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Chapter 1

Post correspondence problem

Not to be confused with the other Post’s problem on the
existence of incomparable r.e. Turing degrees.
Not to be confused with PCP theorem.

The Post correspondence problem is an undecidable
decision problem that was introduced by Emil Post in
1946.[1] Because it is simpler than the halting problem
and the Entscheidungsproblem it is often used in proofs
of undecidability.

1.1 Definition of the problem

The input of the problem consists of two finite lists
α1, . . . , αN and β1, . . . , βN of words over some alphabet
A having at least two symbols. A solution to this prob-
lem is a sequence of indices (ik)1≤k≤K withK ≥ 1 and
1 ≤ ik ≤ N for all k , such that

αi1 . . . αiK = βi1 . . . βiK .

The decision problem then is to decide whether such a
solution exists or not.

1.1.1 Alternative definition

In the above definition, a solution can be seen as a
nonempty word on the alphabet {1, . . . , N} , and each
of the two given lists of words on alphabet A can be
seen as defining a homomorphism that maps words on
{1, . . . , N} to words on A :

g : (i1, . . . , iK) 7→ αi1 . . . αiK

h : (i1, . . . , iK) 7→ βi1 . . . βiK .

This gives rise to an equivalent alternative definition often
found in the literature, according to which any two homo-
morphisms g, h with a common domain and a common
codomain form an instance of the Post correspondence
problem, which now asks whether there exists a nonempty
word w in the domain such that

g(w) = h(w)

1.2 Example instances of the prob-
lem

1.2.1 Example 1

Consider the following two lists:
A solution to this problem would be the sequence (3, 2,
3, 1), because

α3α2α3α1 = bba+ab+bba+a = bbaabbbaa = bb+aa+bb+baa = β3β2β3β1.

Furthermore, since (3, 2, 3, 1) is a solution, so are all of
its “repetitions”, such as (3, 2, 3, 1, 3, 2, 3, 1), etc.; that is,
when a solution exists, there are infinitely many solutions
of this repetitive kind.
However, if the two lists had consisted of only α2, α3 and
β2, β3 from those sets, then there would have been no
solution (the last letter of any such α string is not the same
as the letter before it, whereas β only constructs pairs of
the same letter).
A convenient way to view an instance of a Post correspon-
dence problem is as a collection of blocks of the form
there being an unlimited supply of each type of block.
Thus the above example is viewed as
where the solver has an endless supply of each of these
three block types. A solution corresponds to some way
of laying blocks next to each other so that the string in
the top cells corresponds to the string in the bottom cells.
Then the solution to the above example corresponds to:

1.2.2 Example 2

Again using blocks to represent an instance of the prob-
lem, the following is an example that has infinitely many
solutions in addition to the kind obtained by merely “re-
peating” a solution.
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2 CHAPTER 1. POST CORRESPONDENCE PROBLEM

In this instance, every sequence of the form (1, 2, 2, . . .,
2, 3) is a solution (in addition to all their repetitions):

1.3 Proof sketch of undecidability

The most common proof for the undecidability of PCP
describes an instance of PCP that can simulate the com-
putation of a Turing machine on a particular input. A
match will occur if and only if the input would be ac-
cepted by the Turingmachine. Because deciding if a Tur-
ing machine will accept an input is a basic undecidable
problem, PCP cannot be decidable either. The following
discussion is based on Michael Sipser's textbook Intro-
duction to the Theory of Computation.[2]

In more detail, the idea is that the string along the top
and bottom will be a computation history of the Turing
machine’s computation. This means it will list a string de-
scribing the initial state, followed by a string describing
the next state, and so on until it ends with a string describ-
ing an accepting state. The state strings are separated by
some separator symbol (usually written #). According to
the definition of a Turing machine, the full state of the
machine consists of three parts:

• The current contents of the tape.

• The current state of the finite state machine which
operates the tape head.

• The current position of the tape head on the tape.

Although the tape has infinitely many cells, only some fi-
nite prefix of these will be non-blank. We write these
down as part of our state. To describe the state of the fi-
nite control, we create new symbols, labelled q1 through
qk, for each of the finite state machine’s k states. We
insert the correct symbol into the string describing the
tape’s contents at the position of the tape head, thereby
indicating both the tape head’s position and the current
state of the finite control. For the alphabet {0,1}, a typi-
cal state might look something like:
101101110q700110.
A simple computation history would then look something
like this:
q0101#1q401#11q21#1q810.
We start out with this block, where x is the input string
and q0 is the start state:
The top starts out “lagging” the bottom by one state, and
keeps this lag until the very end stage. Next, for each
symbol a in the tape alphabet, as well as #, we have a
“copy” block, which copies it unmodified from one state
to the next:
We also have a block for each position transition the ma-
chine can make, showing how the tape head moves, how

