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Abstract. Recent results of Grepstad and Larcher are used to show that weighted cut-
and-project sets with one-dimensional physical space and one-dimensional internal space
are bounded distance equivalent to some lattice if the weight function h is continuous on
the internal space, and if h is either piecewise linear, or twice differentiable with bounded
curvature.

1. Introduction

A Delone set is a set Λ of points in some metric space X such that (1) there is r > 0 such
that each ball of radius r contains at most one point of Λ, and (2) there is R > 0 such that
each ball of radius R contains at least one point of Λ. Depending on the context, Delone
sets are also called separated nets, or (r, R)-sets. Two Delone sets Λ,Λ′ in the same metric

space are called bounded distance equivalent (Λ
bd∼ Λ′) if there is a bijection ϕ : Λ → Λ′

such that |x−ϕ(x)| is uniformly bounded. In 1993 M. Gromov asked whether any Delone
set Λ in R2 is bilipschitzequivalent with Z2 [8]; i.e., whether there is a bijection from Λ to
Z2 such that the bijection is Lipschitz continuous in both directions. In 1998 D. Burago
and B. Kleiner, and independently C. McMullen, gave a negative answer [3, 14]. The
analogous question for the hyperbolic plane H2 was answered positively by Bogopolskii
[2] by showing that all Delone sets in H2 are bounded distance equivalent to each other.
Bounded distance equivalence implies bilipschitzequivalence.

Even before that physicists asked whether some given crystallographic or quasicrystal-
lographic Delone set Λ in R2 or R3 has an “average lattice” of the form aZ2; i.e. whether

there is a > 0 such that Λ
bd∼ aZ2. A lattice in Rd is the Z-span 〈v1, . . . , vd〉Z of d linearly

independent vectors vi ∈ Rd. In [4] it is shown that any two lattices in Rd with equal den-
sity are bounded distance equivalent. In [5] a sufficient condition for a cut-and-project
set (CPS) being bounded distance equivalent to some lattice with the same density is
given. For a definition of a CPS see below. There is no precise mathematical definition
of a quasicrystal; but often when speaking of a (mathematical) quasicrystal a CPS set is
meant.

Recently bounded distance equivalence of Delone sets did get some attention, see e.g.
[13, 7, 9, 10, 11] and references therein. A frequently exploited connection is the cor-
respondence between (certain) CPS and (certain) bounded remainder sets for (discrete)
toral rotations. Given a set S ⊂ [0, 1) and some (irrational) α > 0 the deficiency (or
discrepancy) of S with respect to some x ∈ R is

Dn(S, x) :=
n−1∑
k=0

1S(x+ kα mod 1)− nλ(S),

where λ denotes Lebesgue measure on R. A set S ⊂ [0, 1) is called a bounded remain-
der set (BRS) with respect to α if there is C > 0 such that for almost all x we have
sup |Dn(S, x)| < C. As we will see, for our purposes the x plays no role; it is included
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in the definition only because in some contexts there is an exceptional null-set of x to
consider.

A profound theorem of Kesten [12] shows that an interval [a, b] ⊂ [0, 1) is a BRS for the
discrete toral rotation nα mod 1 on the one-dimensional torus if and only if b−a ∈ Z+αZ.
Applied to CPS this proves for instance that the Fibonacci sequence, defined by a CPS

with lattice 〈(1, 1)T , (1+
√

5
2
, 1−

√
5

2
)T 〉Z and window [0, 1+

√
5

2
) is bounded distance equivalent

to some lattice, whereas the Half-Fibonacci sequence using the same lattice but window

[0, 1+
√

5
4

), is not bounded distance equivalent to any lattice.
In this paper we exploit the connection between continuous toral rotations and weighted

cut-and-project sets. Our main result Theorem 4.1 uses two theorems of [6] on continuous
toral rotations. It shows that many weighted 1× 1 CPS where the window is an interval
and the weight function h is continuous and supported on W (hence h equals 0 at the
endpoints of the interval) are bounded distance equivalence to some lattice, with no
restrictions on the length of the window. This is in strong contrast with the discrete case,
see Kesten’s theorem mentioned above, respectively the Half-Fibonacci example.

Notation: Throughout the paper, λ denotes d-dimensional Lebesgue measure (where
d = 1 or d = 2, depending on the context). The Dirac measure in x is denoted δx.

