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Chapter 1

First-order logic

First-order logic is a collection of formal systems used in mathematics, philosophy, linguistics, and computer sci-
ence. It is also known as first-order predicate calculus, the lower predicate calculus, quantification theory, and
predicate logic. First-order logic uses quantified variables over (non-logical) objects. It allows the use of sentences
that contain variables, so that rather than propositions such as Socrates is a man one can have expressions in the form
X is a man where X is a variable.[1] This distinguishes it from propositional logic, which does not use quantifiers.
A theory about a topic is usually a first-order logic together with a specified domain of discourse over which the
quantified variables range, finitely many functions from that domain to itself, finitely many predicates defined on that
domain, and a set of axioms believed to hold for those things. Sometimes “theory” is understood in a more formal
sense, which is just a set of sentences in first-order logic.
The adjective “first-order” distinguishes first-order logic from higher-order logic in which there are predicates having
predicates or functions as arguments, or in which one or both of predicate quantifiers or function quantifiers are
permitted.[2] In first-order theories, predicates are often associated with sets. In interpreted higher-order theories,
predicates may be interpreted as sets of sets.
There are many deductive systems for first-order logic which are both sound (all provable statements are true in all
models) and complete (all statements which are true in all models are provable). Although the logical consequence
relation is only semidecidable, much progress has been made in automated theorem proving in first-order logic. First-
order logic also satisfies several metalogical theorems that make it amenable to analysis in proof theory, such as the
Löwenheim–Skolem theorem and the compactness theorem.
First-order logic is the standard for the formalization of mathematics into axioms and is studied in the foundations
of mathematics. Peano arithmetic and Zermelo–Fraenkel set theory are axiomatizations of number theory and set
theory, respectively, into first-order logic. No first-order theory, however, has the strength to uniquely describe a
structure with an infinite domain, such as the natural numbers or the real line. Axioms systems that do fully describe
these two structures (that is, categorical axiom systems) can be obtained in stronger logics such as second-order logic.
For a history of first-order logic and how it came to dominate formal logic, see José Ferreirós (2001).

1.1 Introduction

While propositional logic deals with simple declarative propositions, first-order logic additionally covers predicates
and quantification.
A predicate takes an entity or entities in the domain of discourse as input and outputs either True or False. Consider
the two sentences “Socrates is a philosopher” and “Plato is a philosopher”. In propositional logic, these sentences
are viewed as being unrelated and might be denoted, for example, by variables such as p and q. The predicate “is
a philosopher” occurs in both sentences, which have a common structure of "a is a philosopher”. The variable a
is instantiated as “Socrates” in the first sentence and is instantiated as “Plato” in the second sentence. The use of
predicates, such as “is a philosopher” in this example, distinguishes first-order logic from propositional logic.
Relationships between predicates can be stated using logical connectives. Consider, for example, the first-order
formula “if a is a philosopher, then a is a scholar”. This formula is a conditional statement with "a is a philosopher”
as its hypothesis and "a is a scholar” as its conclusion. The truth of this formula depends on which object is denoted
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by a, and on the interpretations of the predicates “is a philosopher” and “is a scholar”.
Quantifiers can be applied to variables in a formula. The variable a in the previous formula can be universally
quantified, for instance, with the first-order sentence “For every a, if a is a philosopher, then a is a scholar”. The
universal quantifier “for every” in this sentence expresses the idea that the claim “if a is a philosopher, then a is a
scholar” holds for all choices of a.
The negation of the sentence “For every a, if a is a philosopher, then a is a scholar” is logically equivalent to the
sentence “There exists a such that a is a philosopher and a is not a scholar”. The existential quantifier “there exists”
expresses the idea that the claim "a is a philosopher and a is not a scholar” holds for some choice of a.
The predicates “is a philosopher” and “is a scholar” each take a single variable. In general, predicates can take several
variables. In the first-order sentence “Socrates is the teacher of Plato”, the predicate “is the teacher of” takes two
variables.
An interpretation (or model) of a first-order formula specifies what each predicate means and the entities that can
instantiate the variables. These entities form the domain of discourse or universe, which is usually required to be a
nonempty set. For example, in interpretation with the domain of discourse consisting of all human beings and the
predicate “is a philosopher” understood as “was the author of the Republic", the sentence “There exists a such that a
is a philosopher” is seen as being true, as witnessed by Plato.

