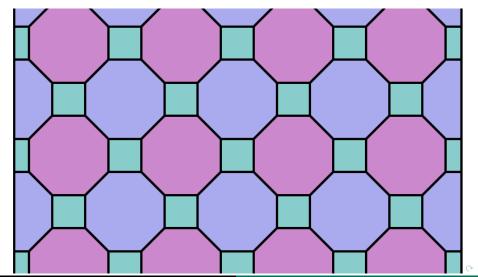
Tilings, quasicrystals and pinwheels

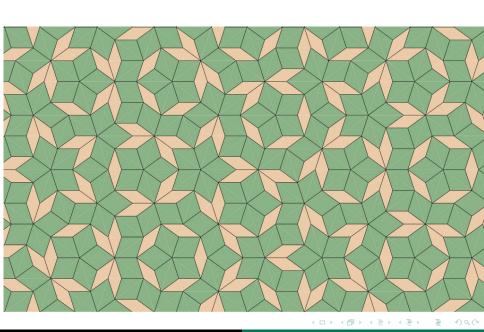
Dirk Frettlöh

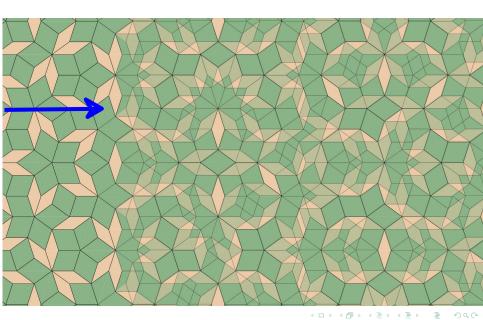
Technische Fakultät Universität Bielefeld

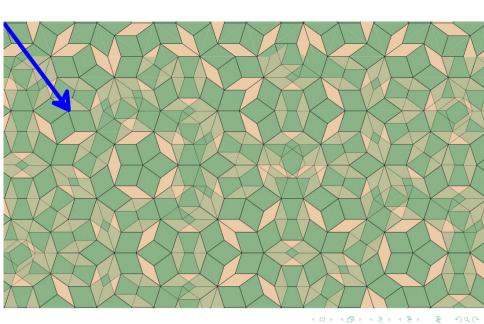
University of the Philippines Los Baños 29. Jan. 2014

Tilings

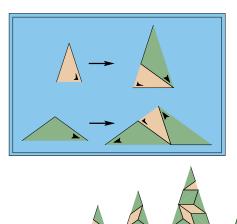


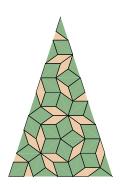






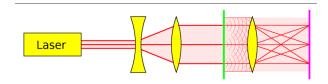
Substitution tilings:





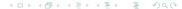
Quasicrystals

Physical diffraction experiment:



Mathematical diffraction experiment:

- ▶ Tiling \sim discrete point set Λ .
- Fouriertransform $\widehat{\gamma}_{\Lambda}$ is the <u>diffraction spectrum</u>.

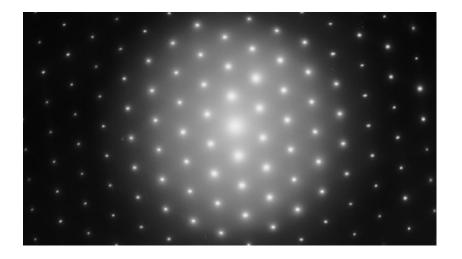


Since $\widehat{\gamma}:=\widehat{\gamma}_{\Lambda}$ is again a measure, it decomposes into three parts: (by Lebesgue's decomposition theorem)

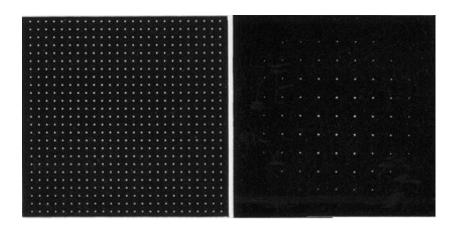
$$\widehat{\gamma} = \widehat{\gamma}_{\textit{pp}} + \widehat{\gamma}_{\textit{sc}} + \widehat{\gamma}_{\textit{ac}}$$