the finite state changes, andwhat happens to the surround-
ing symbols. For example, here the tape head is over a 0
in state 4, and then writes a 1 and moves right, changing
to state 7:
Finally, when the top reaches an accepting state, the bot-
tom needs a chance to finally catch up to complete the
match. To allow this, we extend the computation so that
once an accepting state is reached, each subsequent ma-
chine step will cause a symbol near the tape head to van-
ish, one at a time, until none remain. If qf is an accepting
state, we can represent this with the following transition
blocks, where a is a tape alphabet symbol:
There are a number of details to work out, such as dealing
with boundaries between states, making sure that our ini-
tial tile goes first in the match, and so on, but this shows
the general idea of how a static tile puzzle can simulate a
Turing machine computation.
The previous example
q0101#1q401#11q21#1q810.
is represented as the following solution to the Post corre-
spondence problem:

1.4 Variants

Many variants of PCP have been considered. One reason
is that, when one tries to prove undecidability of some
new problem by reducing from PCP, it often happens that
the first reduction one finds is not from PCP itself but
from an apparently weaker version.

• The problem may be phrased in terms of monoid
morphisms f, g from the free monoid B∗ to the free
monoid A∗ where B is of size n. The problem is to
determine whether there is a word w in B+ such that
f(w) = g(w).[3]

• The condition that the alphabet A have at least two
symbols is required since the problem is decidable
if A has only one symbol.

• A simple variant is to fix n, the number of tiles. This
problem is decidable if n ≤ 2, but remains undecid-
able for n ≥ 5. It is unknown whether the problem
is decidable for 3 ≤ n ≤ 4.[4]

• The circular Post correspondence problem asks
whether indexes i1, i2, . . . can be found such that
αi1 · · ·αik and βi1 · · ·βik are conjugate words, i.e.,
they are equal modulo rotation. This variant is
undecidable.[5]

• One of the most important variants of PCP is the
bounded Post correspondence problem, which
asks if we can find a match using no more than k
tiles, including repeated tiles. A brute force search
solves the problem in time O(2k), but this may be
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difficult to improve upon, since the problem is NP-
complete.[6] Unlike some NP-complete problems
like the boolean satisfiability problem, a small vari-
ation of the bounded problem was also shown to be
complete for RNP, whichmeans that it remains hard
even if the inputs are chosen at random (it is hard on
average over uniformly distributed inputs).[7]

• Another variant of PCP is called the marked Post
Correspondence Problem, in which each ui must
begin with a different symbol, and each vi must also
begin with a different symbol. Halava, Hirvensalo,
and de Wolf showed that this variation is decidable
in exponential time. Moreover, they showed that
if this requirement is slightly loosened so that only
one of the first two characters need to differ (the
so-called 2-marked Post Correspondence Problem),
the problem becomes undecidable again.[8]

• The Post Embedding Problem is another vari-
ant where one looks for indexes i1, i2, . . . such that
αi1 · · ·αik is a (scattered) subword of βi1 · · ·βik .
This variant is easily decidable since, when some
solutions exist, in particular a length-one solution
exists. More interesting is the Regular Post Em-
bedding Problem, a further variant where one looks
for solutions that belong to a given regular language
(submitted, e.g., under the form of a regular ex-
pression on the set {1, . . . , N} ). The Regular Post
Embedding Problem is still decidable but, because
of the added regular constraint, it has a very high
complexity that dominates every multiply recursive
function.[9]

• The Identity Correspondence Problem (ICP) asks
whether a finite set of pairs of words (over a group
alphabet) can generate an identity pair by a sequence
of concatenations. The problem is undecidable and
equivalent to the following Group Problem: is the
semigroup generated by a finite set of pairs of words
(over a group alphabet) a group.[10]
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Chapter 2

Halting problem

In computability theory, the halting problem is the prob-
lem of determining, from a description of an arbitrary
computer program and an input, whether the program
will finish running or continue to run forever.
Alan Turing proved in 1936 that a general algorithm to
solve the halting problem for all possible program-input
pairs cannot exist. A key part of the proof was a math-
ematical definition of a computer and program, which
became known as a Turing machine; the halting problem
is undecidable over Turing machines. It is one of the first
examples of a decision problem.
Jack Copeland (2004) attributes the term halting problem
to Martin Davis.[1]

2.1 Background

The halting problem is a decision problem about prop-
erties of computer programs on a fixed Turing-complete
model of computation, i.e., all programs that can be writ-
ten in some given programming language that is general
enough to be equivalent to a Turing machine. The prob-
lem is to determine, given a program and an input to the
program, whether the program will eventually halt when
run with that input. In this abstract framework, there are
no resource limitations on the amount of memory or time
required for the program’s execution; it can take arbitrar-
ily long, and use arbitrarily as much storage space, before
halting. The question is simply whether the given pro-
gram will ever halt on a particular input.
For example, in pseudocode, the program

while (true) continue

does not halt; rather, it goes on forever in an infinite loop.
On the other hand, the program

print “Hello, world!"

does halt.
While deciding whether these programs halt is simple,
more complex programs prove problematic.

