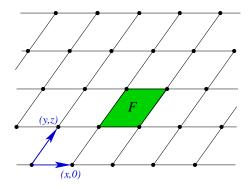
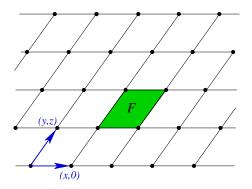
Fractal fundamental domains for lattices in the plane

Dirk Frettlöh


University of Bielefeld Bielefeld, Germany

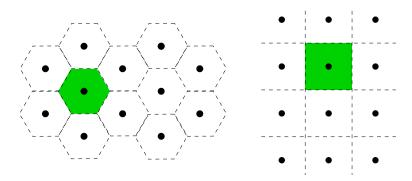
Fractal Geometry and Stochastics 4 Hansestadt Greifswald 8 - 12 Sep 2008


Point lattice Γ in \mathbb{R}^d : the \mathbb{Z} -span of d linearly independent vectors.

Fundamental cell of Γ : \mathbb{R}^d/Γ .

Point lattice Γ in \mathbb{R}^d : the \mathbb{Z} -span of d linearly independent vectors.

Fundamental cell of Γ : \mathbb{R}^d/Γ .

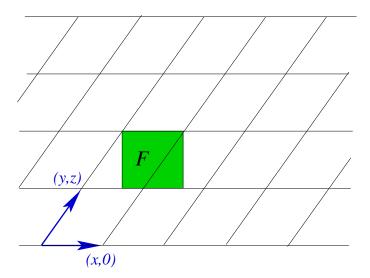


Point group $P(\Gamma)$ of Γ : All linear isometries f with $f(\Gamma) = \Gamma$.

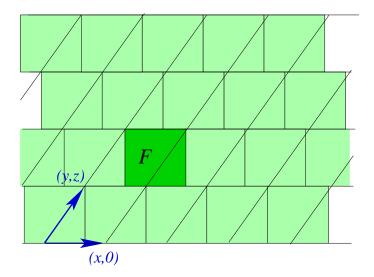
Trivially, each lattice Γ has a fundamental cell which symmetry group is $P(\Gamma)$.

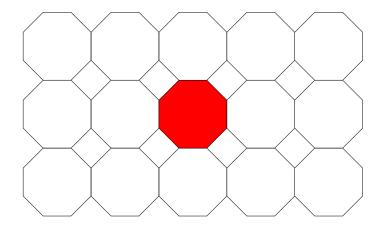
For instance, take the Voronoi cell of a lattice point x. (That is the set of points closer to x than to each other lattice point.)

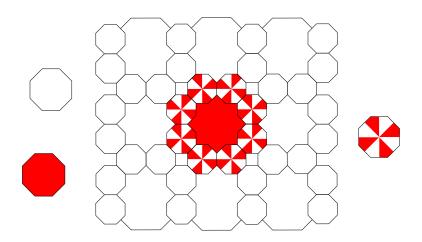
Main result

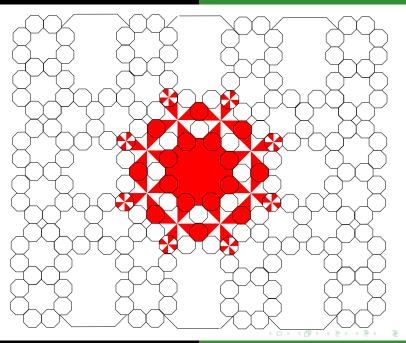

Theorem (Fr.)

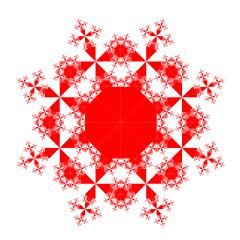
Let $\Gamma \subset \mathbb{R}^2$ be a lattice, but not a rhombic lattice. Then there is a fundamental cell F of Γ which symmetry group is strictly larger than $P(\Gamma)$: $[S(F):P(\Gamma)]=2$.

