Highly symmetric fundamental cells for planar lattices

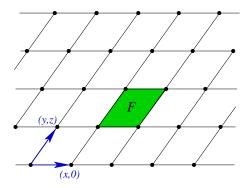
Dirk Frettlöh

Fakultät für Mathematik (SFB 701) Universität Bielefeld

Milton Keynes, 18th Nov 2010

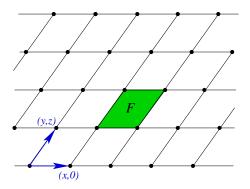
Point lattice Γ in \mathbb{R}^d : the \mathbb{Z} -span of d linearly independent vectors.

Fundamental cell of Γ : \mathbb{R}^d/Γ .



Point lattice Γ in \mathbb{R}^d : the \mathbb{Z} -span of d linearly independent vectors.

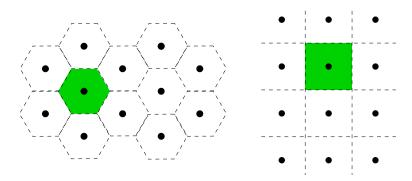
Fundamental cell of Γ : \mathbb{R}^d/Γ .



Point group $P(\Gamma)$ of Γ : All linear isometries f with $f(\Gamma) = \Gamma$.

Trivially, each lattice Γ has a fundamental cell which symmetry group is $P(\Gamma)$.

For instance, take the Voronoi cell of a lattice point x. (That is the set of points closer to x than to each other lattice point.)



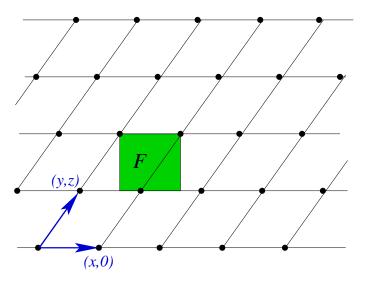
Main result

Theorem (Elser, Fr.)

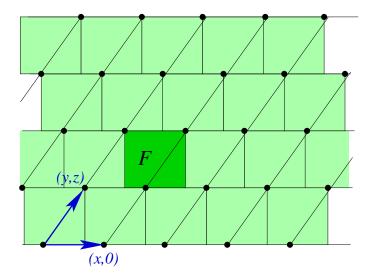
Let $\Gamma \subset \mathbb{R}^2$ be a lattice, but not a rhombic lattice. Then there is a fundamental cell F of Γ whose symmetry group S(F) is strictly larger than $P(\Gamma)$: $[S(F):P(\Gamma)]=2$.

'Rhombic lattice' means here: one with basis vectors of equal length, but neither a square lattice nor a hexagonal lattice.

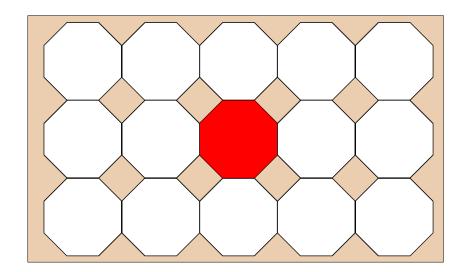
Generic lattice:

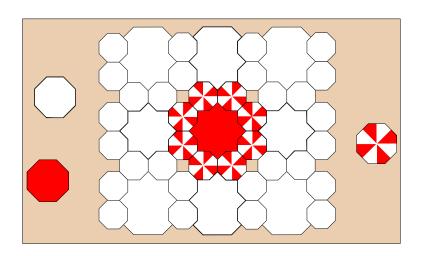


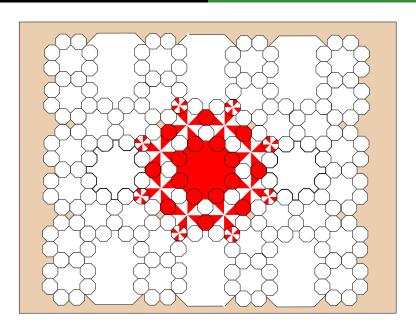
Generic lattice:

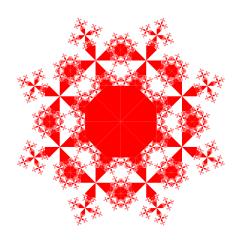


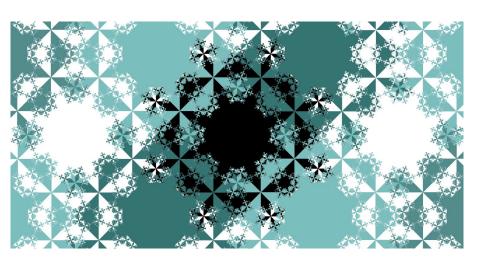
Square lattice (Veit Elser):





