Tilings with tiles in infinitely many orientations

Dirk Frettlöh

Technische Fakultät Universität Bielefeld

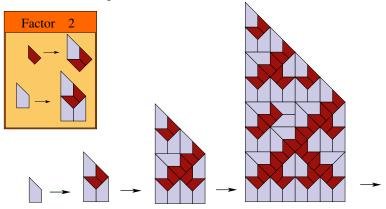
International conference "Geometry, Topology and Applications"

in honour of Nikolai Dolbilins 70th birthday

Yaroslavl 23-27 Sep 2013

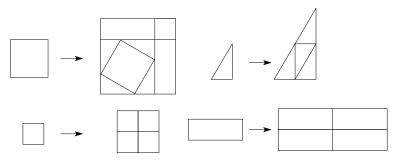
- 1. Substitution tilings with tiles in infinitely many orientations
- 2. Dense tile orientations (DTO)
- 3. Tile shapes forbidding DTO
- 4. Tilings with rotational symmetry and DTO

Substitution tilings:



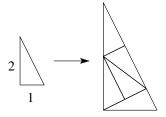
Usually, tiles occur in finitely many different orientations only.

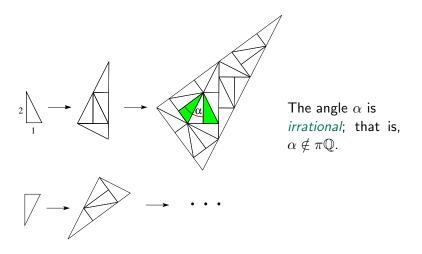
Not always. Cesi's example (1990):



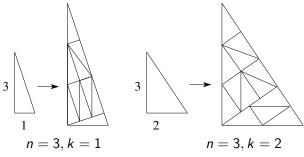
A substitution σ is *primitive*, if for any tile T there is $k \geq 1$ such that $\sigma^k(T)$ contains all tile types.

Conway's Pinwheel substitution (1991):



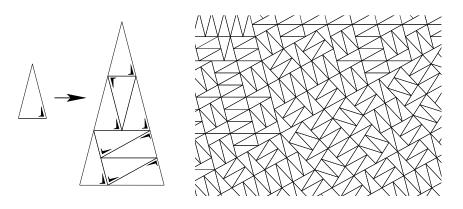


Obvious generalizations: Pinwheel (n, k)



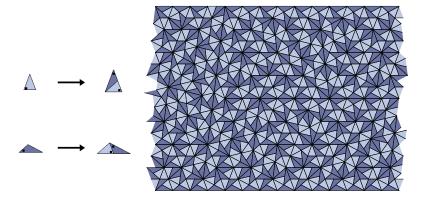
etc.

Unknown (< 1996, communicated to me by Danzer):

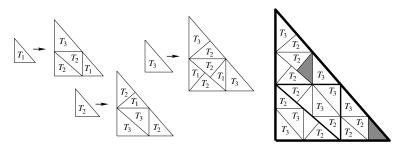


(+ obvious generalizations)

C. Goodman-Strauss, L. Danzer (ca. 1996):



Pythia (m, j), here: m = 3, j = 1.



Dense Tile Orientations (DTO)

For all examples: the orientations are dense in $[0, 2\pi[$.

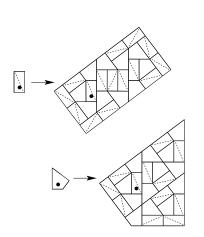
Even more: The orientations are equidistributed in $[0, 2\pi[$.

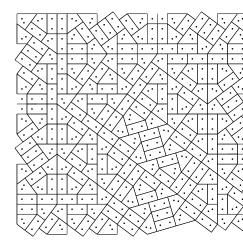
Theorem (F. '08)

In each primitive substitution tiling with tiles in infinitely many orientations, the orientations are equidistributed in $[0, 2\pi[$.

So far: tiles are always triangles. One exception:

Kite Domino (equivalent with Pinwheel):





Tile shapes forbidding DTO

Qusstion: Can we find examples with rhombic tiles for instance?

Answer: No.

Theorem (F.-Harriss, 2013)

Let $\mathcal T$ be a tiling in $\mathbb R^2$ with finitely many prototiles (i.e., finitely many different tile shapes). Let all prototiles be centrally symmetric convex polygons. Then each prototile occurs in a finite number of orientations in $\mathcal T$.

Tile shapes forbidding DTO

Qusstion: Can we find examples with rhombic tiles for instance?

Answer: No.

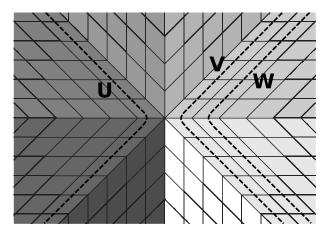
Theorem (F.-Harriss, 2013)

Let $\mathcal T$ be a tiling in $\mathbb R^2$ with finitely many prototiles (i.e., finitely many different tile shapes). Let all prototiles be centrally symmetric convex polygons. Then each prototile occurs in a finite number of orientations in $\mathcal T$.