1.2 Syntax

There are two key parts of first-order logic. The syntax determines which collections of symbols are legal expressions
in first-order logic, while the semantics determine the meanings behind these expressions.

1.2.1 Alphabet

Unlike natural languages, such as English, the language of first-order logic is completely formal, so that it can be
mechanically determined whether a given expression is legal. There are two key types of legal expressions: terms,
which intuitively represent objects, and formulas, which intuitively express predicates that can be true or false. The
terms and formulas of first-order logic are strings of symbols which together form the alphabet of the language. As
with all formal languages, the nature of the symbols themselves is outside the scope of formal logic; they are often
regarded simply as letters and punctuation symbols.
It is common to divide the symbols of the alphabet into logical symbols, which always have the same meaning, and
non-logical symbols, whose meaning varies by interpretation. For example, the logical symbol ∧ always represents
“and"; it is never interpreted as “or”. On the other hand, a non-logical predicate symbol such as Phil(x) could be
interpreted to mean "x is a philosopher”, "x is a man named Philip”, or any other unary predicate, depending on the
interpretation at hand.

Logical symbols

There are several logical symbols in the alphabet, which vary by author but usually include:

• The quantifier symbols ∀ and ∃

• The logical connectives: ∧ for conjunction, ∨ for disjunction, → for implication, ↔ for biconditional, ¬ for
negation. Occasionally other logical connective symbols are included. Some authors use Cpq, instead of →,
and Epq, instead of ↔, especially in contexts where → is used for other purposes. Moreover, the horseshoe ⊃
may replace →; the triple-bar ≡ may replace ↔; a tilde (~), Np, or Fpq, may replace ¬; ||, or Apq may replace
∨; and &, Kpq, or the middle dot, ⋅, may replace ∧, especially if these symbols are not available for technical
reasons. (Note: the aforementioned symbols Cpq, Epq, Np, Apq, and Kpq are used in Polish notation.)

• Parentheses, brackets, and other punctuation symbols. The choice of such symbols varies depending on context.

• An infinite set of variables, often denoted by lowercase letters at the end of the alphabet x, y, z, ... . Subscripts
are often used to distinguish variables: x0, x1, x2, ... .

• An equality symbol (sometimes, identity symbol) =; see the section on equality below.
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It should be noted that not all of these symbols are required – only one of the quantifiers, negation and conjunc-
tion, variables, brackets and equality suffice. There are numerous minor variations that may define additional logical
symbols:

• Sometimes the truth constants T, Vpq, or ⊤, for “true” and F, Opq, or ⊥, for “false” are included. Without any
such logical operators of valence 0, these two constants can only be expressed using quantifiers.

• Sometimes additional logical connectives are included, such as the Sheffer stroke, Dpq (NAND), and exclusive
or, Jpq.

Non-logical symbols

The non-logical symbols represent predicates (relations), functions and constants on the domain of discourse. It used
to be standard practice to use a fixed, infinite set of non-logical symbols for all purposes. A more recent practice is to
use different non-logical symbols according to the application one has in mind. Therefore, it has become necessary
to name the set of all non-logical symbols used in a particular application. This choice is made via a signature.[3]

The traditional approach is to have only one, infinite, set of non-logical symbols (one signature) for all applications.
Consequently, under the traditional approach there is only one language of first-order logic.[4] This approach is still
common, especially in philosophically oriented books.

1. For every integer n ≥ 0 there is a collection of n-ary, or n-place, predicate symbols. Because they represent
relations between n elements, they are also called relation symbols. For each arity n we have an infinite supply
of them:

Pn
0, Pn

1, Pn
2, Pn

3, ...

2. For every integer n ≥ 0 there are infinitely many n-ary function symbols:

f n
0, f n

1, f n
2, f n

3, ...

In contemporary mathematical logic, the signature varies by application. Typical signatures in mathematics are {1,
×} or just {×} for groups, or {0, 1, +, ×, <} for ordered fields. There are no restrictions on the number of non-logical
symbols. The signature can be empty, finite, or infinite, even uncountable. Uncountable signatures occur for example
in modern proofs of the Löwenheim-Skolem theorem.
In this approach, every non-logical symbol is of one of the following types.