One approach to the problemmight be to run the program
for some number of steps and check if it halts. But if the
program does not halt, it is unknownwhether the program
will eventually halt or run forever.
Turing proved no algorithm exists that always correctly
decides whether, for a given arbitrary program and input,
the program halts when run with that input; the essence
of Turing’s proof is that any such algorithm can be made
to contradict itself, and therefore cannot be correct.

2.2 Importance and consequences

The halting problem is historically important because it
was one of the first problems to be proved undecidable.
(Turing’s proof went to press in May 1936, whereas
Alonzo Church's proof of the undecidability of a prob-
lem in the lambda calculus had already been published
in April 1936.) Subsequently, many other undecidable
problems have been described; the typical method of
proving a problem to be undecidable is with the tech-
nique of reduction. To do this, it is sufficient to show
that if a solution to the new problem were found, it could
be used to decide an undecidable problem by transform-
ing instances of the undecidable problem into instances of
the new problem. Since we already know that no method
can decide the old problem, no method can decide the
new problem either. Often the new problem is reduced to
solving the halting problem. (Note: the same technique
is used to demonstrate that a problem is NP complete,
only in this case, rather than demonstrating that there is
no solution, it demonstrates there is no polynomial time
solution, assuming P ≠ NP).
For example, one such consequence of the halting prob-
lem’s undecidability is that there cannot be a general
algorithm that decides whether a given statement about
natural numbers is true or not. The reason for this is
that the proposition stating that a certain programwill halt
given a certain input can be converted into an equivalent
statement about natural numbers. If we had an algorithm
that could find the truth value of every statement about
natural numbers, it could certainly find the truth value
of this one; but that would determine whether the orig-
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inal program halts, which is impossible, since the halting
problem is undecidable.
Rice’s theorem generalizes the theorem that the halting
problem is unsolvable. It states that for any non-trivial
property, there is no general decision procedure that, for
all programs, decides whether the partial function imple-
mented by the input program has that property. (A partial
function is a function which may not always produce a re-
sult, and so is used to model programs, which can either
produce results or fail to halt.) For example, the prop-
erty “halt for the input 0” is undecidable. Here, “non-
trivial” means that the set of partial functions that satisfy
the property is neither the empty set nor the set of all par-
tial functions. For example, “halts or fails to halt on input
0” is clearly true of all partial functions, so it is a trivial
property, and can be decided by an algorithm that sim-
ply reports “true.” Also, note that this theorem holds only
for properties of the partial function implemented by the
program; Rice’s Theorem does not apply to properties of
the program itself. For example, “halt on input 0 within
100 steps” is not a property of the partial function that is
implemented by the program—it is a property of the pro-
gram implementing the partial function and is very much
decidable.
Gregory Chaitin has defined a halting probability, repre-
sented by the symbol Ω, a type of real number that in-
formally is said to represent the probability that a ran-
domly produced program halts. These numbers have the
same Turing degree as the halting problem. It is a normal
and transcendental number which can be defined but can-
not be completely computed. This means one can prove
that there is no algorithm which produces the digits of
Ω, although its first few digits can be calculated in simple
cases.
While Turing’s proof shows that there can be no general
method or algorithm to determine whether algorithms
halt, individual instances of that problem may very well
be susceptible to attack. Given a specific algorithm, one
can often show that it must halt for any input, and in
fact computer scientists often do just that as part of a
correctness proof. But each proof has to be developed
specifically for the algorithm at hand; there is nomechan-
ical, general way to determine whether algorithms on a
Turing machine halt. However, there are some heuristics
that can be used in an automated fashion to attempt to
construct a proof, which succeed frequently on typical
programs. This field of research is known as automated
termination analysis.
Since the negative answer to the halting problem shows
that there are problems that cannot be solved by a Tur-
ing machine, the Church–Turing thesis limits what can be
accomplished by any machine that implements effective
methods. However, not all machines conceivable to hu-
man imagination are subject to the Church–Turing thesis
(e.g. oracle machines). It is an open question whether
there can be actual deterministic physical processes that,

in the long run, elude simulation by a Turing machine,
and in particular whether any such hypothetical process
could usefully be harnessed in the form of a calculating
machine (a hypercomputer) that could solve the halting
problem for a Turing machine amongst other things. It is
also an open question whether any such unknown phys-
ical processes are involved in the working of the human
brain, and whether humans can solve the halting problem
(Copeland 2004, p. 15).

