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Delone set: point set Λ in Rd , with R > r > 0 such that

I each open ball of radius r contains at most one point of Λ
(uniformly discrete)

I each closed ball of radius R contains at least one point of Λ
(relatively dense)

periodic crystal disordered



Delone set: point set Λ in Rd , with R > r > 0 such that

I each open ball of radius r contains at most one point of Λ
(uniformly discrete)

I each closed ball of radius R contains at least one point of Λ
(relatively dense)

periodic crystal disordered



An equivalence relation for Delone sets:

Definition
Two Delone sets Λ,Λ′ are bounded distance equivalent,
if there is g : Λ→ Λ′ bijective with

∃C > 0 ∀x ∈ Λ : ‖x − g(x)‖ < C

Notation: Λ
bd∼ Λ′.

In other words: there is a perfect matching between Λ and Λ′ such
that matched points have distance < C .
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Natural questions:

I Given two Delone sets Λ,Λ′, is Λ
bd∼ Λ′?

I Given a large class X of Delone sets, what is the number of
equivalence classes?

Of course, density matters: Z2 6bd∼ 2Z2.

Theorem (Duneau-Oguey ’91)

For any two d-periodic Delone sets Λ,Λ′ in Rd holds:

dens(Λ) = dens(Λ′) if and only if Λ
bd∼ Λ′

Note: A Delone set Λ in Rd is d-periodic if its period lattice

T (Λ) = {t ∈ Rd | t + Λ = Λ}

has d linear independent directions. Aka periodic crystal
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Because of the density matter let us change the definition
including ”up to scaling”:

Definition
Λ

bd∼ Λ′, if there is α > 0 and g : Λ→ αΛ′ bijective with

∃C > 0 ∀x ∈ Λ : ‖x − g(x)‖ < c

Now the result of Duneau and Oguey becomes:

Theorem (Duneau-Oguey ’91)

All d-periodic Delone sets in Rd are bounded distance equivalent.

In other words: all d-periodic Delone sets in Rd are in one

equivalence class wrt
bd∼.

Hence more interesting examples are non-periodic.
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A simple way to generate interesting (non-periodic, but highly
ordered) Delone sets goes via substitution tilings.

Substitution tiling with substitution factor 2, and two prototiles:

Factor    2

Substitution matrix here Mσ =
(

2 2
1 3

)
.
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The substitution matrix Mσ contains a lot of information about
the tilings
(if the substitution σ is nice, i.e., self-similar and primitive):

A substitution σ is primitive, if there is n ∈ N such that Mn
σ has

positive entries only.

• not primitive:

4 2 6
0 1 1
0 1 2


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For a primitive self-similar substitution tiling holds

I If θ is the substitution factor, then λ = θd is the largest
eigenvalue (Perron-Frobenius eigenvalue) of the substitution
matrix (d the dimension).

I The left eigenvector corr. to λ contains the relative
d-dimensional volumes of the prototiles.

I The right eigenvector corr. to λ contains the relative
frequencies of the prototiles.

I Hence the matrix also determines the density of the tiles
(once we choose a size, e.g. smallest tile T has volume vold(T ) = 1)
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There are also one-dimensional substitution tilings.

E.g. Fibonacci sequence:

Mσ =
(

0 1
1 1

)
, eigenvalues 1

2 (1±
√

5).

The set of all substitution tilings (the hull) generated by a
substitution σ is denoted by Xσ.

More formally,

Xσ = {T tiling | ∃k, i ∈ N, t ∈ Rd ∀P ⊂ T finite t + P ⊂ σk (Ti )}

Even more formally, let σ(T ) = T be a fixed point of σ, then

Xσ = {t + T | t ∈ R},

where the closure is taken in the local topology.
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Translate the Fibonacci tiling into a Delone set ΛFib:

τ 2τ 2τ+1 3τ+10 3τ+2

Is ΛFib
bd∼ Z?

