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Consider a subset P C [0,1]9.
Fix a very irrational* o € R? and count how often

amod 1,2amod1,..., nae mod 1

hits P. Call these numbers h(n).

*: a=(a1,...,aq), i ¢Q, «ai/aj¢ Q fori#j)
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Then in many cases (e.g. P is a polygon)

h(nn) — vol(P)

(In other words: |h(n) — n - vol(P)| € o(n))
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Then in many cases (e.g. P is a polygon)
h(n) — vol(P)
n
(In other words: |h(n) — n - vol(P)| € o(n))
Sometimes even better:
3C>0: |h(n)—n-vol(P)| < C
(In other words: |h(n) — n-vol(P)| € O(1))

In the latter case P is called a bounded remainder set (BRS)
(with respect to «)
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Then in many cases (e.g. P is a polygon)

h(nn) — vol(P)

(In other words: |h(n) — n - vol(P)| € o(n))
Sometimes even better:

3C>0: |h(n)—n-vol(P)| < C

(In other words: |h(n) — n-vol(P)| € O(1))

In the latter case P is called a bounded remainder set (BRS)
(with respect to «)

(There are some technicalities regarding the choice of the starting point,
including a “for almost all”, but for this talk this is irrelevant)
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Question: Is this one a BRS? Or this one?
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In Dimension 1:

Theorem (Kesten 1966)

Let « €[0,1],0<a< b<1. Then [a,b] isa BRS wrt « if and
onlyifb—a&eZ+ oZ.

(if-part: Hecke 1921, Ostrowski 1927)

3a

b 200 ¥ mod 1

a

4o
a
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There is an analogue of Kesten's theorem in higher dimensions:
Theorem (Grepstad-Lev 2015)

Let oo € R be very irrational.

1. Any parallelepiped spanned by vectors v1, ..., vy belonging to
79 + aZ is a BRS.
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There is an analogue of Kesten's theorem in higher dimensions:
Theorem (Grepstad-Lev 2015)

Let oo € R be very irrational.

1. Any parallelepiped spanned by vectors v1, ..., vy belonging to
79 + aZ is a BRS.

2. A Riemann measurable set S € R? is a BRS wrt « if and only if
S is (Z9 + oZ)-equidecomposable to some parallelepiped spanned
by vectors in 79 + oZ.

17&70‘
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Back to dimension 1: Let us take a different viewpoint:

1 o
°
° ° ° hd °
° . * o °
° ° ° hd °
), 3 ' Y O,,mmm,,!,mo ,,,,,,,,,,,,,,,,,, °
© o o ° e}

a o o o

T—i it i Q—I—I—I—?—I—I—I—>

The image shows {(k, ka mod 1)| k =0,1,2,...}.
Let Ap=1{k|0< kamodl<b, keZ}.
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Back to dimension 1: Let us take a different viewpoint:

1 o
°
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The image shows {(k, ka mod 1)| k =0,1,2,...}.
Let Ap=1{k|0< kamodl<b, keZ}.

This image (plus some arguments) yields:

The interval [0, b] is a BRS <> A is in bounded distance to +Z.
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Let us consider discrete point sets A on the line (Delone sets).

Definition
Let A, N be Delone sets. We say that N and N are bounded
distance equivalent (A S N') if there is g : N — N bijective with

IC>0 ¥YxelA: |[x—gkx)|<C
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Definition
Let A, be Delone sets. We say that N\ and N’ are bounded
distance equivalent (A B N') if there is g : N — N bijective with

AC>0 VxelA: |x—g(x)|<C
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Definition
Let A, be Delone sets. We say that N\ and N’ are bounded
distance equivalent (A B N') if there is g : N — N bijective with

AC>0 VxelA: |x—g(x)|<C

= e @ @ @ @ @ e )
o o o—o0 o—o ° o—o
Lemma

Bounded distance equivalence is an equivalence relation.
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Definition
Let A, be Delone sets. We say that N\ and N’ are bounded
distance equivalent (A B N') if there is g : N — N bijective with

AC>0 VxelA: |x—g(x)|<C

= e @ @ @ @ @ e )
o o o—o0 o—o ° o—o
Lemma

Bounded distance equivalence is an equivalence relation.