2.3 Representation as a set

The conventional representation of decision problems is
the set of objects possessing the property in question. The
halting set

K := { (i, x) | program i halts when run on input
x}

represents the halting problem.
This set is recursively enumerable, which means there is
a computable function that lists all of the pairs (i, x) it
contains.[2] However, the complement of this set is not
recursively enumerable.[2]

There are many equivalent formulations of the halting
problem; any set whose Turing degree equals that of the
halting problem is such a formulation. Examples of such
sets include:

• { i | program i eventually halts when run with input
0 }

• { i | there is an input x such that program i eventually
halts when run with input x }.

2.4 Sketch of proof

The proof shows there is no total computable function
that decides whether an arbitrary program i halts on arbi-
trary input x; that is, the following function h is not com-
putable (Penrose 1990, p. 57–63):

h(i, x) =

{
1 if program i input on halts x,
0 otherwise.

Here program i refers to the i th program in an
enumeration of all the programs of a fixed Turing-
complete model of computation.
Possible values for a total computable function f arranged in
a 2D array. The orange cells are the diagonal. The values of
f(i,i) and g(i) are shown at the bottom; U indicates that the
function g is undefined for a particular input value.
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The proof proceeds by directly establishing that every to-
tal computable function with two arguments differs from
the required function h. To this end, given any total com-
putable binary function f, the following partial function g
is also computable by some program e:

g(i) =

{
0 iff(i, i) = 0,

undefined otherwise.

The verification that g is computable relies on the follow-
ing constructs (or their equivalents):

• computable subprograms (the program that com-
putes f is a subprogram in program e),

• duplication of values (program e computes the in-
puts i,i for f from the input i for g),

• conditional branching (program e selects between
two results depending on the value it computes for
f(i,i)),

• not producing a defined result (for example, by loop-
ing forever),

• returning a value of 0.

The following pseudocode illustrates a straightforward
way to compute g:
procedure compute_g(i): if f(i,i) == 0 then return 0 else
loop forever

Because g is partial computable, there must be a program
e that computes g, by the assumption that the model of
computation is Turing-complete. This program is one of
all the programs on which the halting function h is de-
fined. The next step of the proof shows that h(e,e) will
not have the same value as f(e,e).
It follows from the definition of g that exactly one of the
following two cases must hold:

• f(e,e) = 0 and so g(e) = 0. In this case h(e,e) = 1,
because program e halts on input e.

• f(e,e) ≠ 0 and so g(e) is undefined. In this case h(e,e)
= 0, because program e does not halt on input e.

In either case, f cannot be the same function as h. Be-
cause f was an arbitrary total computable function with
two arguments, all such functions must differ from h.
This proof is analogous to Cantor’s diagonal argument.
One may visualize a two-dimensional array with one col-
umn and one row for each natural number, as indicated
in the table above. The value of f(i,j) is placed at column
i, row j. Because f is assumed to be a total computable
function, any element of the array can be calculated us-
ing f. The construction of the function g can be visualized

using the main diagonal of this array. If the array has a
0 at position (i,i), then g(i) is 0. Otherwise, g(i) is unde-
fined. The contradiction comes from the fact that there
is some column e of the array corresponding to g itself.
Now assume f was the halting function h, if g(e) is defined
( g(e) = 0 in this case ), g(e) halts so f(e,e) = 1. But g(e)
= 0 only when f(e,e) = 0, contradicting f(e,e) = 1. Sim-
ilarly, if g(e) is not defined, then halting function f(e,e)
= 0, which leads to g(e) = 0 under g's construction. This
contradicts the assumption that g(e) not being defined. In
both cases contradiction arises. Therefore any arbitrary
computable function f cannot be the halting function h.

2.5 Proof as a corollary of the un-
computability of Kolmogorov
complexity

The undecidability of the halting problem also follows
from the fact that Kolmogorov complexity is not com-
putable. If the halting problem were decidable, it would
be possible to construct a program that generated pro-
grams of increasing length, running those that halt and
comparing their final outputs with a string parameter un-
til one matched (which must happen eventually, as any
string can be generated by a program that contains it as
data and just lists it); the length of the matching gener-
ated program would then be the Kolmogorov complexity
of the parameter, as the terminating generated program
must be the shortest (or shortest equal) such program.[3]

2.6 Common pitfalls

The difficulty in the halting problem lies in the require-
ment that the decision procedure must work for all pro-
grams and inputs. A particular program either halts on a
given input or does not halt. Consider one algorithm that
always answers “halts” and another that always answers
“doesn't halt”. For any specific program and input, one
of these two algorithms answers correctly, even though
nobody may know which one.
There are programs (interpreters) that simulate the exe-
cution of whatever source code they are given. Such pro-
grams can demonstrate that a program does halt if this
is the case: the interpreter itself will eventually halt its
simulation, which shows that the original program halted.
However, an interpreter will not halt if its input program
does not halt, so this approach cannot solve the halt-
ing problem as stated. It does not successfully answer
“doesn't halt” for programs that do not halt.
The halting problem is theoretically decidable for linear
bounded automata (LBAs) or deterministic machines
with finite memory. A machine with finite memory has
a finite number of states, and thus any deterministic pro-
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gram on it must eventually either halt or repeat a previous
state:

...any finite-state machine, if left completely to
itself, will fall eventually into a perfectly peri-
odic repetitive pattern. The duration of this re-
peating pattern cannot exceed the number of
internal states of the machine... (italics in orig-
inal, Minsky 1967, p. 24)

Minsky warns us, however, that machines such as com-
puters with e.g., a million small parts, each with two
states, will have at least 21,000,000 possible states:

This is a 1 followed by about three hundred
thousand zeroes ... Even if such a machine
were to operate at the frequencies of cosmic
rays, the aeons of galactic evolution would be
as nothing compared to the time of a journey
through such a cycle (Minsky 1967 p. 25):

Minsky exhorts the reader to be suspicious—although a
machine may be finite, and finite automata “have a num-
ber of theoretical limitations":

...the magnitudes involved should lead one to
suspect that theorems and arguments based
chiefly on the mere finiteness [of] the state dia-
grammay not carry a great deal of significance.
(Minsky p. 25)

It can also be decided automatically whether a nondeter-
ministic machine with finite memory halts on none, some,
or all of the possible sequences of nondeterministic deci-
sions, by enumerating states after each possible decision.

2.7 Formalization

In his original proof Turing formalized the concept of
algorithm by introducing Turing machines. However, the
result is in no way specific to them; it applies equally
to any other model of computation that is equivalent
in its computational power to Turing machines, such
as Markov algorithms, Lambda calculus, Post systems,
register machines, or tag systems.
What is important is that the formalization allows a
straightforward mapping of algorithms to some data type
that the algorithm can operate upon. For example, if the
formalism lets algorithms define functions over strings
(such as Turingmachines) then there should be amapping
of these algorithms to strings, and if the formalism lets al-
gorithms define functions over natural numbers (such as
computable functions) then there should be a mapping of
algorithms to natural numbers. The mapping to strings
is usually the most straightforward, but strings over an

alphabet with n characters can also be mapped to num-
bers by interpreting them as numbers in an n-ary numeral
system.

2.8 Relationship with Gödel’s in-
completeness theorems

The concepts raised by Gödel’s incompleteness theorems
are very similar to those raised by the halting problem,
and the proofs are quite similar. In fact, a weaker form of
the First Incompleteness Theorem is an easy consequence
of the undecidability of the halting problem. This weaker
form differs from the standard statement of the incom-
pleteness theorem by asserting that a complete, consistent
and sound axiomatization of all statements about natural
numbers is unachievable. The “sound” part is the weak-
ening: it means that we require the axiomatic system in
question to prove only true statements about natural num-
bers. The more general statement of the incompleteness
theorems does not require a soundness assumption of this
kind.
The weaker form of the theorem can be proven from the
undecidability of the halting problem as follows. Assume
that we have a consistent and complete axiomatization
of all true first-order logic statements about natural num-
bers. Then we can build an algorithm that enumerates all
these statements. This means that there is an algorithm
N(n) that, given a natural number n, computes a true first-
order logic statement about natural numbers such that, for
all the true statements, there is at least one n such that
N(n) yields that statement. Now suppose we want to de-
cide whether the algorithm with representation a halts on
input i. By using Kleene’s T predicate, we can express
the statement "a halts on input i" as a statement H(a, i)
in the language of arithmetic. Since the axiomatization
is complete it follows that either there is an n such that
N(n) = H(a, i) or there is an n' such that N(n') = ¬ H(a,
i). So if we iterate over all n until we either find H(a,
i) or its negation, we will always halt. This means that
this gives us an algorithm to decide the halting problem.
Since we know that there cannot be such an algorithm, it
follows that the assumption that there is a consistent and
complete axiomatization of all true first-order logic state-
ments about natural numbers must be false.

2.9 Variants of the halting problem

Many variants of the halting problem can be found in
Computability textbooks (e.g., Sipser 2006, Davis 1958,
Minsky 1967, Hopcroft and Ullman 1979, Börger 1989).
Typically their undecidability follows by reduction from
the standard halting problem. However, some of them
have a higher degree of unsolvability. The next two ex-
amples are typical.
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2.9.1 Halting on all inputs

The universal halting problem, also known (in recursion
theory) as totality, is the problem of determining, whether
a given computer program will halt for every input (the
name totality comes from the equivalent question of
whether the computed function is total). This problem is
not only undecidable, as the halting problem, but highly
undecidable. In terms of the Arithmetical hierarchy, it is
Π0

2 -complete.[4] This means, in particular, that it cannot
be decided even with an oracle for the halting problem.