(pp: pure point, ac: absolutely continuous, sc: singular continuous)

Crystal diffraction (physical experiment):



Crystal diffraction (mathematical computation):



Crystal diffraction: Noble prize 1914

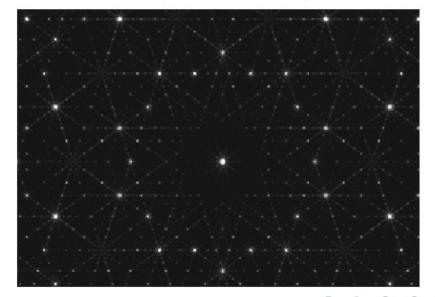
Ideal (perfect, infinite) crystals have pure point diffraction:

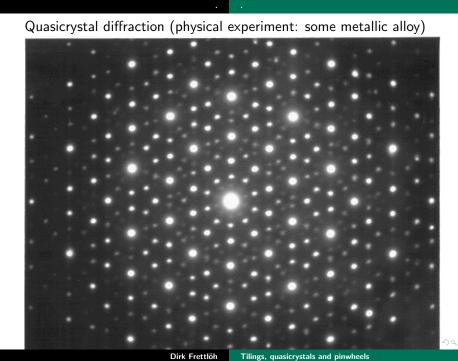
$$\widehat{\gamma} = \widehat{\gamma}_{\textit{pp}} + \widehat{\gamma}_{\textit{sc}} + \widehat{\gamma}_{\textit{ac}}$$

Ideal (mathematical, infinite) quasicrystals have also pure point diffraction:

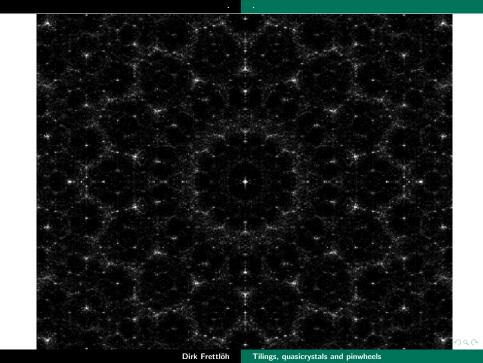
$$\widehat{\gamma}=\widehat{\gamma}_{\mathit{pp}}$$

Quasicrystal diffraction (mathematical: Penrose)



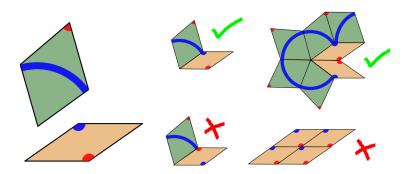


Quasicrystal diffraction: Noble prize 2011 for Danny Shechtman

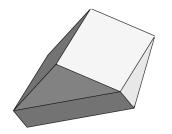


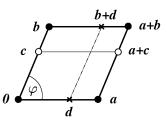
Local rules

Penrose tiling: force aperiodicity by local rules

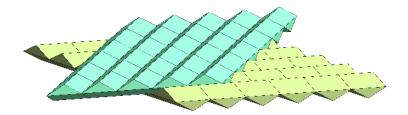


Conway's biprism, Schmitt-Conway-Danzer tile:

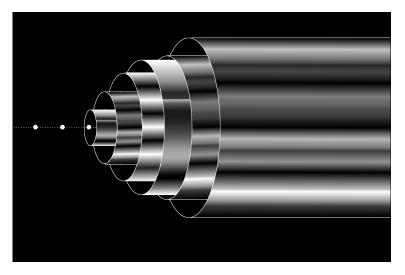




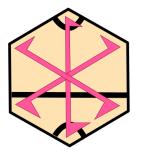
Conway's biprism, Schmitt-Conway-Danzer tile:



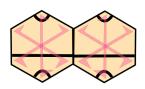
Its diffraction: (Baake-F 2005)

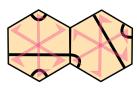


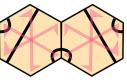
Joan Taylor's monotile:



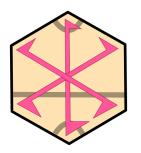
Schwarze Regel:

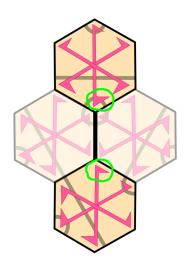


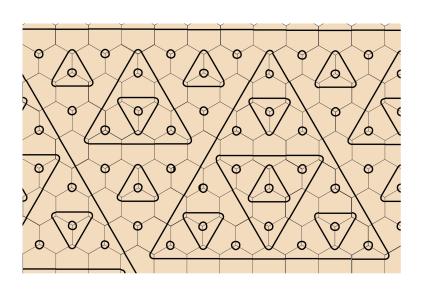


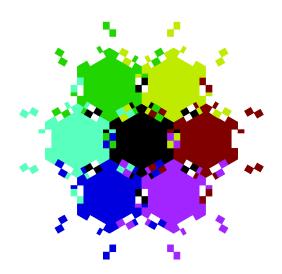


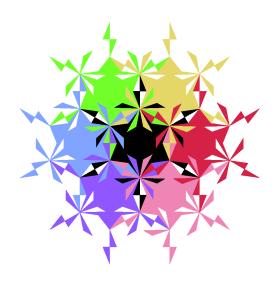
Pinke Regel:

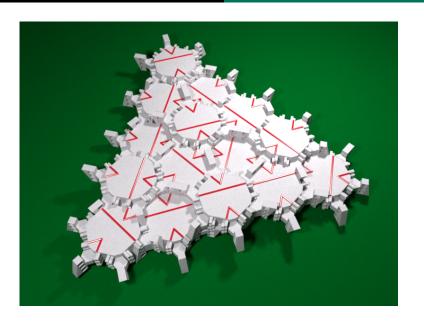






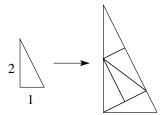


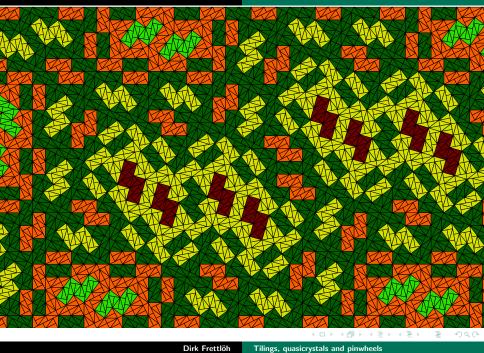


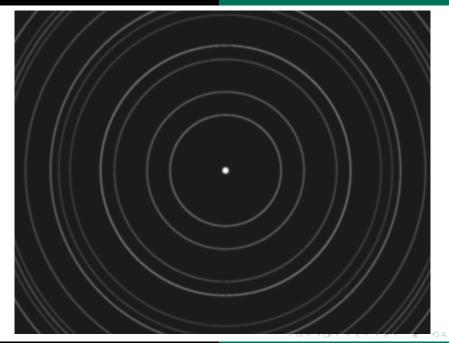


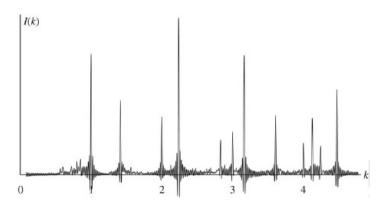
Pinwheels

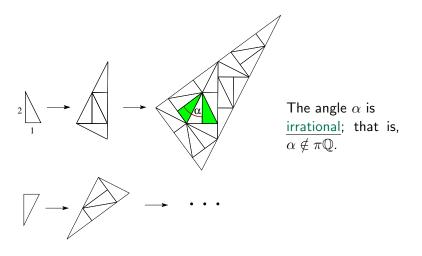
Conway's Pinwheel substitution (1991):











