Dynamical properties of almost repetitive patterns

Dirk Frettlöh

Technische Fakultät Universität Bielefeld

Horowitz Seminar, Tel Aviv 4th March 2019

Joint work with Christoph Richard

Overview:

- 1. Aperiodic tilings and Delone sets
- 2. Tiling dynamical systems of aperiodic tilings and Delone sets
- 3. Results on dynamical systems from substitution tilings
- 4. Tilings without finite local complexity (FLC)
- 5. Results on dynamical systems from non-FLC tilings

1. Aperiodic tilings and Delone sets

Substitution tilings:

Let P be a tiling of the plane \mathbb{R}^2 . (I.e., P is a covering of \mathbb{R}^2 as well as a packing)

- ▶ P is aperiodic: P + t = P implies t = 0.
- ▶ An r-patch is a set of the form $B_r(x) \cap P$ (where $B_r(x)$ is the open ball of radius r about x)

Let P be a tiling of the plane \mathbb{R}^2 . (I.e., P is a covering of \mathbb{R}^2 as well as a packing)

- ▶ P is aperiodic: P + t = P implies t = 0.
- ▶ An r-patch is a set of the form $B_r(x) \cap P$ (where $B_r(x)$ is the open ball of radius r about x)

Sometimes it is beneficial to consider discrete point sets rather than tilings.

This can be achieved by decorating the tiles with points appropriately.

More formally, a *Delone set* (in \mathbb{R}^2) is a set P that is

- uniformly discrete. I.e., there is r > 0 such that every ball of radius r contains at most one point of P
- relatively dense. I.e., there is R > 0 such that every ball of radius R contains at least one point of P

Here we assume we can freely switch between tilings and Delone sets.

2. Tiling dynamical systems of aperiodic tilings and Delone sets

Given a tiling P (or a Delone set P) we can define a (topological) dynamical system (X_P, G) , where

- G is a group acting on P
- ▶ $X_P = \overline{\{gP \mid g \in G\}}$ (the *hull* of P, aka tiling space)

G can be for instance the group of all translations in \mathbb{R}^2 , or the group of all (rigid) Euclidean motions $E(2) = SO(2) \rtimes \mathbb{R}^2$.

Given a tiling P (or a Delone set P) we can define a (topological) dynamical system (X_P, G) , where

- ▶ G is a group acting on P
- ▶ $X_P = \overline{\{gP \mid g \in G\}}$ (the *hull* of P, aka tiling space)

G can be for instance the group of all translations in \mathbb{R}^2 , or the group of all (rigid) Euclidean motions $E(2) = SO(2) \rtimes \mathbb{R}^2$.

The closure $\overline{\cdot}$ is taken in an appropriate topology.

E.g. the *local matching topology*; given by the metric

$$\begin{split} d_{LM}(P,P') &:= \min \Big\{ \frac{1}{\sqrt{2}} \,, \inf \big\{ \varepsilon > 0 \,|\, \exists x,x' \in B_{\varepsilon}(0) \text{ such that} \\ (xP) \cap B_{1/\varepsilon}(0) &= P' \cap B_{1/\varepsilon}(0) \text{ and } P \cap B_{1/\varepsilon}(0) = (x'P') \cap B_{1/\varepsilon}(0) \Big\} \Big\}. \end{split}$$

$$d_{LM}(P,P') := \min \left\{ \frac{1}{\sqrt{2}}, \inf \left\{ \varepsilon > 0 \mid \exists x, x' \in B_{\varepsilon}(0) \text{ such that} \right. \\ \left. (xP) \cap B_{1/\varepsilon}(0) = P' \cap B_{1/\varepsilon}(0) \text{ and } P \cap B_{1/\varepsilon}(0) = (x'P') \cap B_{1/\varepsilon}(0) \right\} \right\}.$$

Here $d_{LM}(P,P') < \frac{1}{3}$.