2.9.2 Recognizing partial solutions

There are many programs that, for some inputs, return
a correct answer to the halting problem, while for other
inputs they do not return an answer at all. However the
problem ″given program p, is it a partial halting solver″
(in the sense described) is at least as hard as the halt-
ing problem. To see this, assume that there is an algo-
rithm PHSR (″partial halting solver recognizer″) to do
that. Then it can be used to solve the halting problem,
as follows: To test whether input program x halts on y,
construct a program p that on input (x,y) reports true and
diverges on all other inputs. Then test p with PHSR.
The above argument is a reduction of the halting prob-
lem to PHS recognition, and in the same manner, harder
problems such as halting on all inputs can also be reduced,
implying that PHS recognition is not only undecidable,
but higher in the Arithmetical hierarchy, specifically Π0

2

-complete.

2.9.3 Generalized to oracle machines

See also: Turing jump

A machine with an oracle for the halting problem can de-
termine whether particular Turing machines will halt on
particular inputs, but they cannot determine, in general,
if machines equivalent to themselves will halt.
More generally, there is no oracle machines with oracle
to some problem that can determine in general whether
a machine with an oracle to the same problem will halt.
Thus, for any oracle O, the halting problem for oracle
Turingmachines with an oracle to O is not O-computable.

2.10 History

Further information: History of algorithms

• 1900: David Hilbert poses his “23 questions”
(now known as Hilbert’s problems) at the Second
International Congress of Mathematicians in Paris.

“Of these, the second was that of proving the con-
sistency of the 'Peano axioms' on which, as he
had shown, the rigour of mathematics depended”.
(Hodges p. 83, Davis’ commentary in Davis, 1965,
p. 108)

• 1920–1921: Emil Post explores the halting prob-
lem for tag systems, regarding it as a candidate for
unsolvability. (Absolutely unsolvable problems and
relatively undecidable propositions – account of an
anticipation, in Davis, 1965, pp. 340–433.) Its un-
solvability was not established until much later, by
Marvin Minsky (1967).

• 1928: Hilbert recasts his 'Second Problem' at the
Bologna International Congress. (Reid pp. 188–
189) Hodges claims he posed three questions: i.e.
#1: Was mathematics complete? #2: Was math-
ematics consistent? #3: Was mathematics decid-
able? (Hodges p. 91). The third question is known
as the Entscheidungsproblem (Decision Problem).
(Hodges p. 91, Penrose p. 34)

• 1930: Kurt Gödel announces a proof as an answer to
the first two of Hilbert’s 1928 questions [cf Reid p.
198]. “At first he [Hilbert] was only angry and frus-
trated, but then he began to try to deal constructively
with the problem... Gödel himself felt—and ex-
pressed the thought in his paper—that his work did
not contradict Hilbert’s formalistic point of view”
(Reid p. 199)

• 1931: Gödel publishes “On Formally Undecidable
Propositions of Principia Mathematica and Related
Systems I”, (reprinted in Davis, 1965, p. 5ff)

• 19 April 1935: Alonzo Church publishes “An Un-
solvable Problem of Elementary Number Theory”,
wherein he identifies what it means for a function to
be effectively calculable. Such a function will have
an algorithm, and "...the fact that the algorithm has
terminated becomes effectively known ...” (Davis,
1965, p. 100)

• 1936: Church publishes the first proof that the
Entscheidungsproblem is unsolvable. (A Note on the
Entscheidungsproblem, reprinted in Davis, 1965, p.
110.)

• 7 October 1936: Emil Post's paper “Finite Combi-
natory Processes. Formulation I” is received. Post
adds to his “process” an instruction "(C) Stop”. He
called such a process “type 1 ... if the process it
determines terminates for each specific problem.”
(Davis, 1965, p. 289ff)

• 1937: Alan Turing's paper On Computable Numbers
With an Application to the Entscheidungsproblem
reaches print in January 1937 (reprinted in Davis,
1965, p. 115). Turing’s proof departs from calcula-
tion by recursive functions and introduces the notion
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of computation by machine. Stephen Kleene (1952)
refers to this as one of the “first examples of decision
problems proved unsolvable”.

• 1939: J. Barkley Rosser observes the essential
equivalence of “effective method” defined by Gödel,
Church, and Turing (Rosser in Davis, 1965, p. 273,
“Informal Exposition of Proofs of Gödel’s Theorem
and Church’s Theorem”)

• 1943: In a paper, Stephen Kleene states that “In set-
ting up a complete algorithmic theory, what we do
is describe a procedure ... which procedure neces-
sarily terminates and in such manner that from the
outcome we can read a definite answer, 'Yes’ or 'No,'
to the question, 'Is the predicate value true?'.”