A one-dimensional substitution tiling with inflation factor λ is a
Pisot substitution if for all other eigenvalues λ′ of Mσ holds:
0 < λ′ < 1.

E.g. two of the three examples above (Penrose, Fibonacci) are
Pisot substitutions.

Theorem (...?, Dumont ’90, Holton-Zamboni ’98, F-Garber ’18)

All one-dimensional Pisot substitution tilings are bounded distance
equivalent to Z

Hence for all Delone sets Λ from tilings T ∈ XFib we have Λ
bd∼ Z.

Hence XFib contains only one equivalence class.
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In the sequel we consider mainly Delone sets arising from
substitution tilings in R2.

If T is a tiling then ΛT always denotes the Delone set obtained
from T by putting a point in each tile (e.g. in the center).
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Most general result on
bd∼-equivalence of substitution tilings:

Theorem (Yaar Solomon ’14)

Let σ be a primitive substitution in Rd with substitution matrix
Mσ. Let s ≥ 2 be the minimal index so that the eigenvalue λs of
Mσ has an eigenvector whose sum of coordinates is non-zero.
Then for any Delone set ΛT corresponding to a tiling T ∈ Xσ:

(I) If |λs | < λ
d−1
d

1 then ΛT
bd∼ Zd .

(II) If |λs | > λ
d−1
d

1 then ΛT 6
bd∼ Zd .

(III) If |λs | = λ
d−1
d

1 and λt has a non-trivial Jordan block, then

ΛT 6
bd∼ Zd .

Here λ1 is the largest eigenvalue.

Essentially, λs is the second largest eigenvalue. Also shown:

(IV) If there is no such λs then ΛT
bd∼ Zd .
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|λs |
?
≶ λ

d−1
d

1

I In dimension d = 1: |λs | ≶ λ1
0 = 1

This is essentially the Pisot condition.

(But note: ”> 1” implies ΛT 6
bd∼ Z)

I In dimension d = 2: |λs | ≶ λ1
1
2 =
√
λ1

(This is not the Pisot condition)

Let’s draw a map of the situation...
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What happens there: (?)

Is the behaviour determined by the substitution matrix alone?

No!

Theorem (F-Smilansky-Solomon 2019+)

There are substitutions σ0, σ1 with Mσ0 = Mσ1 =
(

6 9
1 6

)
such that

I for all T ∈ Xσ0 holds ΛT
bd∼ Z2

I for all T ∈ Xσ1 holds ΛT 6
bd∼ Z2

σ0

σ1
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I σ0 produces only d-periodic tilings T .

Hence ΛT
bd∼ Z2 by Duneau-Oguey.

I How to show ΛT ′ 6
bd∼ Z2 for T ′ ∈ Xσ1?

The Master Theorem (used in Solomon, F-Garber, ...):

Theorem (Laczkovich 1992)

Let Λ be a Delone set in Rd . Λ
bd∼ Zd if and only there is c > 0

such that for all unions P of lattice cubes holds:∣∣#(Λ ∩ P)− dens(Λ) vold(P)
∣∣ ≤ c vold−1(∂P)

(Proof makes use of the infinite version of Hall’s Marriage
Theorem by Rado)

We use this result as follows:
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Careful choice of a sequence of patches Pn in T ′ ∈ Xσ1 :

...and careful counting of the number of tiles in Pn:

#(Λ ∩ Pn) = 9n − (n + 1)3n

...yields

∣∣#(Λ ∩ Pn)− vol2(P)
∣∣ =

∣∣9n − (n + 1)3n − 2

3
· 3

2
(9n − 3n)

∣∣ = n 3n.
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Compare this value n 3n with the length vol1(∂Pn) = 8 · 3n − 8:

We need c > 0 such that∣∣#(Λ ∩ Pn)− vol2(P)
∣∣ = n 3n ≤ c(8 · 3n − 8) for all n,

but n 3n

8·3n−8 →∞ for n→∞.