1. A predicate symbol (or relation symbol) with some valence (or arity, number of arguments) greater than or
equal to 0. These are often denoted by uppercase letters P, Q, R,... .

• Relations of valence 0 can be identified with propositional variables. For example, P, which can stand for
any statement.

• For example, P(x) is a predicate variable of valence 1. One possible interpretation is "x is a man”.
• Q(x,y) is a predicate variable of valence 2. Possible interpretations include "x is greater than y" and "x is
the father of y".

2. A function symbol, with some valence greater than or equal to 0. These are often denoted by lowercase letters
f, g, h,... .

• Examples: f(x) may be interpreted as for “the father of x". In arithmetic, it may stand for "-x”. In set
theory, it may stand for “the power set of x”. In arithmetic, g(x,y) may stand for "x+y". In set theory, it
may stand for “the union of x and y".

• Function symbols of valence 0 are called constant symbols, and are often denoted by lowercase letters
at the beginning of the alphabet a, b, c,... . The symbol a may stand for Socrates. In arithmetic, it may
stand for 0. In set theory, such a constant may stand for the empty set.

The traditional approach can be recovered in the modern approach by simply specifying the “custom” signature to
consist of the traditional sequences of non-logical symbols.
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1.2.2 Formation rules

The formation rules define the terms and formulas of first order logic. When terms and formulas are represented
as strings of symbols, these rules can be used to write a formal grammar for terms and formulas. These rules are
generally context-free (each production has a single symbol on the left side), except that the set of symbols may be
allowed to be infinite and there may be many start symbols, for example the variables in the case of terms.

Terms

The set of terms is inductively defined by the following rules:

1. Variables. Any variable is a term.

2. Functions. Any expression f(t1,...,tn) of n arguments (where each argument ti is a term and f is a function
symbol of valence n) is a term. In particular, symbols denoting individual constants are 0-ary function symbols,
and are thus terms.

Only expressions which can be obtained by finitely many applications of rules 1 and 2 are terms. For example, no
expression involving a predicate symbol is a term.

Formulas

The set of formulas (also called well-formed formulas [5] or wffs) is inductively defined by the following rules:

1. Predicate symbols. If P is an n-ary predicate symbol and t1, ..., tn are terms then P(t1,...,t⛼) is a formula.

2. Equality. If the equality symbol is considered part of logic, and t1 and t2 are terms, then t1 = t2 is a formula.

3. Negation. If φ is a formula, then ¬ φ is a formula.

4. Binary connectives. If φ and ψ are formulas, then (φ→ ψ) is a formula. Similar rules apply to other binary
logical connectives.

5. Quantifiers. If φ is a formula and x is a variable, then ∀xφ (for all x, φ holds) and ∃xφ (there exists x such
that φ ) are formulas.

Only expressions which can be obtained by finitely many applications of rules 1–5 are formulas. The formulas ob-
tained from the first two rules are said to be atomic formulas.
For example,

∀x∀y(P (f(x)) → ¬(P (x) → Q(f(y), x, z)))

is a formula, if f is a unary function symbol, P a unary predicate symbol, and Q a ternary predicate symbol. On the
other hand, ∀xx→ is not a formula, although it is a string of symbols from the alphabet.
The role of the parentheses in the definition is to ensure that any formula can only be obtained in one way by following
the inductive definition (in other words, there is a unique parse tree for each formula). This property is known as
unique readability of formulas. There are many conventions for where parentheses are used in formulas. For
example, some authors use colons or full stops instead of parentheses, or change the places in which parentheses are
inserted. Each author’s particular definition must be accompanied by a proof of unique readability.
This definition of a formula does not support defining an if-then-else function ite(c, a, b), where “c” is a condition
expressed as a formula, that would return “a” if c is true, and “b” if it is false. This is because both predicates and
functions can only accept terms as parameters, but the first parameter is a formula. Some languages built on first-order
logic, such as SMT-LIB 2.0, add this.[6]
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Notational conventions

For convenience, conventions have been developed about the precedence of the logical operators, to avoid the need
to write parentheses in some cases. These rules are similar to the order of operations in arithmetic. A common
convention is:

• ¬ is evaluated first

• ∧ and ∨ are evaluated next

• Quantifiers are evaluated next

• → is evaluated last.