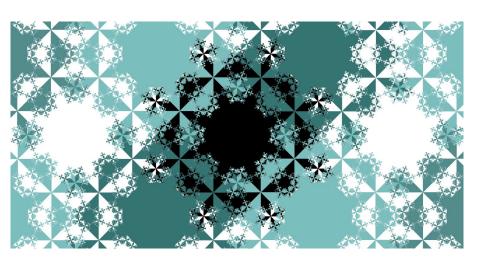

'Rhombic lattice' means here: one with basis vectors of equal length, but neither square lattice nor hexagonal lattice.

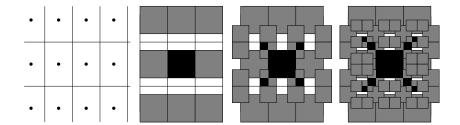

Generic lattice:

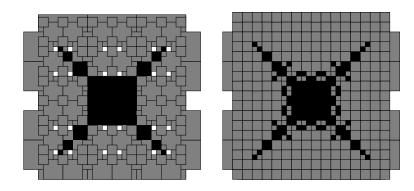


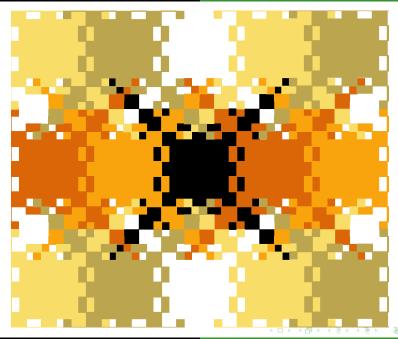

Generic lattice:




Square lattice (Veit Elser):






Hexagonal lattice (Elser-Cockayne, Baake-Klitzing-Schlottmann):

Rectangular lattice

Application: Minimal matchings

Consider the square lattice \mathbb{Z}^2 , and $R_{45}\mathbb{Z}^2$, the square lattice rotated by 45°.

Problem: Find a matching between \mathbb{Z}^2 and $R_{45}\mathbb{Z}^2$ with maximal distance not larger than C > 0. How small can C be?

Application: Minimal matchings

Consider the square lattice \mathbb{Z}^2 , and $R_{45}\mathbb{Z}^2$, the square lattice rotated by 45° .

Problem: Find a matching between \mathbb{Z}^2 and $R_{45}\mathbb{Z}^2$ with maximal distance not larger than C > 0. How small can C be?

That is, find $f: \mathbb{Z}^2 \to R_{45}\mathbb{Z}^2$, where f is 1-1 and

$$\forall x \in \mathbb{Z}^2: d(x, f(x)) \leq C$$

for C as small as possible.

(It is easy to see that $C > \frac{\sqrt{2}}{2} = 0.7071....$)

Naively: difficult.

Using the 8-fold fundamental domain F yields a matching with C=0.92387...

How?

Naively: difficult.

Using the 8-fold fundamental domain F yields a matching with C=0.92387...

How?

- ▶ Consider $\mathbb{Z}^2 + F$. Each x + F ($x \in \mathbb{Z}^2$) contains exactly one point of \mathbb{Z}^2 in its centre.
- ▶ F is also fundamental domain for $R_{45}\mathbb{Z}^2$. Thus each x+F $(x \in \mathbb{Z}^2)$ contains exactly one point $x' \in R_{45}\mathbb{Z}^2$.
- ▶ Let f(x) = x'.

This (and its analogues) yields good matchings for

- ▶ \mathbb{Z}^2 and $R_{45}\mathbb{Z}^2$: C = 0.92387...
- ▶ The hexagonal lattice H and $R_{30}H$: C = 0.78867...
- ▶ A rectangular lattice P and $R_{90}P$: $C \leq \frac{a+b}{\sqrt{2}}$.

Here, a and b are the lengths of the lattice basis vectors of P.

What next?

- ► Rhombic lattices
- Higher dimensions
- ▶ IFS: Not even known for Elser's example
- Dimension of the boundary?