Hence by Laczkovich ΛT ′ 6
bd∼ Z2 bd∼ ΛT �
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So we know that in case (?) everything can happen. What next?
Recall our motivating questions. Now they become:

I When is Λ 6bd∼ Λ′?

I How many equivalence classes has Xσ for a primitive
substitution σ?

Note that Laczkovich deals with Λ
bd∼ Zd only.

For both questions we would need a condition for Λ 6bd∼ Λ′. Voila:

Theorem (F-Smilansky-Solomon 2019+)

Let Λ,Λ′ be Delone sets in Rd (with uniform discreteness parameter

r ≥ d
1
2 , say). If there is a sequence (Pn), each Pn a finite union of

unit cubes, such that

lim
n→∞

|#(Λ ∩ Pn)−#(Λ′ ∩ Pn)|
vold−1(∂Pn)

=∞

then there is no BD-map g : Λ→ Λ′.

Again the proof uses the infinite version of the Marriage Theorem.
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This result is a partial answer to Question 1.

Ad Question 2: we could not do it for (classical) substitution
tilings as above.

But there is a broader concept (kind of trendy in Bielefeld):

I mixed substitutions

I random substitutions

For both you need two (compatible) substitution rules:

σ1

σ2
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The mixed substitution tilings X(σ1,σ2) are obtained in the following
way:

I Start with some prototile T .

I In each step toss a coin: i ∈ {1, 2}
I Apply σi to the entire patch

σ1 σ2

All subpatches of all these iterates are called legal
wrt the mixed substitution (σ1, σ2).

All tilings with legal patches only are in the mixed substitution hull
X(σ1,σ2).
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The random substitution tilings Xrand(σ1,σ2) are obtained in the
following way:

I Start with some prototile T .

I In each step toss several coins: ij ∈ {1, 2}
I Apply σij to tile number j

σ2

σ1
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Obviously
Xσ1 ⊂ X(σ1,σ2) ⊂ Xrand(σ1,σ2).

Theorem (F-Smilansky-Solomon 2019+)

The mixed substitution hull X(σ1,σ2) contains uncountably many
equivalence classes. (More precisely: #R many)

Corollary (F-Smilansky-Solomon 2019+)

The random substitution hull Xrand(σ1,σ2) contains uncountably
many equivalence classes. (More precisely: #R many)

Again the proof relies on counting the tiles in the patch sequence
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By adjusting the sequence w = wi1 wi2 wi3 · · · ∈ {1, 2}N by which
we apply σ1 and σ2 we get for each different density of 1s in w
different counts of the deficiency/surplus of tiles.

For w = 1 1 1 1 1 1 · · · we get a deficiency of n3n in the patch Pn.

For w = 2 2 2 2 2 2 · · · we get a surplus of n3n in the patch Pn.

For w = 2 1 1 2 1 1 2 1 1 · · · we get a deficiency of 1
3n3n, and...

In general we can choose sequences w in order to obtain a
deficiency of αn3n for any α ∈ [−1; 1].

Using the characterization of 6bd∼ from our theorem we consider the
ratio

(difference of the deficiencies) : boundary term,

that is, αn3n−βn3n

8·3n−8 →∞ (n→∞) whenever α 6= β.
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Harvested from the proof of the last theorem:

Theorem (F-Smilansky-Solomon 2019+)

Let n ∈ N. There is a substitution matrix — namely,
(

6 9
1 6

)n
— such

that there are n + 1 different tile substitutions %0, %1, . . . , %n
producing tilings T0, T1, . . . , Tn with

ΛTi 6
bd∼ ΛTj for i 6= j

The %i are appropriate compositions of σ1 and σ2:

%0 = σ1 ◦ σ1 ◦ · · · ◦ σ1 ◦ σ1

%1 = σ2 ◦ σ1 ◦ · · · ◦ σ1 ◦ σ1

...
...

...

%n−1 = σ2 ◦ σ2 ◦ · · · ◦ σ2 ◦ σ1

%n = σ2 ◦ σ2 ◦ · · · ◦ σ2 ◦ σ2
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