. Jan. 2014 *Point lattice* Γ in \mathbb{R}^d : the \mathbb{Z} -span of d linearly independent vectors.

Fundamental cell of Γ : \mathbb{R}^d/Γ .

Point lattice Γ in \mathbb{R}^d : the \mathbb{Z} -span of d linearly independent vectors.

Fundamental cell of Γ : \mathbb{R}^d/Γ .

Point group $P(\Gamma)$ of Γ : All isometries g with $g\Gamma = \Gamma$.

Trivial: any lattice Γ has a fundamental cell whose symmetry group is $P(\Gamma)$.

For instance, take the *Voronoi cell* of a lattice point x. (That is the set of points closer to x than to each other lattice point.)

Theorem (Elser, F 2013)

Let $\Gamma \subset \mathbb{R}^2$ be a lattice, but not a rhombic lattice. Then there is a fundamental cell F of Γ whose symmetry group S(F) is strictly larger than $P(\Gamma)$: $[S(F):P(\Gamma)]=2$.

'Rhombic lattice' means: one with basis vectors of equal length, but neither a square lattice nor a hexagonal lattice.

Proof: Case 1: Oblique lattice:

Oblique lattice:

Case 2: Square lattice (V. Elser)

Case 3: Hexagonal lattice

 $({\sf Elser\text{-}Cockayne},\ {\sf Baake\text{-}Klitzing\text{-}Schlottmann}):$

Case 4: Rectangular lattice

Euclidean algorithm at work:

Edge length of the rectangular gap: a, b with a > b.

$$a, a-b, a-2b, a-3b, \ldots, a-\left\lfloor \frac{a}{b} \right\rfloor b$$

Leaves a gap with edge length $b, c := a - \lfloor \frac{a}{b} \rfloor b$.

Continue.

Euclidean algorithm at work:

Edge length of the rectangular gap: a, b with a > b.

$$a, a-b, a-2b, a-3b, \ldots, a-\left\lfloor \frac{a}{b} \right\rfloor b$$

Leaves a gap with edge length $b, c := a - \lfloor \frac{a}{b} \rfloor b$.

Continue.

Case 5: rhombic lattices: still unsolved.

Application: Short perfect matchings

Consider the square lattice \mathbb{Z}^2 , and $R_{45}\mathbb{Z}^2$, the square lattice rotated by 45° .

Problem: Find a perfect matching between \mathbb{Z}^2 and $R_{45}\mathbb{Z}^2$ with maximal distance not larger than C > 0. How small can C be?

(It is easy to see that
$$C \geq \frac{\sqrt{2}}{2} = 0.7071....$$
)

Naively: difficult.

Using the 8-fold fundamental cell F yields a matching with C=0.92387...

How?

Naively: difficult.

Using the 8-fold fundamental cell F yields a matching with C=0.92387...

How?

- ▶ Consider $\mathbb{Z}^2 + F$. Each x + F ($x \in \mathbb{Z}^2$) contains exactly one point of \mathbb{Z}^2 in its centre.
- ▶ F is also fundamental cell for $R_{45}\mathbb{Z}^2$. Thus each x + F $(x \in \mathbb{Z}^2)$ contains exactly one point $x' \in R_{45}\mathbb{Z}^2$.
- ightharpoonup Match x and x'.

This (and its analogues) yields good matchings for

- $ightharpoonup \mathbb{Z}^2$ and $R_{45}\mathbb{Z}^2$: C=0.92387...
- ▶ The hexagonal lattice H and $R_{30}H$: C = 0.78867...
- ▶ A rectangular lattice P and $R_{90}P$: $C \leq \frac{1}{\sqrt{2}} \frac{\sqrt{5}+1}{2} b$.

(b is the length of the longer lattice basis vector of P.)

Dimension 3

Theorem (F 2013)

Let $\Gamma \subset \mathbb{R}^3$ be a lattice, but not a cubic lattice. Then there is a fundamental cell F of Γ whose symmetry group S(F) is strictly larger than $P(\Gamma)$: $[S(F):P(\Gamma)] = 2$.