• 1952: Kleene (1952) Chapter XIII (“Computable
Functions”) includes a discussion of the unsolvabil-
ity of the halting problem for Turing machines and
reformulates it in terms of machines that “eventu-
ally stop”, i.e. halt: "... there is no algorithm for
deciding whether any given machine, when started
from any given situation, eventually stops.” (Kleene
(1952) p. 382)

• 1952: "Martin Davis thinks it likely that he first
used the term 'halting problem' in a series of lec-
tures that he gave at the Control Systems Labora-
tory at the University of Illinois in 1952 (letter from
Davis to Copeland, 12 December 2001).” (Footnote
61 in Copeland (2004) pp. 40ff)

2.11 Avoiding the halting problem

In many practical situations, programmers try to avoid
infinite loops—they want every subroutine to finish (halt).
In particular, in hard real-time computing, programmers
attempt to write subroutines that are not only guaranteed
to finish (halt), but are guaranteed to finish before the
given deadline.
Sometimes these programmers use some general-purpose
(Turing-complete) programming language, but attempt
to write in a restricted style—such as MISRA C—that
makes it easy to prove that the resulting subroutines fin-
ish before the given deadline.
Other times these programmers apply the rule of least
power—they deliberately use a computer language that
is not quite fully Turing-complete, often a language that
guarantees that all subroutines are guaranteed to finish,
such as Coq.

2.12 See also

• Busy beaver

• Generic-case complexity

• Geoffrey K. Pullum

• Gödel’s incompleteness theorem

• Kolmogorov complexity

• P versus NP problem

• Termination analysis

• Worst-case execution time

2.13 Notes
[1] In none of his work did Turing use the word “halting” or

“termination”. Turing’s biographer Hodges does not have
the word “halting” or words “halting problem” in his index.
The earliest known use of the words “halting problem” is
in a proof by Davis (1958, p. 70–71):

“Theorem 2.2 There exists a Turing machine
whose halting problem is recursively unsolv-
able.
“A related problem is the printing problem for
a simple Turing machine Z with respect to a
symbol Sᵢ".

Davis adds no attribution for his proof, so one infers that
it is original with him. But Davis has pointed out that a
statement of the proof exists informally in Kleene (1952,
p. 382). Copeland (2004, p 40) states that:

“The halting problem was so named (and
it appears, first stated) by Martin Davis [cf
Copeland footnote 61]... (It is often said that
Turing stated and proved the halting theorem
in 'On Computable Numbers’, but strictly this
is not true).”

[2] Moore, Cristopher; Mertens, Stephan (2011), The Nature
of Computation, Oxford University Press, pp. 236–237,
ISBN 9780191620805.

[3] Stated without proof in: "Course notes for Data Compres-
sion - Kolmogorov complexity", 2005, P.B. Miltersen, p.7

[4] Börger, Egon. “Computability, Complexity, Logic”.
North-Holland, 1989. p. 121
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online version of both parts This is the epochal pa-
per where Turing defines Turing machines, formu-
lates the halting problem, and shows that it (as well
as the Entscheidungsproblem) is unsolvable.

• Sipser, Michael (2006). “Section 4.2: The Halting
Problem”. Introduction to the Theory of Computa-
tion (Second ed.). PWS Publishing. pp. 173–182.
ISBN 0-534-94728-X.

• c2:HaltingProblem

• B. Jack Copeland ed. (2004), The Essential Turing:
Seminal Writings in Computing, Logic, Philosophy,
Artificial Intelligence, and Artificial Life plus The Se-
crets of Enigma, Clarendon Press (Oxford Univer-
sity Press), Oxford UK, ISBN 0-19-825079-7.

• Davis, Martin (1965). The Undecidable, Basic Pa-
pers on Undecidable Propositions, Unsolvable Prob-
lems And Computable Functions. New York: Raven
Press.. Turing’s paper is #3 in this volume. Papers
include those by Godel, Church, Rosser, Kleene,
and Post.

• Davis, Martin (1958). Computability and Unsolv-
ability. New York: McGraw-Hill..

• AlfredNorthWhitehead and Bertrand Russell, Prin-
cipia Mathematica to *56, Cambridge at the Univer-
sity Press, 1962. Re: the problem of paradoxes, the
authors discuss the problem of a set not be an object
in any of its “determining functions”, in particular
“Introduction, Chap. 1 p. 24 "...difficulties which
arise in formal logic”, and Chap. 2.I. “The Vicious-
Circle Principle” p. 37ff, and Chap. 2.VIII. “The
Contradictions” p. 60ff.

• Martin Davis, “What is a computation”, in Math-
ematics Today, Lynn Arthur Steen, Vintage Books
(Random House), 1980. A wonderful little paper,
perhaps the best ever written about TuringMachines
for the non-specialist. Davis reduces the TuringMa-
chine to a far-simpler model based on Post’s model
of a computation. Discusses Chaitin proof. Includes
little biographies of Emil Post, Julia Robinson.