Where are we: Given a Delone set as above,

The interval [0,b] isa BRS <« A~ EZ.
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Particularly nice Delone sets: Cut-and-Project Sets

» [ a lattice in
RY x R®
> 11,y projections
> 71| injective

EH = Rd (ﬂ——l Rd x [R€ E} RE = EL > 7T2([—) dense
U @] U
A r W » W compact
("window”,
somehow nice, e.g.
OW has zero
measure)

Then A = {m1(x) | x € A\, m2(x) € W} is a (regular)
cut-and-project set (CPS).
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Cut-and-Project Sets

window |- .° . - "

* (1.,1) * . .

¢ -(é/g) ° * ° . ¢ . °
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Cut-and-Project Sets
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Cut-and-Project Sets
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The last one uses d = e = 1 (R! x RY).
An example with d = 1, e = 2 (R? x R?).:

c: S— ML, M- SML, L— LML

M L S M L L M L M L S
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The last one uses d = e = 1 (R! x RY).
An example with d = 1, e = 2 (R? x R?).:

c: S— ML, M- SML, L— LML

M L S M L L M L M L S

...uses a window W that looks like a fractal:
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The result above holds in any dimension:

Theorem (1)
Let A\ be a cut-and-project set in R with window W C RY. Then
A% ¢Z if and only if W is a BRS (where ¢ =

1
dens(/\))'

(Implicitly in Duneau-Oguey 1990, explicitly in Haynes 2014,
F-Garber 2018, elsewhere?)
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Pisot substitutions

A one-dimensional tile substitution producing tilings of the line by
intervals. The endpoints form some Delone set.
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A one-dimensional tile substitution producing tilings of the line by
intervals. The endpoints form some Delone set.

b a b a b a
[— S
L]
L]
> My =(33)

> Inflation factor A =2 4 1/3
» length(a) = 1, length(b) = /3
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A one-dimensional substitution tiling with inflation factor A is a
Pisot substitution if all eigenvalues of M, other than X are less
than one in modulus.

E.g. the examples above (with S,M,L, resp. a,b) are Pisot
substitutions.
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A one-dimensional substitution tiling with inflation factor A is a
Pisot substitution if all eigenvalues of M, other than X are less
than one in modulus.

E.g. the examples above (with S,M,L, resp. a,b) are Pisot
substitutions.

Theorem (2)(F-Garber 2018)

All one-dimensional Pisot substitution tilings are bounded distance
equivalent to cZ (for some ¢ > 0).
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A one-dimensional substitution tiling with inflation factor A is a
Pisot substitution if all eigenvalues of M, other than X are less
than one in modulus.

E.g. the examples above (with S,M,L, resp. a,b) are Pisot
substitutions.

Theorem (2)(F-Garber 2018)

All one-dimensional Pisot substitution tilings are bounded distance
equivalent to cZ (for some ¢ > 0).

Unfortunately:

Theorem (2)(Holton-Zamboni 1998, Dumont 1990)

All one-dimensional Pisot substitution tilings are bounded distance
equivalent to cZ (for some ¢ > 0).
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However, let’'s go on. Here is the Pisot conjecture:

Conjecture
All Pisot substitution tilings are cut-and-project sets.

(True for two tiles resp. letters, and for several small 3-letter cases)
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However, let’'s go on. Here is the Pisot conjecture:

Conjecture
All Pisot substitution tilings are cut-and-project sets.
(True for two tiles resp. letters, and for several small 3-letter cases)

Finally we can assemble the results above:

Theorem
Assuming the Pisot conjecture, the window of any Pisot tiling is a
BRS (wrt to a certain o« coming from the cut-and-projet setup).

Let A be the vertex set of a Pisot substitution tiling.
» Theorem (2) implies A % ez,

» Under the Pisot conjecture A is a cut-and-project set and has
a window W

» By Theorem (1) the window W is a BRS
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This result yields several non-trivial BRS
(beyond Kesten, and hard to decide by Grepstad-Lev)

1416

02 04 06 08 10

-1.2

a— aab a— abc,b— ab,c — b a— abc,b— ab,c — a
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A particularly fuzzy BRS:

a—>b, b—c, c—ab
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There is still much to explore. More here:

D.F., Alexey Garber:

Pisot substitution sequences, one dimensional cut-and-project sets
and bounded remainder sets with fractal boundary,

Indagationes Mathematicae 29 (2018) 1114-1130
arXiv:1711.01498

and references therein.
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Thank you.
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