About harmonious Delone sets

Dirk Frettlöh

University of Bielefeld Bielefeld, Germany

Pontryagin Centennial
Differential Equations and Topology
Moscow
June 17-22 2008

- 1. Character theory
- 2. Delone sets, cut-and-project sets
- 3. Some proofs

Character theory

- ▶ G a locally compact abelian group
- ► algebraic character: Homom.

$$\chi: G \to U(1) := \{z \in \mathbb{C} : |z| = 1\}$$

 $ightharpoonup \widehat{G}_{alg}$: the group of all algebraic characters of G.

id :
$$x \mapsto 1$$
; $\chi \overline{\chi} = 1$

▶ The group of *continuous* characters: the *dual group* \widehat{G} of G.

Character theory

- G a locally compact abelian group
- ► algebraic character: Homom.

$$\chi: G \to U(1) := \{z \in \mathbb{C} : |z| = 1\}$$

- ▶ \widehat{G}_{alg} : the group of all algebraic characters of G. id : $x \mapsto 1$; $\gamma \overline{\chi} = 1$
- ▶ The group of *continuous* characters: the *dual group* \widehat{G} of G.

Let G_d be G with the discrete topology. Then each homom $\chi:G\to U(1)$ is cont., thus \widehat{G}_{alg} is the dual group of G_d .

Facts about Pontryagin duality:

- (a) $\widehat{\widehat{G}} \cong G$. Thus notation: $\langle \chi, x \rangle := \chi(x)$
- (b) $\alpha: G_1 \to G_2$ cont. homom., then $\widehat{\alpha}: \widehat{G}_2 \to \widehat{G}_1$ is a homom. (where $\widehat{\alpha}$ is given by $\langle \widehat{\alpha}(\chi), x \rangle = \langle \chi, \widehat{\alpha}(x) \rangle$)
- (c) $\alpha(G_1)$ dense in G_2 iff $\widehat{\alpha}$ is 1-1
- (d) $\widehat{\alpha}(\widehat{G}_2)$ dense in \widehat{G}_1 iff α is 1-1

Bohr compactification:

Let G_d be as above: G with the discrete topology, and $i:G_d\to G$ the identity. i is cont. and 1-1, thus, by (c)&(d), $\hat{i}:\widehat{G}\to \widehat{G}_{alg}$ has dense image:

 $ightharpoonup \widehat{G}$ is dense in \widehat{G}_{alg}

Bohr compactification:

Let G_d be as above: G with the discrete topology, and $i:G_d\to G$ the identity. i is cont. and 1-1, thus, by (c)&(d), $\hat{i}:\widehat{G}\to \widehat{G}_{alg}$ has dense image:

 $ightharpoonup \widehat{G}$ is dense in \widehat{G}_{alg}

F compact in G_d , iff F is finite. The top on \widehat{G}_{alg} is the top of uniform convergence on compact=finite sets F. That is, for each $\chi_0 \in \widehat{G}_{alg}$:

$$\forall \varepsilon > 0 \quad \exists \chi \in \widehat{G} : |\chi(x) - \chi_0(x)| < \varepsilon \quad \text{for all } x \in F$$

$$\forall \varepsilon > 0 \quad \exists \chi \in \widehat{G} : |\chi(x) - \chi_0(x)| < \varepsilon \quad \text{for all } x \in F$$
 (1)

In general, this uniform approximation property does not hold for infinite F. But for certain sets, it does!

Definition

A Delone set $F \subset \mathbb{R}^d$ is called harmonious, if (1) holds for F.

It follows a characterization of harmonious Delone sets.

Delone sets, cut-and-project sets

Definition

 $\Lambda \subset \mathbb{R}^d$ is a Delone set, if

(i) $\exists r > 0$: $\forall x \in \mathbb{R}^d$: $\#(B_r(x) \cap \Lambda) \leq 1$ (uniformly discrete)

(ii) $\exists R > 0$: $\forall x \in \mathbb{R}^d$: $\#(B_R(x) \cap \Lambda) \ge 1$ (relatively dense)

(ii) can also be stated as: $\Lambda + B_R(0) = \mathbb{R}^d$.

Delone sets, cut-and-project sets

Definition

 $\Lambda \subset \mathbb{R}^d$ is a Delone set, if

- (i) $\exists r > 0$: $\forall x \in \mathbb{R}^d$: $\#(B_r(x) \cap \Lambda) \leq 1$ (uniformly discrete)
- (ii) $\exists R > 0$: $\forall x \in \mathbb{R}^d$: $\#(B_R(x) \cap \Lambda) \ge 1$ (relatively dense)
- (ii) can also be stated as: $\Lambda + B_R(0) = \mathbb{R}^d$.