$$\begin{split} d_{LM}(P,P') &:= \min \Big\{ \frac{1}{\sqrt{2}} \,, \inf \big\{ \varepsilon > 0 \,|\, \exists x,x' \in B_{\varepsilon}(0) \text{ such that} \\ (xP) \cap B_{1/\varepsilon}(0) &= P' \cap B_{1/\varepsilon}(0) \text{ and } P \cap B_{1/\varepsilon}(0) = (x'P') \cap B_{1/\varepsilon}(0) \Big\} \Big\}. \end{split}$$

Here
$$d_{LM}(P,P')=\frac{1}{\sqrt{2}}$$
.

3. Results on dynamical systems from substitution tilings

3. Results on dynamical systems from substitution tilings

Goal: Relate geometric properties of the tiling (or Delone set) P with properties of the dynamical system (X_P, G) .

Geometric properties can be:

- ▶ P is of FLC w.r.t G: (finite local complexity) for each r > 0 there are only fintely many r-patches (w.r.t. to G actions)
- Repetitive: For each r there is R such that each R-patch contains copies (i.e, translates, or congruent copies) of each r-patch.
- ► UPF: (Uniform patch frequency) Well defined frequencies of patches (independent of averaging sequence)

Example: FLC, and repetitive, and UPF:

"Face it, Fred-you're lost!"

Example: Neither FLC, nor repetitive, nor UPF:

Goal:

Relate geometric properties of P with ergodic properties of X_P .

- ▶ P is of FLC w.r.t G: (finite local complexity) for each r > 0 there are only fintely many r-patches (w.r.t. to G actions)
- Repetitive: For each r there is R such that each R-patch contains copies (i.e, translates, or congruent copies) of each r-patch.
- ► UPF: (Uniform patch frequency) Well defined frequencies of patches (independent of averaging sequence)
- ► X_P compact (w.r.t. local matching topology)
- ▶ (X_P, \mathbb{R}^2) *minimal*. I.e., for every P the orbit $\{P + t \mid t \in \mathbb{R}^2\}$ is dense in X_P .
- ▶ (X_P, \mathbb{R}^2) uniquely ergodic. I.e., there is a unique \mathbb{R}^2 -invariant probability measure on X_P .

Classical results: (many due to Boris Solomyak)

W.r.t. \mathbb{R}^2 -actions:

- ▶ $P \text{ FLC} \Rightarrow X_P \text{ compact}$ (Radin-Wolff 92?)
- ▶ P repetitive $\Leftrightarrow (X_P, \mathbb{R}^2)$ minimal (Solomyak 97?) (essentially Gottschalk's Theorem)
- ▶ P UPF \Rightarrow (X_P, \mathbb{R}^2) uniquely ergodic (Solomyak 97)
- ▶ P UPF \Leftrightarrow (X_P, \mathbb{R}^2) uniquely ergodic (Lee-Moody-Sol. 02)

...or w.r.t. substitution tilings:

A substitution σ is *primitive*, if for any tile T there is $k \geq 1$ such that $\sigma^k(T)$ contains all tile types.

Nonprimitive substitution:

...or w.r.t. substitution tilings:

A substitution σ is *primitive*, if there is $k \geq 1$ such that for any tile T the patch $\sigma^k(T)$ contains all tile types.

Primitive substitution:

...or w.r.t. substitution tilings:

A substitution σ is *primitive*, if there is $k \geq 1$ such that for any tile T the patch $\sigma^k(T)$ contains all tile types.

Primitive substitution:

Theorem (Solomyak 1997)

Let P be a primitive substitution tiling with FLC w.r.t. $G = \mathbb{R}^2$. Then (X_P, \mathbb{R}^2) is uniquely ergodic.

Overview: Classical case, P FLC w.r.t. \mathbb{R}^2

Overview: Classical case, P FLC w.r.t. \mathbb{R}^2

Recall:

Repetitive: For each r there is R such that each R-patch contains copies (i.e, translates, or congruent copies) of each r-patch.