2. Cut-and-project sets

A cut-and-project set (CPS, aka model set) Λ is given by a collection of maps and
spaces:

G
π1←− G×H π2−→ H

∪ ∪ ∪
Λ Γ W

where in general G and H are locally compact abelian groups. Furthermore, Γ is a lattice
(i.e., a discrete cocompact subgroup) in G×H, W is a relatively compact set in H, and
π1 and π2 are projections to G and to H respectively, such that π1|Γ is one-to-one, and
π2(Γ) is dense in W . Then

Λ = {π1(x) |x ∈ Γ, π2(x) ∈ W}
is called a CPS.

Throughout this paper we will always have G = R and H = R, hence we call the
resulting CPS sometimes 1 × 1-CPS in order to distinguish them from CPS where G or
H have higher dimension. Anyway, we will refer to these spaces as G and H (rather than
R and R) in order to distinguish the space G supporting the CPS Λ (often called direct
space) from the space H supporting W (often called internal space).

It does not really matter whether Γ is a proper lattice, or a translate of some lattice,
since translating the lattice by z yields the same CPS (shifted by π1(z)) as translating
the window W by π2(z). In general, translating the window corresponds just to changing
the CPS Λ to another CPS Λ′ that is locally indistinguishable from Λ, in the sense that
a copy of each local piece of Λ appears in Λ′, and vice versa.

The density of a CPS is the average number of points per unit area. It is known that
the density of a CPS exists and equals

dens Λ =
λ(W )

| det(MΓ)|
, (1)

where MΓ is the matrix whose columns are the spanning vectors of the lattice Γ. See [1,
Thm. 7.2] and references there for details.

Example 2.1. The (symbolic) Fibonacci sequence can be generated by applying the
map σ : a 7→ ab, b 7→ a repeatedly to the letter pair a|a: σ(a|a) = ab|ab, σ2(a) = aba|aba,
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σ4(a) = abaababa|abaababa, σ6(a) = abaababaabaababaababa|abaababaabaababaababa, . . ..
This symbolic sequence can be transformed into a Delone set in R by assigning an interval

of length τ =
√

5+1
2

to a and an interval of length 1 to b. Our Delone set Λ then consists
of the endpoints of the intervals. This Delone set can be defined via a CPS, too.

The corresponding CPS has G = 〈(1, 0)T 〉R, H〈(0, 1)T 〉R, W = [− 1
τ
, 1[⊂ H, lattice

Γ = 〈
(

1
1

)
,
( τ
−τ−1

)
〉Z, and π1 and π2 are orthogonal projections to G, respectively to H.

Weighted CPS are a generalisation of the notion of a CPS. A weighted CPS is a Dirac
comb

∑
x∈Λ

h(x?)δx, where h : W → R is continuos, and x? := π2(π−1
1 (x)). Here, π−1

1 (x)

makes sense since π1|Γ is one-to-one. A weighted CPS with constant weight function
h(x) = 1 for all x ∈ W (and h(x) = 0 for x /∈ W ) is just an ordinary CPS, viewed as a
measure. Weighted Dirac combs and weighted CPS are relevant in the study of diffraction
properties of CPS, see [1] and references therein. It is easy to see that the density formula
(1) for CPS generalises to weighted CPS as follows:

dens Λ =

∫
W
h(t)dt

| det(MΓ)|
. (2)

3. BRS for continuous rotations and weighted CPS

In order to utilize the results of [6] we generalise the notion of bounded distance equiv-
alence from point sets to measures.

Definition 3.1. Two measures µ, ν on R are bounded distance equivalent, if there is C > 0
such that for all a, b ∈ R with a < b

|µ([a, b])− ν([a, b])| < C.

Since a point set Λ in R can be identified with a measure
∑
x∈Λ

δx it is not hard to see that

this definition reduces for Delone sets to the definition of bounded distance equivalence
above. Nevertheless, we spell out the details in the proof of the next lemma.

Lemma 3.2. Two Delone sets Λ,Λ′ in R are bounded distance equivalent as point sets
if and only if the corresponding Dirac combs ω =

∑
x∈Λ

δx and ω =
∑
x′∈Λ′

δx′ are bounded

distance equivalent as measures.

Proof. Without loss of generality let Λ = {. . . , x−1, x0 = 0, x1, . . .} (with xi < xj if i < j)
and Λ′ = {. . . , x′−1, x

′
0 = 0, x′1, . . .} (with x′i < x′j if i < j). Let ω respectively ω′ be the

corresponding Dirac combs.
If there is a bounded distance bijection between Λ and Λ′ then xi 7→ x′i is a bounded

distance bijection, too. Hence there is C ′ > 0 such that |xi − x′i| < C ′ for all i.
Let x′i+` be the largest x′ ∈ Λ′ with x′ < xi. By the Delone property the interval [x′i, xi]

contains at most
|xi−x′i|

r
points of Λ′, hence

|`| ≤ |xi − x
′
i|

r
<
C ′

r
.