• Marvin Minsky, Computation, Finite and Infinite
Machines, Prentice-Hall, Inc., N.J., 1967. See chap-
ter 8, Section 8.2 “The Unsolvability of the Halting
Problem.” Excellent, i.e. readable, sometimes fun.
A classic.

• Roger Penrose, The Emperor’s New Mind: Concern-
ing computers, Minds and the Laws of Physics, Ox-
ford University Press, Oxford England, 1990 (with
corrections). Cf: Chapter 2, “Algorithms and Tur-
ing Machines”. An over-complicated presentation
(see Davis’s paper for a better model), but a thor-
ough presentation of Turing machines and the halt-
ing problem, and Church’s Lambda Calculus.

• John Hopcroft and Jeffrey Ullman, Introduction
to Automata Theory, Languages and Computa-
tion, Addison-Wesley, Reading Mass, 1979. See
Chapter 7 “Turing Machines.” A book centered
around the machine-interpretation of “languages”,
NP-Completeness, etc.

• Andrew Hodges, Alan Turing: The Enigma, Simon
and Schuster, New York. Cf Chapter “The Spirit of
Truth” for a history leading to, and a discussion of,
his proof.

• Constance Reid, Hilbert, Copernicus: Springer-
Verlag, NewYork, 1996 (first published 1970). Fas-
cinating history of Germanmathematics and physics
from 1880s through 1930s. Hundreds of names fa-
miliar to mathematicians, physicists and engineers
appear in its pages. Perhaps marred by no overt ref-
erences and few footnotes: Reid states her sources
were numerous interviews with those who person-
ally knew Hilbert, and Hilbert’s letters and papers.

• Edward Beltrami,What is Random? Chance and or-
der in mathematics and life, Copernicus: Springer-
Verlag, New York, 1999. Nice, gentle read for the
mathematically inclined non-specialist, puts tougher
stuff at the end. Has a Turing-machine model in it.
Discusses the Chaitin contributions.

• Ernest Nagel and James R. Newman, Godel’s Proof,
New York University Press, 1958. Wonderful writ-
ing about a very difficult subject. For the mathemat-
ically inclined non-specialist. Discusses Gentzen's
proof on pages 96–97 and footnotes. Appendices
discuss the Peano Axioms briefly, gently introduce
readers to formal logic.

• Taylor Booth, Sequential Machines and Automata
Theory, Wiley, New York, 1967. Cf Chapter 9,
Turing Machines. Difficult book, meant for elec-
trical engineers and technical specialists. Discusses
recursion, partial-recursion with reference to Turing
Machines, halting problem. Has a Turing Machine
model in it. References at end of Chapter 9 catch
most of the older books (i.e. 1952 until 1967 in-
cluding authors Martin Davis, F. C. Hennie, H. Her-
mes, S. C. Kleene, M.Minsky, T. Rado) and various
technical papers. See note under Busy-Beaver Pro-
grams.

• Busy Beaver Programs are described in Scientific
American, August 1984, also March 1985 p. 23.
A reference in Booth attributes them to Rado,
T.(1962), On non-computable functions, Bell Sys-
tems Tech. J. 41. Booth also defines Rado’s Busy
Beaver Problem in problems 3, 4, 5, 6 of Chapter 9,
p. 396.

• David Bolter, Turing’s Man: Western Culture in the
Computer Age, The University of North Carolina
Press, Chapel Hill, 1984. For the general reader.

http://www.turingarchive.org/browse.php/B/12
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Michael_Sipser
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-534-94728-X
http://c2.com/cgi/wiki?HaltingProblem
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May be dated. Has yet another (very simple) Turing
Machine model in it.

• Stephen Kleene, Introduction to Metamathematics,
North-Holland, 1952. Chapter XIII (“Computable
Functions”) includes a discussion of the unsolvabil-
ity of the halting problem for Turing machines. In a
departure from Turing’s terminology of circle-free
nonhalting machines, Kleene refers instead to ma-
chines that “stop”, i.e. halt.

• Logical Limitations to Machine Ethics, with Con-
sequences to Lethal Autonomous Weapons - paper
discussed in: Does the Halting Problem Mean No
Moral Robots?

2.15 External links
• Scooping the loop snooper - a poetic proof of unde-
cidability of the halting problem

• animated movie - an animation explaining the proof
of the undecidability of the halting problem

• A 2-Minute Proof of the 2nd-Most Important The-
orem of the 2nd Millennium - a proof in only 13
lines

https://en.wikipedia.org/wiki/Stephen_Kleene
http://arxiv.org/pdf/1411.2842v1.pdf
http://arxiv.org/pdf/1411.2842v1.pdf
http://motherboard.vice.com/read/does-the-halting-problem-mean-no-moral-robots
http://motherboard.vice.com/read/does-the-halting-problem-mean-no-moral-robots
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
http://www.youtube.com/watch?v=92WHN-pAFCs
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimTeX/halt
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimTeX/halt
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