Overview: Classical case, P FLC w.r.t. \mathbb{R}^2

Recall:

Repetitive: For each r there is R such that each R-patch contains copies (i.e, translates, or congruent copies) of each r-patch.

Linearly repetitive: repetitive, and R = O(r). I.e., there are a, b such that R = ar + b.

4. Tilings without FLC

4. Tilings without FLC

How can a pattern not have finite local complexity?

Possibility 1: Infinitely many orientations

E.g. Conway's and Radin's pinwheel substitution (1991):

Here the orientations of the tilings are dense on the circle.

Whenever this happens we say the tiling has dense tile orientations

This happens a lot:

C. Goodman-Strauss, L. Danzer (ca. 1996):

Pythia (m, j), here: m = 3, j = 1.

All these are not FLC w.r.t. \mathbb{R}^2 . But all are FLC w.r.t. E(2).

Possibility 2: Fault lines

E.g. Kenyon's Non-FLC tiling:

If $a \notin \mathbb{Q}$ the corresponding tilings don't have FLC.

Possibility 3: Deformed lattices

Point $n \in \mathbb{Z} \setminus \{0\}$ is shifted by 2^{-k-1} , if n is divisible by 2^k , and not by 2^{k+1}

These Delone sets don't have FLC.

5. Results on dynamical systems from non-FLC tilings

In order to generalize the theorems above to the non-FLC tilings we have several choices:

Recall: The *hull* X_P of a tiling P: closure of the G-orbit GP.

E.g. $G = \mathbb{R}^2$ (translations), or G = E(2) (Euclidean motions)

Note that the pinwheel tiling (and its relatives) do not have FLC w.r.t. \mathbb{R}^2 , but they have FLC w.r.t. E(2).

In order to generalize the theorems above to the non-FLC tilings we have several choices:

Recall: The *hull* X_P of a tiling P: closure of the G-orbit GP.

E.g.
$$G = \mathbb{R}^2$$
 (translations), or $G = E(2)$ (Euclidean motions)

Note that the pinwheel tiling (and its relatives) do not have FLC w.r.t. \mathbb{R}^2 , but they have FLC w.r.t. E(2).

'Closure' w.r.t. an appropriate topology, e.g.

- local matching topology
- wiggle topology
- local rubber topology

- ▶ local matching topology: P and P' are ε -close: P + x and P' + y agree on $B_{1/\varepsilon}(0)$ for $|x|, |y| < \varepsilon$.
- ▶ wiggle topology: P and P' are ε -close: $R_{\alpha}P + x$ and P' + y agree on $B_{1/\varepsilon}(0)$ for $|x|, |y| < \varepsilon$, with R_{α} a rotation by $|\alpha| < \varepsilon$.
- ▶ local rubber topology: P and P' are ε -close: P and P' agree on $B_{1/\varepsilon}(0)$, after moving each point individually by an amount $< \varepsilon$.

Here
$$d_{LM}(P,P')=\frac{1}{\sqrt{2}}$$
, but $d_{LR}(P,P')<\frac{1}{3}$

- ▶ local matching topology: P and P' are ε -close: P + x and P' + y agree on $B_{1/\varepsilon}(0)$ for $|x|, |y| < \varepsilon$.
- ▶ wiggle topology: P and P' are ε -close: $R_{\alpha}P + x$ and P' + y agree on $B_{1/\varepsilon}(0)$ for $|x|, |y| < \varepsilon$, with R_{α} a rotation by $|\alpha| < \varepsilon$.
- ▶ local rubber topology: P and P' are ε -close: P and P' agree on $B_{1/\varepsilon}(0)$, after moving each point individually by an amount $< \varepsilon$.

For primitive substitution tilings with FLC w.r.t. \mathbb{R}^2 : All three metrics yield the same hull.