Thus the difference

|ω([a, b])− ω′([a, b])| = |
∑

x∈Λ∩[a,b]

δx −
∑

x′∈Λ′∩[a,b]

δx′ |

is bounded by the number of points xi ∈ [a, b] such that x′i /∈ [a, b] (or vice versa). Thus

|ω([a, b])− ω′([a, b])| < 2C ′r,

where C ′ and r depend only on Λ and Λ′.
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Conversely, if |ω([−n, n]) − ω′([−n, n])| < C for all n, then the number of points in
Λ∩ [−n, n] deviates at most by C from the number of points in Λ′∩ [−n, n]. If xi ∈ [−n, n]

but x′i /∈ [−n, n], then [xi, x
′
i[ can contain at most

|x′i−xi|
r

points of Λ′; again by the Delone
property of Λ′. Hence

|x′i − xi|
r

< C respectively |x′i − xi| < Cr.

where C and r depend only on Λ and Λ′. The same holds for xi, x
′
i with i < 0. �

The paper [6] studies BRSs of the continuous analogue of the discrete toral rotations
above. We state two definitions from [6], slightly simplified for our purposes.

Definition 3.3. Let x = (x1, x2) ∈ [0, 1]2, and let α ∈ R \ Q. We say that the function
X : [0,∞) 7→ [0, 1]2 defined by

X(t) = (x1 + t mod 1, x2 + αt mod 1)

is the two-dimensional continuous irrational rotation with slope α and starting point x.

The notion of deficiency translates as follows.

Definition 3.4. Let P ⊂ [0, 1]2 be an arbitrary measurable set with Lebesgue measure
λ(P ). We say that P is a bounded remainder set (BRS) for the continuous irrational
rotation with slope α > 0 and starting point x = (x1, x2) ∈ [0, 1]2 if the distributional
error

∆t(P, α, x) =

∫ t

0

1P (x1 + s mod 1, x2 + αs mod 1) ds− tλ(P ) (3)

is uniformly bounded for all t > 0. Here, 1P denotes the characteristic function for the
set P .

The following simple observation will be useful in the sequel. It can be shown easily
by spelling out the definition (resp., definitions, since it holds in both cases, discrete toral
rotations and continuous toral rotations).

Lemma 3.5. Let P, P ′ be BRSs. If P ∩ P ′ = ∅ then the union P ∪ P ′ is a BRS, too. If
P ′ ⊂ P then the difference P \ P ′ is a BRS, too.

Two of the main results in [6] are the following.

Theorem 3.6. For almost all α > 0 and every x ∈ [0, 1]2, every polygon P ⊂ [0, 1]2

with no edge of slope α is a BRS for the continuous irrational rotation with slope α and
starting point x.

Theorem 3.7. For almost all α > 0 and every x ∈ [0, 1]2, every convex set P ⊂ [0, 1]2

whose boundary ∂P is a twice continuously differentiable curve with positive curvature at
every point is a BRS for the continuous irrational rotation with slope α and starting point
x.

To a BRS P and an irrational slope α as above one can associate a weighted CPS as
follows; see also Figure 1. The direct space is G =

(
1
α

)
R, the internal space is the orthog-

onal complement H =
(

1
α

)⊥
of G in R2. The projections π1 and π2 are the orthogonal

projections to G, respectively to H, and W = π2(P ). Since P is connected, W is a line
segment in H, so we have W = [h1, h2] for some hi ∈ H. Because of the properties of P
(either positive curvature, or no slope in direction α) there is exactly one point z ∈ [0, 1]2

such that π2(z) = h1. Let Γ ⊂ G×H be z+Z2. Hence Γ is not actually a lattice here, but
a translation of the lattice Z2. This makes no difference, see the remark in the definition
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Figure 1. A CPS tailored to BRS for continuous toral rotations. The
direct space G is the line (1, α)TR. The internal space H is the orthogonal
complement of G in R2. The CPS consists of the projected points z + g
of z + Z2 (black points) where G intersects the adjacent convex set y + P
(g ∈ Z2). The weighted CPS is obtained by attaching to each point x =
π1(z + g) ∈ Λ the length of the intersection of G with g + P . (The weights
are not shown in the image.) Hence the weight function h on W is given
by the width of P in direction G (indicated on the left).

of a CPS in Section 2. Since α is irrational, π1|Γ is one-to-one, and π2(Γ) is dense in W .
Let Λ be the CPS defined by these data.