Moreover, extra punctuation not required by the definition may be inserted to make formulas easier to read. Thus the
formula

(¬∀xP (x) → ∃x¬P (x))

might be written as

(¬[∀xP (x)]) → ∃x[¬P (x)].

In some fields, it is common to use infix notation for binary relations and functions, instead of the prefix notation
defined above. For example, in arithmetic, one typically writes “2 + 2 = 4” instead of "=(+(2,2),4)". It is common to
regard formulas in infix notation as abbreviations for the corresponding formulas in prefix notation.
The definitions above use infix notation for binary connectives such as → . A less common convention is Polish
notation, in which one writes→ , ∧ , and so on in front of their arguments rather than between them. This convention
allows all punctuation symbols to be discarded. Polish notation is compact and elegant, but rarely used in practice
because it is hard for humans to read it. In Polish notation, the formula

∀x∀y(P (f(x)) → ¬(P (x) → Q(f(y), x, z)))

becomes "∀x∀y→Pfx¬→ PxQfyxz”.

1.2.3 Free and bound variables

Main article: Free variables and bound variables

In a formula, a variable may occur free or bound. Intuitively, a variable is free in a formula if it is not quantified: in
∀y P (x, y) , variable x is free while y is bound. The free and bound variables of a formula are defined inductively as
follows.

1. Atomic formulas. If φ is an atomic formula then x is free in φ if and only if x occurs in φ. Moreover, there
are no bound variables in any atomic formula.

2. Negation. x is free in ¬ φ if and only if x is free in φ. x is bound in ¬ φ if and only if x is bound in φ.

3. Binary connectives. x is free in (φ→ ψ) if and only if x is free in either φ or ψ. x is bound in (φ→ ψ) if and
only if x is bound in either φ or ψ. The same rule applies to any other binary connective in place of→ .

4. Quantifiers. x is free in ∀ y φ if and only if x is free in φ and x is a different symbol from y. Also, x is bound
in ∀ y φ if and only if x is y or x is bound in φ. The same rule holds with ∃ in place of ∀ .
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For example, in ∀ x ∀ y (P(x)→ Q(x,f(x),z)), x and y are bound variables, z is a free variable, andw is neither because
it does not occur in the formula.
Free and bound variables of a formula need not be disjoint sets: x is both free and bound in P (x) → ∀xQ(x) .
Freeness and boundness can be also specialized to specific occurrences of variables in a formula. For example, in
P (x) → ∀xQ(x) , the first occurrence of x is free while the second is bound. In other words, the x in P (x) is free
while the x in ∀xQ(x) is bound.
A formula in first-order logic with no free variables is called a first-order sentence. These are the formulas that will
have well-defined truth values under an interpretation. For example, whether a formula such as Phil(x) is true must
depend on what x represents. But the sentence ∃xPhil(x) will be either true or false in a given interpretation.

1.2.4 Examples

Ordered abelian groups

In mathematics the language of ordered abelian groups has one constant symbol 0, one unary function symbol −, one
binary function symbol +, and one binary relation symbol ≤. Then:

• The expressions +(x, y) and +(x, +(y, −(z))) are terms. These are usually written as x + y and x + y − z.

• The expressions +(x, y) = 0 and ≤(+(x, +(y, −(z))), +(x, y)) are atomic formulas.

These are usually written as x + y = 0 and x + y − z ≤ x + y.

• The expression (∀x∀y≤(+(x, y), z) → ∀x∀y+(x, y) = 0) is a formula, which is usually written as
∀x∀y(x+ y ≤ z) → ∀x∀y(x+ y = 0).

