
.

Tilings, quasicrystals and pinwheels

Dirk Frettlöh
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Tilings
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Substitution tilings:
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Quasicrystals

Physical diffraction experiment:

Mathematical diffraction experiment:

I Tiling ; discrete point set Λ.

I γΛ = lim
r→∞

1
volBr

∑
x ,y∈Λ∩Br

δx−y .

I Fouriertransform γ̂Λ is the diffraction spectrum.
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Since γ̂ := γ̂Λ is again a measure, it decomposes into three parts:
(by Lebesgue’s decomposition theorem)

γ̂ = γ̂pp + γ̂sc + γ̂ac

(pp: pure point, ac: absolutely continuous, sc: singular
continuous)
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Crystal diffraction (physical experiment):
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Crystal diffraction (mathematical computation):
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Crystal diffraction: Noble prize 1914
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Ideal (perfect, infinite) crystals have pure point diffraction:

γ̂ = γ̂pp + γ̂sc + γ̂ac————

Ideal (mathematical, infinite) quasicrystals have also pure point
diffraction:

γ̂ = γ̂pp
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Quasicrystal diffraction (mathematical: Penrose)
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Quasicrystal diffraction (physical experiment: some metallic alloy)
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Quasicrystal diffraction: Noble prize 2011 for Danny Shechtman
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Local rules

Penrose tiling: force aperiodicity by local rules
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Conway’s biprism, Schmitt-Conway-Danzer tile:
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Conway’s biprism, Schmitt-Conway-Danzer tile:
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Its diffraction: (Baake-F 2005)
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Joan Taylor’s monotile:
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Pinwheels

Conway’s Pinwheel substitution (1991):

1

2
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1

2

. . .

α The angle α is
irrational; that is,
α /∈ πQ.
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For pinwheel tilings: Orientations are dense in [0, 2π[.

Even more: orientations are equidistributed in [0, 2π[.

This is true not only for the pinwheel tiling:

Theorem (F. ’08)

In each primitive substitution tiling with tiles in infinitely many
orientations, the orientations are equidistributed in [0, 2π[.
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There are many examples: Pinwheel (n, k)

3

1

3

2

n = 3, k = 1 n = 3, k = 2
etc.
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Unknown (≤1996, Penrose? Danzer?):

(+ obvious generalizations)
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C. Goodman-Strauss, L. Danzer (ca. 1996):
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Pythia (m, j), here: m = 3, j = 1.
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So far: tiles are always triangles. One exception:

Kite Domino (equivalent with Pinwheel):
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Can we find examples with rhombic tiles for instance?

Answer: No.

Theorem (F.-Harriss, 2013)

Let T be a tiling in R2 with finitely many prototiles (i.e., finitely
many different tile shapes). Let all prototiles be centrally
symmetric convex polygons (i.e., P = −P). Then each prototile
occurs in a finite number of orientations in T .

Theorem (F.-Harriss, 2013)

Let T be a tiling in R2 with finitely many parallelograms as
prototiles. Then each prototile occurs in a finite number of
orientations in T .
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Assume all tiles are vertex-to-vertex.

A worm is a sequence of tiles . . . ,T−1,T0,T1,T2, . . . where Tk

and Tk+1 share a common edge, and all shared edges are parallel.
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Cone Lemma: A worm defined by edge e cannot enter C1 or C2.
(α the minimal interior angle in the prototiles)

Loop Lemma: A worm has no loop.
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Travel Lemma: Any two tiles can be connected by a finite
sequence of finite worm pieces. (At most k = d2π

α e many.)

S

T

W

0

1

W
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Proof of theorem (parallelogram version): Fix some tile S . Every
tile T can be connected to S by at most d2π

α e worm pieces. That
is, with d2π

α e turns. �

Proof of theorem (general): Any centrally symmetric convex
polygon can be dissected into parallelograms.
(see e.g. Kannan-Soroker 1992)

I Probably true in higher dimensions
I Also true for non-convex? Hmm...
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Possible application:

Generalise to 3D and non-convex. A physical interpretation:

If the interactions in a solid (bounding forces between atoms,
molecules...) are centrally symmetric, the solid shows finitely many
orientations.

In fact, there are only very few exceptions (e.g. smectic phases of
liquid crystals)

Dirk Frettlöh Tilings, quasicrystals and pinwheels



. .
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