The map h : H → R is defined by letting h(π2(y)) (for y ∈ R2) be the length of(
1
α

)
R∩ (y+P ). Clearly, h vanishes outside W , and each P fulfilling either the conditions

of Theorem 3.6 or of Theorem 3.7 yields a map h that is continuous on H: the support
of h is W , and h(h1) = h(h2) = 0. Hence

∑
x∈Λ

h(x?)δx is a weighted CPS. (Recall that

xstar = π2(π−1
1 (x)).)

Conversely, given a weighted CPS Λ with data G =
(

1
α

)
R, H =

(
1
α

)⊥
,Γ = Z2,W =

[a, b],Γ = Z2, h, we can apply the opposite construction to obtain a candidate for a BRS
with respect to a continuous rotation on the torus. One possible problem is that the
window for Λ may be too large to fit into a standard fundamental domain of the lattice
Z2. One way to handle this is to split the “big” CPS into smaller ones.

Lemma 3.8. A CPS Λ with lattice Γ = Z2, G =
(

1
α

)
R, H = G⊥, and W = [a, b] ⊂ H is

the union of n2 CPS with lattice translates Γk,` = (k, `)T + nZ2 (0 ≤ k, ` ≤ n − 1), and
the same G, H, W .

Hence we assume without loss of generality in the following that W fits into the interior
of the projection of the fundamental domain [0, 1)2 of Z2 along G. Otherwise we split the
CPS into n2 smaller ones as in the lemma above for appropriate large enough n.

Now we choose a compact set P ⊂ [0, 1]2 such that for z ∈ W the value h(z) equals the
length of (z +

(
1
α

)
R) ∩ P . (For instance, if h(z) ≥ 0, then P can be the region between

the graph of 1
2
h(z) and the graph of −1

2
h(z).) Now again, the values of h may be too

large to fit P into [0, 1)2. Hence, if needed, we may rescale h by some appropriate factor
c′ > 0 such that P fits into [0, 1)2.

Lemma 3.9. Let ω =
∑
x∈Λ

h(x?)δx and P be as in the preceding construction. The weighted

CPS ω is bounded distant equivalent to cλ for some c > 0, if and only if P is a BRS with
respect to α.
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Proof. We compare ∆t(P, α) with
∑
x∈Λ

0≤x≤t

h(x?) − t
h2∫
h1

h(s)ds. By construction we have

λ(P ) =
h2∫
h1

h(s)ds. Also by construction, h(x?) is the width of the intersection of the

line segment {(s, αs)T | bxc ≤ s ≤ bxc+ 1}. So for t ∈ N we have

∑
x∈Λ

0≤x≤t

h(x?)− t
h2∫
h1

h(s)ds =

∫ t

0

1P (s mod 1, αs mod 1)dt− tλ(P )

Hence the right hand side is uniformly bounded if and only if the left hand side is. �

Remark 3.10. The authors of [6] give a precise meaning to the “almost all” in Theorems
3.6 and 3.7. Namely, the results hold for all α whose continued fraction expansion α =
[a0; a1, a2, · · · ] satisfies

m∑
`=0

a`+1

q
1/2
`

`+1∑
k=1

ak < C, (4)

where C is a constant independent of m. Here, (q`)`≥0 is the sequence of best ap-
proximation denominators for α. In particular this implies that the results hold for all
α = [a0; a1, a2, · · · ] where the ai are uniformly bounded by some constant c. This follows

from the fact that the qn grow at least as fast as τn (where τ =
√

5+1
2

). Then the sum
above is less than the convergent sum

∞∑
`=0

c

τ `/2
(`+ 1)c.

Since many 1 × 1 CPS in the literature use quadratic irrationals for the slope α, and
quadratic irrationals have periodic continued fraction expansion, these results apply to
most cases of 1× 1 CPS studied in the literature.

4. Main results

Using the results from the last section we can now prove the following result.

Theorem 4.1. Let Λ be a 1 × 1 CPS with lattice Γ = Z2, G =
(

1
α

)
R and H = G⊥,

window W = [a, b] ⊂ H, and h ∈ C(H) with support W (i.e., h vanishes outside W , and
h(x) 6= 0 for x ∈ W ). Furthermore, let α fulfill the condition (4) in Remark 3.10.