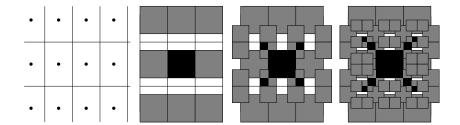


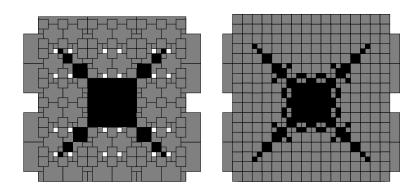


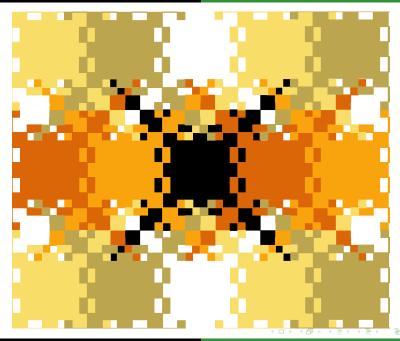


Hexagonal lattice (Elser-Cockayne, Baake-Klitzing-Schlottmann):

Rectangular lattice







Application: Minimal matchings

Consider the square lattice \mathbb{Z}^2 , and $R_{45}\mathbb{Z}^2$, the square lattice rotated by 45°.

Problem: Find a perfect matching between \mathbb{Z}^2 and $R_{45}\mathbb{Z}^2$ with maximal distance not larger than C > 0. How small can C be?

Application: Minimal matchings

Consider the square lattice \mathbb{Z}^2 , and $R_{45}\mathbb{Z}^2$, the square lattice rotated by 45° .

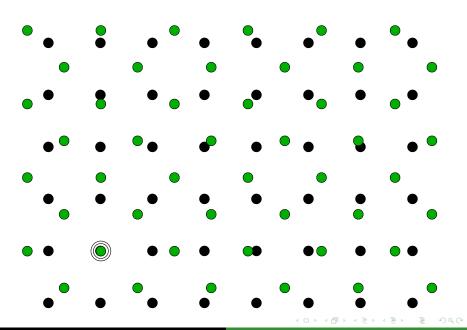
Problem: Find a perfect matching between \mathbb{Z}^2 and $R_{45}\mathbb{Z}^2$ with maximal distance not larger than C > 0. How small can C be?

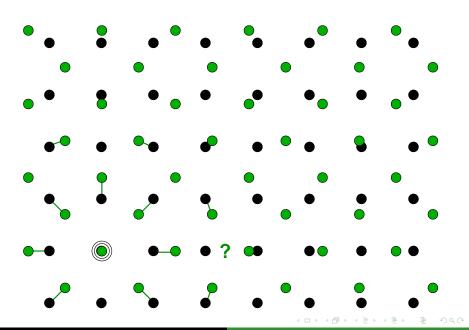
That is, find $f: \mathbb{Z}^2 \to R_{45}\mathbb{Z}^2$, where f is bijective and

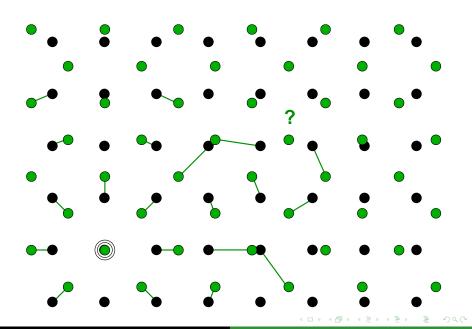
$$\forall x \in \mathbb{Z}^2: d(x, f(x)) \leq C$$

for C as small as possible.

(It is easy to see that $C \geq \frac{\sqrt{2}}{2} = 0.7071....$)







Naively: difficult.

Using the 8-fold fundamental domain F yields a matching with C=0.92387...

How?

Naively: difficult.

Using the 8-fold fundamental domain F yields a matching with C=0.92387...

How?

- ▶ Consider $\mathbb{Z}^2 + F$. Each x + F ($x \in \mathbb{Z}^2$) contains exactly one point of \mathbb{Z}^2 in its centre.
- ▶ F is also fundamental domain for $R_{45}\mathbb{Z}^2$. Thus each x+F $(x \in \mathbb{Z}^2)$ contains exactly one point $x' \in R_{45}\mathbb{Z}^2$.
- ▶ Let f(x) = x'.

This (and its analogues) yields good matchings for

$$ightharpoonup \mathbb{Z}^2$$
 and $R_{45}\mathbb{Z}^2$:

$$C = 0.92387....$$

- ▶ The hexagonal lattice H and $R_{30}H$: C = 0.78867...
- A rectangular lattice P and $R_{90}P$: $C \leq \frac{1}{\sqrt{2}} \frac{\sqrt{5}+1}{2} b$.

If
$$b/a \in \mathbb{Z}$$
: $C = \frac{1}{\sqrt{2}}b$.

Here, b is the length of the longer lattice basis vector of P.

What next?

- Rhombic lattices
- Higher dimensions
- ► Hyperbolic spaces
- Iterated function systems
- Dimension of the boundaries
- Connectivity
- Uniqueness of the fundamental cell
- Better matchings
- Cut-and-Project Sets
- **.**..