Loving relation

English sentences like “everyone loves someone” can be formalized by first-order logic formulas like ∀x∃y L(x,y).
This is accomplished by abbreviating the relation "x loves y" by L(x,y). Using just the two quantifiers ∀ and ∃ and
the loving relation symbol L, but no logical connectives and no function symbols (including constants), formulas with
8 different meanings can be built. The following diagrams show models for each of them, assuming that there are
exactly five individuals a,...,e who can love (vertical axis) and be loved (horizontal axis). A small red box at row x and
column y indicates L(x,y). Only for the formulas 9 and 10 is the model unique, all other formulas may be satisfied by
several models.
Each model, represented by a logical matrix, satisfies the formulas in its caption in a “minimal” way, i.e. whitening
any red cell in any matrix would make it non-satisfying the corresponding formula. For example, formula 1 is also
satisfied by the matrices at 3, 6, and 10, but not by those at 2, 4, 5, and 7. Conversely, the matrix shown at 6 satisfies
1, 2, 5, 6, 7, and 8, but not 3, 4, 9, and 10.
Some formulas imply others, i.e. all matrices satisfying the antecedent (LHS) also satisfy the conclusion (RHS) of
the implication — e.g. formula 3 implies formula 1, i.e.: each matrix fulfilling formula 3 also fulfills formula 1, but
not vice versa (see the Hasse diagram for this ordering relation). In contrast, only some matrices,[7] which satisfy
formula 2, happen to satisfy also formula 5, whereas others,[8] also satisfying formula 2, do not; therefore formula 5
is not a logical consequence of formula 2.
The sequence of the quantifiers is important! So it is instructive to distinguish formulas 1: ∀x ∃y L(y,x), and 3: ∃x
∀y L(x,y). In both cases everyone is loved; but in the first case everyone (x) is loved by someone (y), in the second
case everyone (y) is loved by just exactly one person (x).

1.3 Semantics

An interpretation of a first-order language assigns a denotation to all non-logical constants in that language. It also
determines a domain of discourse that specifies the range of the quantifiers. The result is that each term is assigned an
object that it represents, and each sentence is assigned a truth value. In this way, an interpretation provides semantic
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meaning to the terms and formulas of the language. The study of the interpretations of formal languages is called
formal semantics. What follows is a description of the standard or Tarskian semantics for first-order logic. (It is also
possible to define game semantics for first-order logic, but aside from requiring the axiom of choice, game semantics
agree with Tarskian semantics for first-order logic, so game semantics will not be elaborated herein.)
The domain of discourseD is a nonempty set of “objects” of some kind. Intuitively, a first-order formula is a statement
about these objects; for example, ∃xP (x) states the existence of an object x such that the predicate P is true where
referred to it. The domain of discourse is the set of considered objects. For example, one can takeD to be the set of
integer numbers.
The interpretation of a function symbol is a function. For example, if the domain of discourse consists of integers, a
function symbol f of arity 2 can be interpreted as the function that gives the sum of its arguments. In other words,
the symbol f is associated with the function I(f) which, in this interpretation, is addition.
The interpretation of a constant symbol is a function from the one-element setD0 toD, which can be simply identified
with an object in D. For example, an interpretation may assign the value I(c) = 10 to the constant symbol c .
The interpretation of an n-ary predicate symbol is a set of n-tuples of elements of the domain of discourse. This
means that, given an interpretation, a predicate symbol, and n elements of the domain of discourse, one can tell
whether the predicate is true of those elements according to the given interpretation. For example, an interpretation
I(P) of a binary predicate symbol P may be the set of pairs of integers such that the first one is less than the second.
According to this interpretation, the predicate P would be true if its first argument is less than the second.

1.3.1 First-order structures

Main article: Structure (mathematical logic)

The most common way of specifying an interpretation (especially in mathematics) is to specify a structure (also
called a model; see below). The structure consists of a nonempty set D that forms the domain of discourse and an
interpretation I of the non-logical terms of the signature. This interpretation is itself a function:

• Each function symbol f of arity n is assigned a function I(f) fromDn toD . In particular, each constant symbol
of the signature is assigned an individual in the domain of discourse.

• Each predicate symbol P of arity n is assigned a relation I(P) overDn or, equivalently, a function fromDn to
{true, false} . Thus each predicate symbol is interpreted by a Boolean-valued function on D.

1.3.2 Evaluation of truth values

A formula evaluates to true or false given an interpretation, and a variable assignment μ that associates an element
of the domain of discourse with each variable. The reason that a variable assignment is required is to give meanings
to formulas with free variables, such as y = x . The truth value of this formula changes depending on whether x and
y denote the same individual.
First, the variable assignment μ can be extended to all terms of the language, with the result that each term maps to
a single element of the domain of discourse. The following rules are used to make this assignment:

1. Variables. Each variable x evaluates to μ(x)

2. Functions. Given terms t1, . . . , tn that have been evaluated to elements d1, . . . , dn of the domain of discourse,
and a n-ary function symbol f, the term f(t1, . . . , tn) evaluates to (I(f))(d1, . . . , dn) .

