Dual substitution patterns arising from model sets

Dirk Frettlöh

University of Bielefeld Bielefeld, Germany

Summer School in Aperiodic Order

August 8–13, 2005

University of Victoria

Substitutions

Symbolic substitution: A alphabet, A^* all finite words.

$$\sigma: \mathcal{A} \to \mathcal{A}^{\star}$$

Set $\sigma(ab) := \sigma(a)\sigma(b)$, then σ extends to \mathcal{A}^* and $\mathcal{A}^{\mathbb{Z}}$.

Ex.:
$$A = \{S, L\}, \quad \sigma(S) = L, \quad \sigma(L) = LS.$$

$$S \xrightarrow{\sigma} L \xrightarrow{\sigma} SL \xrightarrow{\sigma} LSL \xrightarrow{\sigma} LSLLS \xrightarrow{\sigma} LSLLSLSL \xrightarrow{\sigma} \cdots$$

Geometric substitution:

 T_i prototiles, Q expanding linear map,

$$QT_{i} = (T_{i_{1}} + x_{i_{1}}) \cup (T_{i_{2}} + x_{i_{2}}) \cup \cdots \cup (T_{i_{n(i)}} + x_{i_{n(i)}})$$

(nonoverlapping). Then

$$\sigma(T_i) := \{T_{i_1} + x_{i_1}, T_{i_2} + x_{i_2}, \dots, T_{i_{n(i)}} + x_{i_{n(i)}}\}.$$

 σ extends to all sets $\{T_j + x_i \mid T_j \text{ prototile}, i \in I\}$.

Ex.:

$$L=[0,1],~S=[1, au]~~(au=rac{1+\sqrt{5}}{2}pprox.1.618,$$
 'golden mean').

$$\tau L = L \cup S$$
, $\tau S = L + \tau$

Thus

$$\sigma(L) = \{L, S\}, \quad \sigma(S) = \{L + \tau\}$$

Model Sets

$$\mathbb{R}^{d} \quad \stackrel{\pi_{1}}{\longleftarrow} \mathbb{R}^{d} \times H \xrightarrow{\pi_{2}} \quad H$$

$$\cup \qquad \qquad \cup \qquad \qquad \cup$$

$$V \qquad \qquad \Lambda \qquad \qquad W$$

Model Sets

$$\mathbb{R}^{d} \stackrel{\pi_{1}}{\longleftarrow} \mathbb{R}^{d+e} \stackrel{\pi_{2}}{\longrightarrow} \mathbb{R}^{e}$$

$$\cup \qquad \qquad \cup \qquad \qquad \cup$$

$$V \qquad \qquad \Lambda \qquad \qquad W$$

- $ightharpoonup \Lambda$ a lattice in \mathbb{R}^{d+e}
- \blacktriangleright π_1, π_2 projections
 - $\pi_1|_{\Lambda}$ injective
 - $\pi_2(\Lambda)$ dense
- ► W compact
 - ► cl(int(*W*))= *W*
 - $\mu(\partial(W)) = 0$

Then $V = \{\pi_1(x) \mid x \in \Lambda, \pi_2(x) \in W\}$ is a (regular) model set.

The star map:
$$*: \pi_1(\Lambda) \to \mathbb{R}^e, \ x^* = \pi_2 \circ {\pi_1}^{-1}(x)$$

Definition

An algebraic integer λ is called PV-number, if $|\lambda| > 1$, and for all its algebraic conjugates λ_i holds: $|\lambda_i| < 1$.

(...Salem–number... if $|\lambda_i| \leq 1$)

Theorem [Meyer, '95]

If \mathcal{T} is a (sufficiently nice) substitution point set and a model set, then the substitution factor is a PV-number (or a Salem-number).

Fact [e.g. Pleasants, '00]

For a given substitution on m prototiles, where the factor λ is a PV-number of degree m, and a unit in $\mathbb{Z}[\lambda]$, there are standard constructions of the lattice Λ in \mathbb{R}^{d+e} .

Fact [Schlottmann, '98]

$$\operatorname{dens}(V) = \mu(W)/\operatorname{det}\Lambda$$

 $(\operatorname{dens}(V) = \lim_{r \to \infty} \frac{V \cap r \mathbb{B}^d}{\operatorname{vol}(r \mathbb{B}^d)}, \text{ average number of points per unit cell.})$

Duality – The Example

Consider the 1-dim substitution

$$\sigma: \quad S \to ML, \quad M \to SML, \quad L \to LML$$

Substitution matrix:
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

Characteristic Polynomial: $x^3 - 3x^2 + 1$

$$\mbox{Eigenvalues: } \lambda = \lambda_1, \qquad \lambda_2, \qquad \lambda_3$$

$$\frac{\sin(\frac{4\pi}{9})}{\sin(\frac{\pi}{9})}, \quad -\frac{\sin(\frac{\pi}{9})}{\sin(\frac{2\pi}{9})}, \quad \frac{\sin(\frac{2\pi}{9})}{\sin(\frac{4\pi}{9})}$$

$$\approx 2.879, -0.532, 0.6527$$

Here: d = 1, e = 2,

$$\sigma: S \to ML, M \to SML, L \to LML$$

Geometric realization:

$$S: \text{ interval of length} rac{\sin(rac{2\pi}{9})}{\sin(rac{\pi}{9})} = \lambda - 1$$

$$M:$$
 interval of length $\frac{\sin(\frac{3\pi}{9})}{\sin(\frac{\pi}{9})} = \lambda^2 - 2\lambda$

V: set of (right) endpoints of these intervals.