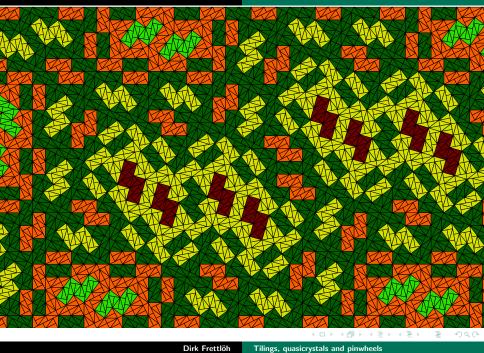
For pinwheel tilings: Orientations are dense in $[0, 2\pi[$.

Even more: orientations are equidistributed in $[0, 2\pi[$.

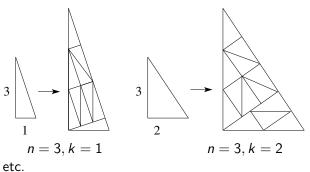
This is true not only for the pinwheel tiling:

Theorem (F. '08)

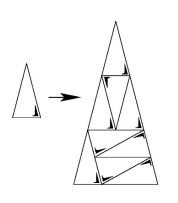
In each primitive substitution tiling with tiles in infinitely many orientations, the orientations are equidistributed in $[0, 2\pi[$.

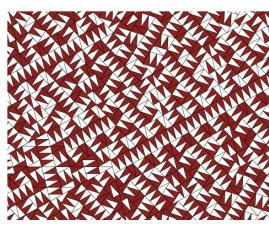


There are many examples: Pinwheel (n, k)



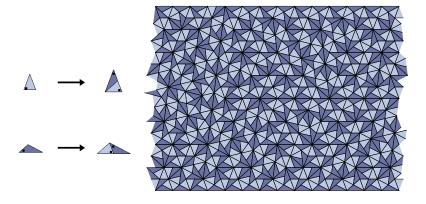
Unknown (≤1996, Penrose? Danzer?):



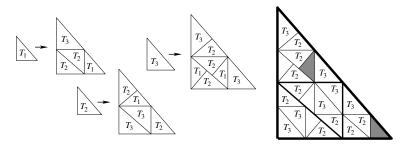


(+ obvious generalizations)

C. Goodman-Strauss, L. Danzer (ca. 1996):

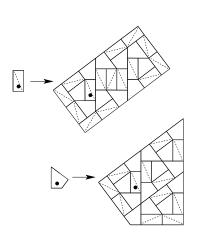


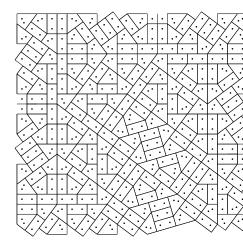
Pythia (m, j), here: m = 3, j = 1.

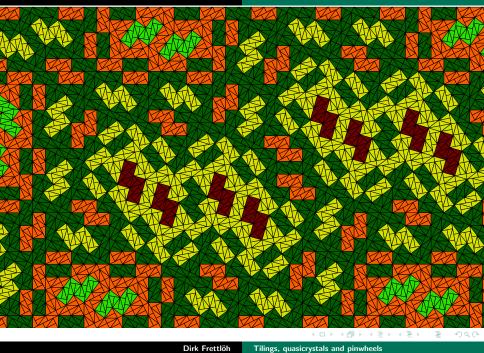


So far: tiles are always triangles. One exception:

Kite Domino (equivalent with Pinwheel):







Can we find examples with rhombic tiles for instance?

Answer: No.

Theorem (F.-Harriss, 2013)

Let \mathcal{T} be a tiling in \mathbb{R}^2 with finitely many prototiles (i.e., finitely many different tile shapes). Let all prototiles be centrally symmetric convex polygons (i.e., P = -P). Then each prototile occurs in a finite number of orientations in \mathcal{T} .