Theorem (F.-Harriss, 2013)

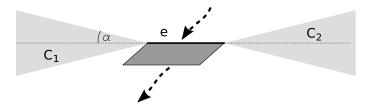
Let \mathcal{T} be a tiling in \mathbb{R}^2 with finitely many parallelograms as prototiles. Then each prototile occurs in a finite number of orientations in \mathcal{T} .

Assume all tiles are vertex-to-vertex.



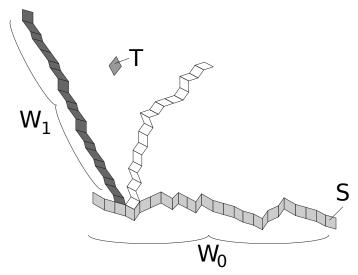
A worm is a sequence of tiles ..., T_{-1} , T_0 , T_1 , T_2 ,... where T_k and T_{k+1} share a common edge, and all shared edges are parallel.

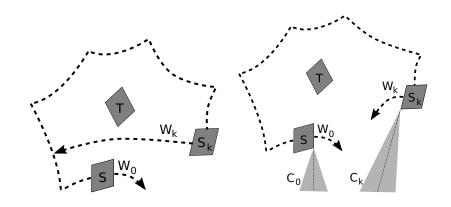
Cone Lemma: A worm defined by edge e cannot enter C_1 or C_2 . (α the minimal interior angle in the prototiles)



Loop Lemma: A worm has no loop.

Travel Lemma: Any two tiles can be connected by a finite sequence of finite worm pieces. (At most $k = \lceil \frac{2\pi}{\alpha} \rceil$ many.)





Proof of theorem (parallelogram version): Fix some tile S. Every tile T can be connected to S by at most $\lceil \frac{2\pi}{\alpha} \rceil$ worm pieces. That is, with $\lceil \frac{2\pi}{\alpha} \rceil$ turns.

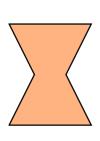
Proof of theorem (parallelogram version): Fix some tile S. Every tile T can be connected to S by at most $\lceil \frac{2\pi}{\alpha} \rceil$ worm pieces. That is, with $\lceil \frac{2\pi}{\alpha} \rceil$ turns.

Proof of theorem (general) Any centrally symmetric convex polygon can be dissected into parallelograms. (see e.g. Kannan-Soroker 1992)

Proof of theorem (parallelogram version): Fix some tile S. Every tile T can be connected to S by at most $\lceil \frac{2\pi}{\alpha} \rceil$ worm pieces. That is, with $\lceil \frac{2\pi}{\alpha} \rceil$ turns.

Proof of theorem (general) Any centrally symmetric convex polygon can be dissected into parallelograms. (see e.g. Kannan-Soroker 1992)

Can we drop "convex"? Hmm...



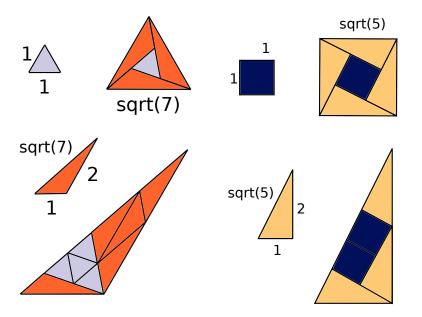
Tilings with rotational symmetry and DTO

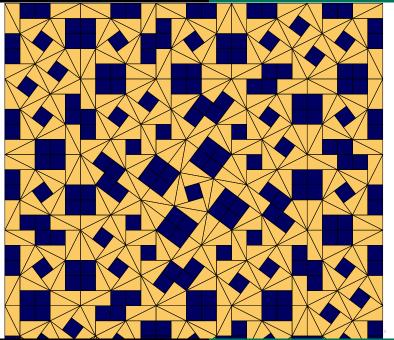
Some tilings with DTO show rotational symmetry.

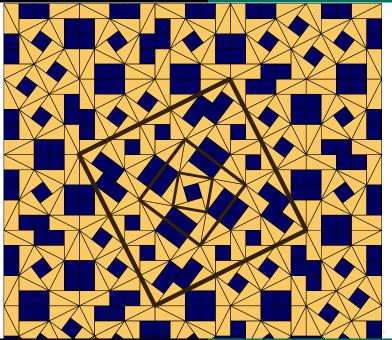
Rotational symmetry causes problems in computing cohomology of tiling spaces (...whatever this means).

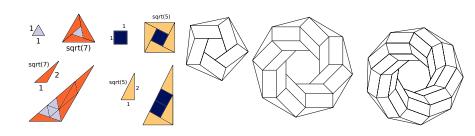
Question: Are there tilings with DTO and n-fold rotational symmetry for $n \ge 3$?

Answer: Yes. At least for $n \in \{3, 4, 5, 6, 8\}$.









Conjecture or Fact (?):

In a parallelogram with edge lengths 1 and 2, and interior angle β : If $\beta = \frac{2\pi}{n}$ ($n \ge 4$) then $\alpha \notin \pi \mathbb{Q}$.

