
.

Highly symmetric fundamental cells for lattices in
R2 and R3

Dirk Frettlöh
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Point lattice Γ in Rd : the Z-span of d linearly independent vectors.

Fundamental cell of Γ: Rd/Γ.

(x,0)

(y,z)
F

Point group P(Γ) of Γ: All isometries g with gΓ = Γ.
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Trivial: any lattice Γ has a fundamental cell whose symmetry group
is P(Γ).

For instance, take the Voronoi cell of a lattice point x . (That is
the set of points closer to x than to each other lattice point.)
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Theorem (Elser, F 2013)

Let Γ ⊂ R2 be a lattice, but not a rhombic lattice. Then there is a
fundamental cell F of Γ whose symmetry group S(F ) is strictly
larger than P(Γ): [S(F ) : P(Γ)] = 2.

’Rhombic lattice’ means: one with basis vectors of equal length,
but neither a square lattice nor a hexagonal lattice.

a
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Proof: Case 1: Oblique lattice:

(x,0)

(y,z)
F
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Oblique lattice:

(x,0)

(y,z)
F
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Case 2: Square lattice (V. Elser)
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Case 3: Hexagonal lattice

(Elser-Cockayne, Baake-Klitzing-Schlottmann):
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Case 4: Rectangular lattice
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Euclidean algorithm at work:

Edge length of the rectangular gap: a, b with a > b.

a, a− b, a− 2b, a− 3b, . . . , a−
⌊a
b

⌋
b

Leaves a gap with edge length b, c := a−
⌊
a
b

⌋
b.

Continue.

Case 5: rhombic lattices: still unsolved.
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Application: Short perfect matchings

Consider the square lattice Z2, and R45Z2, the square lattice
rotated by 45◦.

Problem: Find a perfect matching between Z2 and R45Z2 with
maximal distance not larger than C > 0. How small can C be?

(It is easy to see that C ≥
√
2
2 = 0.7071....)
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Naively: difficult.

Using the 8-fold fundamental cell F yields a matching with
C = 0.92387....

How?

I Consider Z2 + F . Each x + F (x ∈ Z2) contains exactly one
point of Z2 in its centre.

I F is also fundamental cell for R45Z2. Thus each x + F
(x ∈ Z2) contains exactly one point x ′ ∈ R45Z2.

I Match x and x ′.
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This (and its analogues) yields good matchings for

I Z2 and R45Z2: C = 0.92387....

I The hexagonal lattice H and R30H: C = 0.78867...

I A rectangular lattice P and R90P: C ≤ 1√
2

√
5+1
2 b.

(b is the length of the longer lattice basis vector of P.)
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Dimension 3

Theorem (F 2013)

Let Γ ⊂ R3 be a lattice, but not a cubic lattice. Then there is a
fundamental cell F of Γ whose symmetry group S(F ) is strictly
larger than P(Γ): [S(F ) : P(Γ)] = 2.

“Cubic”: One of Z3, Z3 ∪
(
Z3 + (12 ,

1
2 ,

1
2)
)

(”bcc”), A3 (”fcc”).
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Proof for R3: Consider the 14 cases:

Nr Name Point group Order 2dim FC (# sym.)

1 Z3 ∗432 48 —
2 bcc ∗432 48 —
3 fcc ∗432 48 —

4 Hexagonal ∗622 24 12fold (48)

5 Tetragonal prim. ∗422 16 8fold (32)
6 Tetragonal body-c. ∗422 16 8fold (32)

7 Rhombohedral 2 ∗ 3 12 6fold (24) / 12fold(48)

8 Orthorhombic prim. ∗222 8 4fold (16)
9 Orthorhombic base-c. ∗222 8 4fold (16)
10 Orthorhombic body-c. ∗222 8 4fold (16)
11 Orthorhombic face-c. ∗222 8 4fold (16)

12 Monoclinic prim. 2∗ 4 2fold (8)/4fold(16)
13 Monoclinic base-c. 2∗ 4 2fold (8)/4fold(16)

14 Triclinic prim. 2 2 [monocl.(4)] / 2fold (8)
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= =

1 2 3 4

5 6 7

8 9 10 11

12 13

14
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Todo:

I Rhombic lattices

I Even more symmetry: [S(F ) : P(Γ)] > 2

I Higher dimensions (d ≥ 4)

I Hyperbolic spaces

I Fractal dimension of the boundaries

I Connectivity

I Better matchings

I ...
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A point group of a lattice is finite. Its elements are

I rotations and reflections (d = 2)

I rotations, reflections and rotoreflections (d = 3)

How many lattice point groups are there?

Cn: cyclic group of order n, Dn: dihedral group of order 2n.

C D D DC3 4 543

Crystallographic restriction: Rotational symmetries of 2-dim and
3-dim lattices are either 2-fold, 3-fold, 4-fold, or 6-fold.
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The crystallographic restriction yields

d = 2: 10 candidates: C1, C2, C3, C4, C6,D1,D2,D3,D4,D6

d = 3: 32 candidates.

Further considerations* yield: Only 4 lattice point groups in R2:

C2,D2,D4,D6 (2, ∗2, ∗4, ∗6 in orbifold notation)

(*: since, for instance, x 7→ −x is symmetry of any lattice)

Only 7 lattice point groups in R3:

C2,D2,D2 × C2,D3 × C2,D4 × C2,D6 × C2, cube group

(2, ∗2, ∗222, 2 ∗ 3, ∗422, ∗622, ∗432 in orbifold notation)
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