Can we find examples with rhombic tiles for instance?

Answer: No.

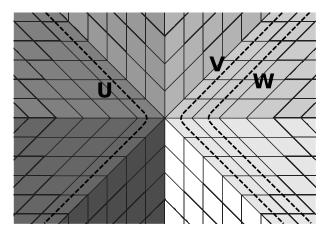
Theorem (F.-Harriss, 2013)

Let \mathcal{T} be a tiling in \mathbb{R}^2 with finitely many prototiles (i.e., finitely many different tile shapes). Let all prototiles be centrally symmetric convex polygons (i.e., P=-P). Then each prototile occurs in a finite number of orientations in \mathcal{T} .

Theorem (F.-Harriss, 2013)

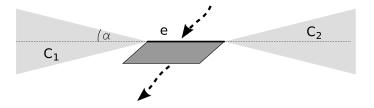
Let \mathcal{T} be a tiling in \mathbb{R}^2 with finitely many parallelograms as prototiles. Then each prototile occurs in a finite number of orientations in \mathcal{T} .

Assume all tiles are vertex-to-vertex.



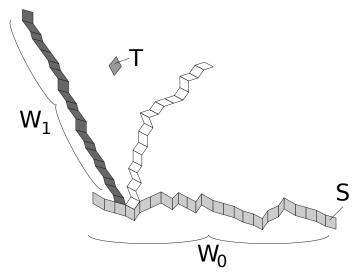
A <u>worm</u> is a sequence of tiles ..., T_{-1} , T_0 , T_1 , T_2 ,... where T_k and T_{k+1} share a common edge, and all shared edges are parallel.

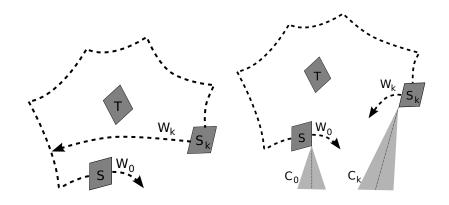
Cone Lemma: A worm defined by edge e cannot enter C_1 or C_2 . (α the minimal interior angle in the prototiles)



Loop Lemma: A worm has no loop.

<u>Travel Lemma:</u> Any two tiles can be connected by a finite sequence of finite worm pieces. (At most $k = \lceil \frac{2\pi}{\alpha} \rceil$ many.)





Proof of theorem (parallelogram version): Fix some tile S. Every tile T can be connected to S by at most $\lceil \frac{2\pi}{\alpha} \rceil$ worm pieces. That is, with $\lceil \frac{2\pi}{\alpha} \rceil$ turns.

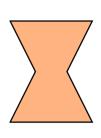
Proof of theorem (parallelogram version): Fix some tile S. Every tile T can be connected to S by at most $\lceil \frac{2\pi}{\alpha} \rceil$ worm pieces. That is, with $\lceil \frac{2\pi}{\alpha} \rceil$ turns.

<u>Proof of theorem (general):</u> Any centrally symmetric convex polygon can be dissected into parallelograms. (see e.g. Kannan-Soroker 1992)

Proof of theorem (parallelogram version): Fix some tile S. Every tile T can be connected to S by at most $\lceil \frac{2\pi}{\alpha} \rceil$ worm pieces. That is, with $\lceil \frac{2\pi}{\alpha} \rceil$ turns.

<u>Proof of theorem (general):</u> Any centrally symmetric convex polygon can be dissected into parallelograms. (see e.g. Kannan-Soroker 1992)

- ▶ Probably true in higher dimensions
- ► Also true for non-convex? Hmm...



Possible application:

Generalise to 3D and non-convex. A physical interpretation:

If the interactions in a solid (bounding forces between atoms, molecules...) are centrally symmetric, the solid shows finitely many orientations.

In fact, there are only very few exceptions (e.g. smectic phases of liquid crystals)