"Cubic": One of \mathbb{Z}^3 , $\mathbb{Z}^3 \cup \left(\mathbb{Z}^3 + (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})\right)$ (" bcc"), A_3 (" fcc").

Proof for \mathbb{R}^3 : Consider the 14 cases:

Nr	Name	Point group	Order	2dim FC (# sym.)
1	\mathbb{Z}^3	*432	48	_
2	bcc	*432	48	_
3	fcc	*432	48	<u> </u>
4	Hexagonal	*622	24	12fold (48)
5	Tetragonal prim.	*422	16	8fold (32)
6	Tetragonal body-c.	*422	16	8fold (32)
7	Rhombohedral	2 * 3	12	6fold (24) / 12fold(48)
8	Orthorhombic prim.	*222	8	4fold (16)
9	Orthorhombic base-c.	*222	8	4fold (16)
10	Orthorhombic body-c.	*222	8	4fold (16)
11	Orthorhombic face-c.	*222	8	4fold (16)
12	Monoclinic prim.	2*	4	2fold (8)/4fold(16)
13	Monoclinic base-c.	2*	4	2fold (8)/4fold(16)
14	Triclinic prim.	2	2	[monocl.(4)] / 2fold (8)

Todo:

- Rhombic lattices
- ▶ Even more symmetry: $[S(F): P(\Gamma)] > 2$
- ▶ Higher dimensions $(d \ge 4)$
- Hyperbolic spaces
- Fractal dimension of the boundaries
- Connectivity
- Better matchings
- **.**..

A point group of a lattice is finite. Its elements are

- ▶ rotations and reflections (d = 2)
- ightharpoonup rotations, reflections and rotoreflections (d=3)

How many lattice point groups are there?

A point group of a lattice is finite. Its elements are

- ▶ rotations and reflections (d = 2)
- \triangleright rotations, reflections and rotoreflections (d=3)

How many lattice point groups are there?

 C_n : cyclic group of order n, D_n : dihedral group of order 2n.

Crystallographic restriction: Rotational symmetries of 2-dim and 3-dim lattices are either 2-fold, 3-fold, 4-fold, or 6-fold.

The crystallographic restriction yields

d=2: 10 candidates: $\mathcal{C}_1,\mathcal{C}_2,\mathcal{C}_3,\mathcal{C}_4,\mathcal{C}_6,\mathcal{D}_1,\mathcal{D}_2,\mathcal{D}_3,\mathcal{D}_4,\mathcal{D}_6$

d = 3: 32 candidates.

The crystallographic restriction yields

$$d=2$$
: 10 candidates: $C_1, C_2, C_3, C_4, C_6, D_1, D_2, D_3, D_4, D_6$

d = 3: 32 candidates.

Further considerations* yield: Only 4 lattice point groups in \mathbb{R}^2 :

$$C_2, D_2, D_4, D_6$$
 (2, *2, *4, *6 in orbifold notation)

(*: since, for instance, $x \mapsto -x$ is symmetry of any lattice)

The crystallographic restriction yields

$$d=2$$
: 10 candidates: $\mathcal{C}_1,\mathcal{C}_2,\mathcal{C}_3,\mathcal{C}_4,\mathcal{C}_6,\mathcal{D}_1,\mathcal{D}_2,\mathcal{D}_3,\mathcal{D}_4,\mathcal{D}_6$

d = 3: 32 candidates.

Further considerations* yield: Only 4 lattice point groups in \mathbb{R}^2 :

$$C_2, D_2, D_4, D_6$$
 (2, *2, *4, *6 in orbifold notation)

(*: since, for instance, $x \mapsto -x$ is symmetry of any lattice)

Only 7 lattice point groups in \mathbb{R}^3 :

$$\mathcal{C}_2, \mathcal{D}_2, \mathcal{D}_2 \times \mathcal{C}_2, \mathcal{D}_3 \times \mathcal{C}_2, \mathcal{D}_4 \times \mathcal{C}_2, \mathcal{D}_6 \times \mathcal{C}_2, \text{cube group}$$

(2, *2, *222, 2 * 3, *422, *622, *432 in orbifold notation)