In particular, Delone sets are infinite.

Ex.: point lattices in \mathbb{R}^d , for instance \mathbb{Z}^d .

Theorem (Meyer, Lag.)

Let Λ be relatively dense. TFAE:

- (i) ∧ is harmonious
- (ii) $\Lambda \Lambda$ is Delone
- (iii) $\Lambda \Lambda \subset \Lambda + F$, with F finite
- (iv) Λ^{ε} is relatively dense for all $\varepsilon > 0$
- (v) ∧ is a subset of a cut-and-project set

Definition

(
$$\varepsilon$$
-dual:) $\Lambda^{\varepsilon} = \{ k \in \mathbb{R}^d : \forall x \in \Lambda : |e^{2\pi i x \cdot k} - 1| \le \varepsilon \}$

Theorem (Meyer, Lag.)

Let Λ be relatively dense. TFAE:

- (i) ∧ is harmonious
- (ii) $\Lambda \Lambda$ is Delone
- (iii) $\Lambda \Lambda \subseteq \Lambda + F$, with F finite
- (iv) Λ^{ε} is relatively dense for all $\varepsilon > 0$
- (v) ∧ is a subset of a cut-and-project set

Definition

(
$$\varepsilon$$
-dual:) $\Lambda^{\varepsilon} = \{ k \in \mathbb{R}^d : \forall x \in \Lambda : |e^{2\pi i x \cdot k} - 1| \le \varepsilon \}$

Ex.: If Λ is a lattice, then $\Lambda - \Lambda = \Lambda$.

So Λ fulfills (ii), and also (iii) with $F = \{0\}$.

$$\begin{array}{ccccc}
\mathbb{R}^{d} & \stackrel{\pi_{1}}{\longleftarrow} \mathbb{R}^{d} \times \mathbb{R}^{e} \stackrel{\pi_{2}}{\longrightarrow} & \mathbb{R}^{e} \\
\cup & \cup & \cup \\
V & & \Lambda & W
\end{array}$$

- $ightharpoonup \Gamma$ a lattice in $\mathbb{R}^d \times \mathbb{R}^e$
- \blacktriangleright π_1, π_2 projections
 - $\pi_1|_{\Lambda}$ injective
 - $\pi_2(\Gamma)$ dense
- ► The window W compact

Then
$$\Lambda = \{\pi_1(x) \mid x \in \Gamma, \pi_2(x) \in W\}$$
 is a (regular) *cut-and-project set*.

Some proofs

(vi) \Rightarrow (i): Let Λ^{ε} be relatively dense.

Then there is a compact $K \subset \widehat{\mathbb{R}^d} \cong \mathbb{R}^d$, s.t.

$$\Lambda^\varepsilon \oplus K = \widehat{\mathbb{R}^d}$$

Some proofs

(vi) \Rightarrow (i): Let Λ^{ε} be relatively dense.

Then there is a compact $K \subset \widehat{\mathbb{R}^d} \cong \mathbb{R}^d$. s.t.

$$\Lambda^arepsilon \oplus \mathcal{K} = \widehat{\mathbb{R}^d}$$

Let
$$V^{\varepsilon}(\Lambda) = \{ \mu \in \widehat{\mathbb{R}^d}_{alg} : \forall x \in \Lambda : |\mu(x) - 1| \leq \varepsilon \}.$$

Clearly, $\Lambda^{\varepsilon} = V^{\varepsilon}(\Lambda) \cap \widehat{\mathbb{R}^d}.$

Clearly,
$$\Lambda^{\varepsilon} = V^{\varepsilon}(\Lambda) \cap \widehat{\mathbb{R}^d}$$
.

Some proofs

(vi) \Rightarrow (i): Let Λ^{ε} be relatively dense.

Then there is a compact $K \subset \widehat{\mathbb{R}^d} \cong \mathbb{R}^d$, s.t.

$$\Lambda^{\varepsilon} \oplus K = \widehat{\mathbb{R}^d}$$

Let
$$V^{\varepsilon}(\Lambda) = \{ \mu \in \widehat{\mathbb{R}^d}_{alg} : \forall x \in \Lambda : |\mu(x) - 1| \leq \varepsilon \}.$$

Clearly, $\Lambda^{\varepsilon} = V^{\varepsilon}(\Lambda) \cap \widehat{\mathbb{R}^d}$.

