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Substitution tilings:
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Usually, tiles occur in finitely many different orientations only.
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... infinitely many orientations

Not always. Cesi's example (1990):
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A substitution o is primitive, if for any tile T there is k > 1 such
that o*(T) contains all tile types.
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Conway'’s Pinwheel substitution (1991):
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The angle a is
irrational; that is,

a ¢ mQ.




... infinitely many orientations
... finitely many orientations

A N RN A

Bp N N\mms
\ SN AZN KA
s E o e W N
7| |
N D N L e
N W e €
SN .
=
"A‘VA o\
Ml\\‘ i
7)'1‘\“ /]
oA
ol & e
>\ ~ N\ A\
€« B T\ W,
<D AN VE R 5 |
N2/ 22l N T |
D NNISSTY N o @ SETRST |
§EEE W W TR s
A

‘ 7 ' N

A

NAA NA V| v NS A \‘
T I I A N

Dirk Frettloh



... infinitely many orientations

Obvious generalizations: Pinwheel (n, k)
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Unknown (< 1996, communicated to me by Danzer):

\
(+ obvious generalizations)
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C. Goodman-Strauss, L. Danzer (ca. 1996):
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Pythia (m,j), here: m =3, j = 1.
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For all examples: the orientations are dense in [0, 27].

Even more: The orientations are equidistributed in [0, 27].

Theorem (F. '08)

In each primitive substitution tiling with tiles in infinitely many
orientations, the orientations are equidistributed in [0, 27].
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So far: tiles are always triangles. One exception:

Kite Domino (equivalent with Pinwheel):
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... finitely many orientations

Can we find examples with rhombic tiles for instance?

Answer: No.

Theorem (F.-Harriss '12+)

Let T be a tiling with finitely many prototiles (i.e., finitely many
different tile shapes). Let all prototiles be centrally symmetric
convex polygons. Then each prototile occurs in a finite number of
orientations in T .
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Can we find examples with rhombic tiles for instance?

Answer: No.

Theorem (F.-Harriss '12+)

Let T be a tiling with finitely many prototiles (i.e., finitely many
different tile shapes). Let all prototiles be centrally symmetric
convex polygons. Then each prototile occurs in a finite number of
orientations in T .

Theorem (F.-Harriss '12+)

Let T be a tiling with finitely many parallelograms as prototiles.
Then each prototile occurs in a finite number of orientations in T .
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Assume all tiles are vertex-to-vertex.

A worm is a sequence of tiles ..., T_1, Tg, T1, T2, ... where T
and Tyy1 share a common edge, and all shared edges are parallel.
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... finitely many orientations

Cone Lemma: A worm defined by edge e cannot enter C; or G.
(o the minimal interior angle in the prototiles)

(o e ) G,

G, AT

Loop Lemma: A worm has no loop.
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Travel Lemma: Any two tiles can be connected by a finite
sequence of finite worm pieces. (At most [2X] many.)
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... finitely many orientations

Proof of theorem (parallelogram version): Fix some tile S. Every
tile T can be connected to S by at most [22] worm pieces. That
is, with [%’r] turns.

(Non-vertex-to-vertex case can be handled.) O
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Proof of theorem (parallelogram version): Fix some tile S. Every

tile T can be connected to S by at most [22] worm pieces. That
is, with [%’r] turns.

(Non-vertex-to-vertex case can be handled.) O

Proof of theorem (general) Kannan-Soroker 1992: Any centrally
symmetric polygon can be dissected into parallelograms.
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... finitely many orientations

Proof of theorem (parallelogram version): Fix some tile S. Every
tile T can be connected to S by at most [22] worm pieces. That
is, with [%’r] turns.

(Non-vertex-to-vertex case can be handled.) O

Proof of theorem (general) Kannan-Soroker 1992: Any centrally
symmetric polygon can be dissected into parallelograms.

Theorem
Let T be a tiling with finitely many prototiles. Let all prototiles be

centrally symmetric convex polygons. Then each prototile occurs
in a finite number of orientations in T .
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Can we drop “finitely many”?

No. Even if we assume: infimum of interior angles > 0. (Exercise)
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... finitely many orientations

Can we drop “finitely many”?

No. Even if we assume: infimum of interior angles > 0. (Exercise)

Can we drop “convex”?

Hmm...

Ol
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Thank you.
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