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1. Aperiodic tilings
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Aperiodic Tiling
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Aperiodic
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Local rules

Penrose tiling: can be generated by local rules
(forces aperiodicity)
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Substitution tilings:

Penrose tiling: can also be generated by a substitution rule
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Other examples: Ammann-Beenker tiling
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Other examples: Buffalo tiling
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Other examples: Socolar’s 12-fold tiling
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Aperiodic tilings with a high degree of local and global order can
be generated by

§ Local matching rules

§ Substitution rules

§ (Cut and project method, more technical)

Penrose: 1972, others in the 70s and 80s.

My contribution (with Edmund Harriss and Franz Gähler):
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2. Inductive rotation Hofstetter Tilings
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In 2010 I received an email:
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Inductive rotation
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2 3
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G G

Repeating the iteration fills larger and larger regions.
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Inductive rotation
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2 3
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A new construction for aperiodic tilings!?
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Decorations of the underlying yields variants of the “naked” tiling
(last slide): e.g. the “arrowed” tiling.

R0
R1

R2
R3

...and others: n, e, k . . . including periodic tilings: ‘.
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Due to some constraints we really got things started in 2014.

Questions:

§ Are the tilings aperiodic?

§ Can they be generated by a cut-and-project method?

§ How are the tilings related (e.g. naked vs arrowed)

§ ...

We were able to prove answers to 1 and 2 for the arrowed version.
Answers: yes and yes.

Dirk Frettlöh Inductive rotation Tilings



Central results:

Theorem (1)

The arrowed tilings are limitperiodic.

Theorem (2)

The arrowed tilings can be generated by a substitution rule.

Remark: Theorem 2 is a pity, since this new method generates
tilings that can also be obtained by the old method.

Anyway. What does “limitperiodic” mean?
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Dirk Frettlöh Inductive rotation Tilings
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...and so on. The entire tiling is the union of periodic sub-tilings.
This property is called “limitperiodic”. (In dynamical systems aka
”Toeplitz structures”)

Once Theorem 1 is proven, this allows to prove Theorem 2.

The substitution rule:

T1 T2 T3 T4

...generates the same (infinite) tilings as Kurt’s inductive rotation
method.
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Once Theorem 2 is proven, the well-developed machinery for
substitution tilings can be applied. Yields e.g.

Theorem (3)

The arrowed tiling is aperiodic.

Theorem (4)

The arrowed tiling can be generated by a cut-and-project method.
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Theorem 3 can be proven by a “classical” result (1984) which says
essentially:

If the substitution rule has a unique inverse (by local means) then
the tiling is aperiodic.

In even plainer words:

If one can identify the “previous generation” of the substitution
tiling in a unique way then the tiling is aperiodic.

Here:
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No.

Dirk Frettlöh Inductive rotation Tilings



No.
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No.
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Yes.
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Bingo!
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In a similar manner we can use general results to compute e.g. the
relative frequencies of the tiles in the tiling:

The relative frequencies of the tiles are the entries of the
normalised eigenvector of the dominant eigenvalue of the

substitution matrix

T1 T2 T3 T4

¨

˚

˚

˝

1 1 1 1
1 1 1 1
1 1 0 0
1 1 2 2

˛

‹

‹

‚

Relative frequencies: 2:2:1:3
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Theorem 4 is obtained in a similar manner, using a general result
applied to this situation (Lee-Moody-Solomyak 2003):

If [some technical condition is fulfilled] then the tilings are
cut-and-project tilings.

More in

D. Frettlöh, K. Hofstetter:
Inductive rotation tilings, Proc. Steklov Inst. 288 (2015) 269-280;
arXiv:1410.0592
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The article mentioned answers several questions on the arrowed
tiling.

Several further questions remain open. E.g.

§ What about other tile decorations, e.g. the naked version?
(probably everything the same)

§ What about variants with 3-fold rotations and 6-fold
rotations, rather than 4-fold?
(3-fold: probably analoguously, 6-fold: no idea)
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Thank you!
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