Next, each formula is assigned a truth value. The inductive definition used to make this assignment is called the
T-schema.

1. Atomic formulas (1). A formula P (t1, . . . , tn) is associated the value true or false depending on whether
⟨v1, . . . , vn⟩ ∈ I(P ) , where v1, . . . , vn are the evaluation of the terms t1, . . . , tn and I(P ) is the interpreta-
tion of P , which by assumption is a subset of Dn .
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2. Atomic formulas (2). A formula t1 = t2 is assigned true if t1 and t2 evaluate to the same object of the domain
of discourse (see the section on equality below).

3. Logical connectives. A formula in the form ¬ϕ , ϕ → ψ , etc. is evaluated according to the truth table for
the connective in question, as in propositional logic.

4. Existential quantifiers. A formula ∃xϕ(x) is true according to M and µ if there exists an evaluation µ′ of
the variables that only differs from µ regarding the evaluation of x and such that φ is true according to the
interpretation M and the variable assignment µ′ . This formal definition captures the idea that ∃xϕ(x) is true
if and only if there is a way to choose a value for x such that φ(x) is satisfied.

5. Universal quantifiers. A formula ∀xϕ(x) is true according toM and µ if φ(x) is true for every pair composed
by the interpretationM and some variable assignmentµ′ that differs fromµ only on the value of x. This captures
the idea that ∀xϕ(x) is true if every possible choice of a value for x causes φ(x) to be true.

If a formula does not contain free variables, and so is a sentence, then the initial variable assignment does not affect
its truth value. In other words, a sentence is true according to M and µ if and only if it is true according to M and
every other variable assignment µ′ .
There is a second common approach to defining truth values that does not rely on variable assignment functions.
Instead, given an interpretation M, one first adds to the signature a collection of constant symbols, one for each
element of the domain of discourse in M; say that for each d in the domain the constant symbol cd is fixed. The
interpretation is extended so that each new constant symbol is assigned to its corresponding element of the domain.
One now defines truth for quantified formulas syntactically, as follows:

1. Existential quantifiers (alternate). A formula ∃xϕ(x) is true according toM if there is some d in the domain
of discourse such that ϕ(cd) holds. Here ϕ(cd) is the result of substituting cd for every free occurrence of x in
φ.

2. Universal quantifiers (alternate). A formula ∀xϕ(x) is true according toM if, for every d in the domain of
discourse, ϕ(cd) is true according to M.

This alternate approach gives exactly the same truth values to all sentences as the approach via variable assignments.

1.3.3 Validity, satisfiability, and logical consequence

See also: Satisfiability

If a sentence φ evaluates to True under a given interpretationM, one says thatM satisfies φ; this is denotedM ⊨ φ
. A sentence is satisfiable if there is some interpretation under which it is true.
Satisfiability of formulas with free variables is more complicated, because an interpretation on its own does not
determine the truth value of such a formula. The most common convention is that a formula with free variables is
said to be satisfied by an interpretation if the formula remains true regardless which individuals from the domain of
discourse are assigned to its free variables. This has the same effect as saying that a formula is satisfied if and only if
its universal closure is satisfied.
A formula is logically valid (or simply valid) if it is true in every interpretation. These formulas play a role similar
to tautologies in propositional logic.
A formula φ is a logical consequence of a formula ψ if every interpretation that makes ψ true also makes φ true. In
this case one says that φ is logically implied by ψ.

1.3.4 Algebraizations

An alternate approach to the semantics of first-order logic proceeds via abstract algebra. This approach generalizes
the Lindenbaum–Tarski algebras of propositional logic. There are three ways of eliminating quantified variables from
first-order logic that do not involve replacing quantifiers with other variable binding term operators:

• Cylindric algebra, by Alfred Tarski and his coworkers;
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• Polyadic algebra, by Paul Halmos;

• Predicate functor logic, mainly due to Willard Quine.

These algebras are all lattices that properly extend the two-element Boolean algebra.
Tarski and Givant (1987) showed that the fragment of first-order logic that has no atomic sentence lying in the scope
of more than three quantifiers has the same expressive power as relation algebra. This fragment is of great interest
because it suffices for Peano arithmetic and most axiomatic set theory, including the canonical ZFC. They also prove
that first-order logic with a primitive ordered pair is equivalent to a relation algebra with two ordered pair projection
functions.