Since \mathbb{R}^d dense in \mathbb{R}^d alg, we have $V^{\varepsilon}(\Lambda) \oplus K$ dense in \mathbb{R}^d alg.

Since $V^{\varepsilon}(\Lambda) \oplus K$ closed,

$$V^{\varepsilon}(\Lambda) \oplus K = \widehat{\mathbb{R}^d}_{alg}$$

In particular, for all $\varepsilon > 0$:

$$V^arepsilon(\Lambda) \oplus \widehat{\mathbb{R}^d} = \widehat{\mathbb{R}^d}_{\mathit{alg}}$$

$$V^{\varepsilon}(\Lambda) \oplus \widehat{\mathbb{R}^d} = \widehat{\mathbb{R}^d}_{alg}$$
 (2)

Now, for $\varepsilon > 0$ and $\chi_0 \in \widehat{\mathbb{R}^d}_{alg}$, we have

$$\chi_0 = \chi \oplus \mu \quad ext{for some } \mu \in V^{arepsilon/2}(\Lambda), \chi \in \widehat{\mathbb{R}^d},$$

and for all $x \in \Lambda$ holds:

$$|\chi_0(x) - \chi(x)| = |\chi \oplus \mu(x) - \chi(x)| = |\mu(x) - 1| \le \varepsilon/2 < \varepsilon$$

$$V^{\varepsilon}(\Lambda) \oplus \widehat{\mathbb{R}^d} = \widehat{\mathbb{R}^d}_{alg}$$
 (2)

Now, for $\varepsilon > 0$ and $\chi_0 \in \widehat{\mathbb{R}^d}_{alg}$, we have

$$\chi_0 = \chi \oplus \mu \quad ext{for some } \mu \in V^{arepsilon/2}(\Lambda), \chi \in \widehat{\mathbb{R}^d},$$

and for all $x \in \Lambda$ holds:

$$|\chi_0(x) - \chi(x)| = |\chi \oplus \mu(x) - \chi(x)| = |\mu(x) - 1| \le \varepsilon/2 < \varepsilon$$

 $(i) \Rightarrow (iv)$: Use (2), construct K (slightly tricky).

(i)&(iv) \Rightarrow (iii): Let Λ^{ε} be relatively dense.

Let $\varepsilon > 0$, $\chi \in \Lambda^{\varepsilon}$. If $x_1, x_2 \in \Lambda$, then $x_1 - x_2 \in \Lambda - \Lambda$, and

$$|\chi(x_1-x_2)-1| \leq |\chi(x_1)-1|+|\chi(-x_2)-1| \leq 2\varepsilon$$

thus $\Lambda^{\varepsilon} \subset (\Lambda - \Lambda)^{2\varepsilon}$.

Since Λ^{ε} is relatively dense for all $\varepsilon > 0$, so is $(\Lambda - \Lambda)^{\varepsilon}$.

Lemma

 Λ rel. dense $\Rightarrow \Lambda^{\varepsilon}$ unif. discrete for all $\varepsilon < 1$.

Lemma

 Λ rel. dense $\Rightarrow \Lambda^{\varepsilon}$ unif. discrete for all $\varepsilon < 1$.

By Pontryagin duality: Λ^{ε} rel. dense implies $\Lambda^{\varepsilon\varepsilon}$ unif. discrete for all $\varepsilon<1$.

With $\Lambda^{\varepsilon\varepsilon}\subset \Lambda$ (using $\mathbb{R}^d\cong\widehat{\widehat{\mathbb{R}^d}}$) follows: Λ uniformly discrete.

Altogether: Λ^{ε} rel. dense $\Rightarrow (\Lambda - \Lambda)^{\varepsilon}$ rel. dense $\Rightarrow \Lambda - \Lambda$ unif. discrete $\Rightarrow \Lambda - \Lambda$ Delone.

4 D > 4 A > 4 B > 4 B > B 9 9 9

Scheme:

$$(iii) \iff (iv) \iff (v)$$
 : Meyer 1972

$$(ii) \iff (iii)$$
 : Lagarias 1996

$$(i) \iff (iv)$$
 : Moody 1996

$$\uparrow$$
 \downarrow

$$(v) \iff (iii) \iff (ii)$$

Scheme:

$$(iii) \iff (iv) \iff (v)$$
 : Meyer 1972

$$(ii) \iff (iii)$$
 : Lagarias 1996

$$(i) \iff (iv) : Moody 1996$$

$$(v) \iff (iii) \iff (ii)$$

Thank you.