Let
$$\sigma(V) = V$$
, e.g.:

...SMLLML|LMLSMLLMLMLSMLLMLSMLL...

The star map:
$$*:\pi_1(\Lambda)\to\mathbb{R}^e, \qquad x^*=\pi_2\circ\pi_1^{-1}(x)$$

Here: If
$$x = k + \ell \lambda + m \lambda^2 \in \mathbb{Z}[\lambda]$$
,

$$\text{then} \quad x^* = k \left(\begin{array}{c} 1 \\ 1 \end{array}\right) + \ell \left(\begin{array}{c} \lambda_2 \\ \lambda_3 \end{array}\right) + m \left(\begin{array}{c} {\lambda_2}^2 \\ {\lambda_3}^2 \end{array}\right).$$

$$(\lambda x)^* = \begin{pmatrix} \lambda_2 & 0 \\ 0 & \lambda_3 \end{pmatrix} x^* =: Qx^*$$

$$W = \overline{V^*}$$

$$\sigma: S \to ML, M \to SML, L \to LML$$

$$V = \sigma(V) = ...SMLLML|LMLSMLLMLMLSMLLMLSMLL...$$

$$V = V_L \cup V_M \cup V_S$$

$$V_L = \lambda V \cup \lambda V_L - \lambda^2 + \lambda$$

$$V_M = \lambda V - \lambda$$

$$V_S = \lambda V_M - \lambda^2 + \lambda$$

$$V^* = V_L^* \cup V_M^* \cup V_S^*$$

$$V_L^* = QV^* \cup QV_L^* - \left(\frac{\lambda_2^2}{\lambda_3^2}\right) + \left(\frac{\lambda_2}{\lambda_3}\right)$$

$$V_M^* = QV^* - \left(\frac{\lambda_2}{\lambda_3}\right)$$

$$V_S^* = QV_M^* - \left(\frac{\lambda_2^2}{\lambda_3^2}\right) + \left(\frac{\lambda_2}{\lambda_3}\right)$$

IFS:

A pair (\mathbb{R}^d, F) , where $F = \{f_0, f_1, \dots, f_n\}$ is a set of contractive maps.

Theorem [Hutchinson, '81]

For any IFS exists a unique compact set K such that $K = \bigcup_{f_i \in F} f_i(K)$.

The same is true for multi-component IFS:

$$K = \bigcup_{i=1}^n K_i, \quad K_i = f_{ij}(K_{i(j)})$$

The Dual Substitution

The Dual Substitution

Choose control points on tiles $\rightsquigarrow V' = V'_S \cup V'_M \cup V'_L$.

Dual substitution σ' , choose V' s.t. $\sigma(V') = V'$.

Equation system for V':

$$V' = V'_{L} \cup V'_{M} \cup V'_{S}$$

$$V'_{L} = Q^{-1}V'_{L} \cup Q^{-1}V'_{M} \cup Q^{-1}V'_{L} - \left(\begin{array}{c}\lambda_{2}\\\lambda_{3}\end{array}\right) + \left(\begin{array}{c}1\\1\end{array}\right)$$

$$V'_{M} = Q^{-1}V'_{S} \cup Q^{-1}V'_{M} - \left(\begin{array}{c}\lambda_{2}\\\lambda_{3}\end{array}\right) \cup Q^{-1}V'_{L} - \left(\begin{array}{c}\lambda_{2}\\\lambda_{3}\end{array}\right)$$

$$V'_{S} = Q^{-1}V'_{L} + \left(\begin{array}{c}\lambda_{2}\\\lambda_{3}\end{array}\right) - 2\left(\begin{array}{c}\lambda_{2}^{2}\\\lambda_{3}^{2}\end{array}\right) \cup Q^{-1}V'_{M} + \left(\begin{array}{c}\lambda_{2}\\\lambda_{3}\end{array}\right) - 2\left(\begin{array}{c}\lambda_{2}^{2}\\\lambda_{3}^{2}\end{array}\right)$$

Apply the new star map $x^* = \pi_1(\pi_2^{-1}(x))$ \rightsquigarrow IFS.

Solution of this new IFS:

$$L = [-\lambda, 0], \quad M = [\lambda - \lambda^2, -\lambda], \quad S = [-2\lambda^2 + 1, -2\lambda^2 + \lambda]$$

Claim: V' is a model set (up to a set of zero density).

▶
$$\mu(W') = \lambda - 1 > 0$$
 ✓

▶
$$dens(V') = \mu(W')/\det \Lambda$$
 ?

det **∧** :

$$(\lambda_2 - \lambda)(\lambda_3 - \lambda)(\lambda_3 - \lambda_2) = \dots = \frac{27}{64s_1^2s_2^2s_4^2} = 9$$

dens V':

The new substitution works also with polygons:

(not longer shape preserving), and yields a tiling.

The areas of these tiles can be computed exactly.

The relative frequencies of the prototiles are known.

$$\rightarrow$$
 dens $(V') = \ldots = (\lambda - 1)/9 = \mu(W')/\det \Lambda$

Thus V' is a model set (up to a set of zero density).

Resume

Done:

- ► How to compute certain window sets
- Duality of selfsimilar model sets explained
- All dual tilings shown here are model sets

Todo: E.g.

- ▶ Which substitutions are self-dual?
- ▶ Duals of Ammann–Beenker, Penrose, ...?