(1) If h is piecewise linear, or
(2) if h is twice differentiable on W , and h′′ is uniformly bounded on W ,

then the weighted Dirac comb ω =
∑
x∈Λ

h(x?)δx is bounded distance equivalent to mλ, where

m =
b∫
a

h(t)dt.

Proof. Let us first assume that h is twice differentiable on W , and h′′ is uniformly bounded
on W . Choose a compactly supported twice differentiable f , such that the support of h is
contained in the interior of the support of f , and such that there is c0 > 0 such that the
second derivative of f is less than −c0. (For instance, f may be the width function of an
appropriate big circle.) Choose c1 > 0 such that the second derivative of c1f−h is bounded
away from 0. I.e., there is c2 < 0 such that for all t ∈ W holds: (c1f(t)−h(t))′′ < c2. Then
c1f −h is twice differentiable, c1f −h has negative second derivative less than c2 < 0, and
consequently c1f − h is convex. At the endpoints of W the function c1f − h has vertical
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tangents, but its graph has positive curvature at these points because the curvature will
coincide with the curvature of a circle.

Both c1f and c1f − h yield convex sets P , P ′ that fulfill the conditions of Theorem
3.7: The convex set P for c1f is just an ellipse. As P ′ we might again choose the region
between the graphs of ±1

2
(c1f − h). So both P and P ′ yield BRS. By Lemma 3.5 the

difference P \ P ′ of two BRS P, P ′ with P ′ ⊂ P is again a BRS, hence h corresponds to
a BRS, too. By Lemma 3.9 the claim follows.

The case of piecewise linear f is handled analogously. Note that if h is piecewise linear
and continuous on H, then the corresponding polygon P has no edge parallel to

(
1
α

)
. �

Since Lemma 3.9 and Lemma 3.5 imply that the sum µ1+µ2 of two measures µ1, µ2 that
are bounded distance equivalent with c1λ, respectively c2λ, is bounded distance equivalent
to (c1 + c2)λ, the following result is immediate.

Corollary 4.2. Any linear combination of Dirac combs as in Theorem 4.1 is again
bounded distance equivalent to cλ, for some appropriate c > 0.

Theorem 4.1 holds for almost all α, more precisely: for all α fulfilling Equation (4). In
particular, Theorem 4.1 holds for all α with bounded values in their continued fraction
expansion. However, there is no particular example of an algebraic number of degree
larger than two where it is known whether the values in its continued fraction expan-
sion are bounded. Fortunately, many 1 × 1 CPS in the literature arise from two-letter
substitutions. The slope α for a CPS for some two letter substitution is always a qua-
dratic irrational, compare for instance with Example 2.1. Since quadratic irrationals have
periodic continued fraction expansions, Theorem 4.1 holds for all quadratic irrationals α.

Unfortunately, the most natural way to describe a CPS for a two-letter substitution is
to use a different lattice than Z2, namely the one spanned by the vectors (1, 1)T , (β, β′),
where 1, β are the natural tile lengths, and β′ is the algebraic conjugate of β, see [1] for
details. Hence ββ′ = p

q
∈ Q.

Corollary 4.3. Let β be a quadratic irrational. Let Λ be a weighted 1 × 1 CPS with
G = R, Γ = 〈(1, 1)T , (β, β′)〉Z, the window W = [a, b] an interval in H and h as in
Theorem 4.1. Then the Dirac comb ω =

∑
x∈Λ

h(x?)δx is bounded distance equivalent to mλ

where m = 1
|β−β′|

b∫
a

h(t)dt.

Proof. The lattice Γ can be mapped to the standard integer lattice Z2 by applying some
matrix M , where M−1 =

(
1 β
1 β′

)
. Hence M = 1

β−β′
( −β′ β

1 −1

)
. The slope α of Theorem 4.1

is then

α = M
(

1
0

)
=

1

β − β′
(
−β′

1

)
.

Hence
αR =

(
−β′

1

)
R =

( −p
q

β

)
R.

Because of the symmetry of Z2 the slope (−p
q
, β)T yields the same CPS as the slope

(p
q
, β)T , respectively the slope (1, q

p
β)T . Hence the slope α equals q

p
β. In particular, α is a

quadratic irrational as well. Furthermore, M preserves the properties of h. By Theorem
4.1 the resulting CPS Λ′ is bounded distance equivalent to c′λ for some appropriate c′.
Since the original CPS is just the image of Λ′ under some (regular) linear map, Λ is also
bounded distance equivalent to mλ for some appropriate m. By the density formula for

weighted CPS (2) holds m = 1
|det(M−1)| = 1

|β−β′|

b∫
a

h(t)dt. �
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