- ▶ local matching topology: P and P' are ε -close: P + x and P' + y agree on $B_{1/\varepsilon}(0)$ for $|x|, |y| < \varepsilon$.
- ▶ wiggle topology: P and P' are ε -close: $R_{\alpha}P + x$ and P' + y agree on $B_{1/\varepsilon}(0)$ for $|x|, |y| < \varepsilon$, with R_{α} a rotation by $|\alpha| < \varepsilon$.
- ▶ local rubber topology: P and P' are ε -close: P and P' agree on $B_{1/\varepsilon}(0)$, after moving each point individually by an amount $< \varepsilon$.

For primitive substitution tilings with FLC w.r.t. \mathbb{R}^2 : All three metrics yield the same hull.

For primitive substitution tilings with FLC w.r.t. E(2) (e.g. the pinwheel): the last two metrics yield the same hull.

In the deformed lattice example (or its 2-dim counterpart)

Point $n \in \mathbb{Z} \setminus \{0\}$ is shifted by 2^{-k-1} , if n is divisible by 2^k , and not by 2^{k+1}

Here the first two metrics yield the same hull, the third metric yields a different hull.

The meaning of *repetitive* comes in three distinct flavours, too:

A Delone set *P* is...

- Repetitive, if for each r > 0 there is R > 0 such that each R-patch contains a <u>translate</u> of each r-patch of P
- wiggle-repetitive, if for each r > 0 and for each $\varepsilon > 0$ there is R > 0 such that each R-patch contains a <u>translate</u> of each r-patch of P, up to a <u>rotation</u> by $\alpha < \varepsilon$
- ▶ almost repetitive, if for each r > 0 and for each $\varepsilon > 0$ there is R > 0 such that each R-patch contains an ε -similar version of each r-patch

 $\varepsilon\text{-similar:}$ congruent after shifting each point individually by some distance $t<\varepsilon$

The meaning of *repetitive* comes in three distinct flavours, too:

A Delone set *P* is...

- Repetitive, if for each r > 0 there is R > 0 such that each R-patch contains a <u>translate</u> of each r-patch of P
- wiggle-repetitive, if for each r > 0 and for each $\varepsilon > 0$ there is R > 0 such that each R-patch contains a <u>translate</u> of each r-patch of P, up to a <u>rotation</u> by $\alpha < \varepsilon$
- ▶ almost repetitive, if for each r > 0 and for each $\varepsilon > 0$ there is R > 0 such that each R-patch contains an ε -similar version of each r-patch

arepsilon-similar: congruent after shifting each point individually by some distance t<arepsilon

All three have a *linear* version, too: linearly repetitive, linearly wiggle-repetitive, linearly almost repetitive.

"Face it, Fred-you're lost!"

- repetitive: you are lost even if you have a compass
- wiggle-repetitive: you are lost only if you have no compass
- ▶ almost repetitive: you are lost only if you have bad eyesight

Theorem (F-Richard 2014)

Let P be a primitive substitution tiling in \mathbb{R}^2 (a nice one, say, with convex tiles). Let P have FLC w.r.t. E(2). Then

- ▶ P is linearly wiggle-repetitive
- X_P is minimal

Theorem (F-Richard 2014)

Let P be almost linearly repetitive. Then

- (X_P, G) is minimal for both $G = \mathbb{R}^2$ and G = E(2)
- ▶ (X_P, G) is uniquely ergodic for both $G = \mathbb{R}^2$ and G = E(2)

Recall the classical case: P FLC w.r.t. \mathbb{R}^2

Now we also know: P FLC w.r.t. E(2)

Now we also know: P FLC w.r.t. E(2)

Now we also know: P FLC w.r.t. E(2)

Moreover: P not FLC at all

(Does not cover Kenyon's non-FLC example)

Moreover: P not FLC at all

(Does cover Kenyon's non-FLC example)

THANK YOU!