1.3.5 First-order theories, models, and elementary classes

A first-order theory of a particular signature is a set of axioms, which are sentences consisting of symbols from that
signature. The set of axioms is often finite or recursively enumerable, in which case the theory is called effective.
Some authors require theories to also include all logical consequences of the axioms. The axioms are considered to
hold within the theory and from them other sentences that hold within the theory can be derived.
A first-order structure that satisfies all sentences in a given theory is said to be amodel of the theory. An elementary
class is the set of all structures satisfying a particular theory. These classes are a main subject of study in model
theory.
Many theories have an intended interpretation, a certain model that is kept in mind when studying the theory.
For example, the intended interpretation of Peano arithmetic consists of the usual natural numbers with their usual
operations. However, the Löwenheim–Skolem theorem shows that most first-order theories will also have other,
nonstandard models.
A theory is consistent if it is not possible to prove a contradiction from the axioms of the theory. A theory is complete
if, for every formula in its signature, either that formula or its negation is a logical consequence of the axioms of the
theory. Gödel’s incompleteness theorem shows that effective first-order theories that include a sufficient portion of
the theory of the natural numbers can never be both consistent and complete.
For more information on this subject see List of first-order theories and Theory (mathematical logic)

1.3.6 Empty domains

Main article: Empty domain

The definition above requires that the domain of discourse of any interpretation must be a nonempty set. There are
settings, such as inclusive logic, where empty domains are permitted. Moreover, if a class of algebraic structures
includes an empty structure (for example, there is an empty poset), that class can only be an elementary class in
first-order logic if empty domains are permitted or the empty structure is removed from the class.
There are several difficulties with empty domains, however:

• Many common rules of inference are only valid when the domain of discourse is required to be nonempty. One
example is the rule stating that ϕ∨∃xψ implies ∃x(ϕ∨ψ) when x is not a free variable in φ. This rule, which
is used to put formulas into prenex normal form, is sound in nonempty domains, but unsound if the empty
domain is permitted.

• The definition of truth in an interpretation that uses a variable assignment function cannot work with empty
domains, because there are no variable assignment functions whose range is empty. (Similarly, one cannot
assign interpretations to constant symbols.) This truth definition requires that one must select a variable as-
signment function (μ above) before truth values for even atomic formulas can be defined. Then the truth value
of a sentence is defined to be its truth value under any variable assignment, and it is proved that this truth
value does not depend on which assignment is chosen. This technique does not work if there are no assignment
functions at all; it must be changed to accommodate empty domains.

Thus, when the empty domain is permitted, it must often be treated as a special case. Most authors, however, simply
exclude the empty domain by definition.
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1.4 Deductive systems

A deductive system is used to demonstrate, on a purely syntactic basis, that one formula is a logical consequence
of another formula. There are many such systems for first-order logic, including Hilbert-style deductive systems,
natural deduction, the sequent calculus, the tableaux method, and resolution. These share the common property that
a deduction is a finite syntactic object; the format of this object, and the way it is constructed, vary widely. These
finite deductions themselves are often called derivations in proof theory. They are also often called proofs, but are
completely formalized unlike natural-language mathematical proofs.
A deductive system is sound if any formula that can be derived in the system is logically valid. Conversely, a deductive
system is complete if every logically valid formula is derivable. All of the systems discussed in this article are both
sound and complete. They also share the property that it is possible to effectively verify that a purportedly valid
deduction is actually a deduction; such deduction systems are called effective.
A key property of deductive systems is that they are purely syntactic, so that derivations can be verified without
considering any interpretation. Thus a sound argument is correct in every possible interpretation of the language,
regardless whether that interpretation is about mathematics, economics, or some other area.
In general, logical consequence in first-order logic is only semidecidable: if a sentence A logically implies a sentence
B then this can be discovered (for example, by searching for a proof until one is found, using some effective, sound,
complete proof system). However, if A does not logically imply B, this does not mean that A logically implies the
negation of B. There is no effective procedure that, given formulas A and B, always correctly decides whether A
logically implies B.

1.4.1 Rules of inference

Further information: List of rules of inference

A rule of inference states that, given a particular formula (or set of formulas) with a certain property as a hypothesis,
another specific formula (or set of formulas) can be derived as a conclusion. The rule is sound (or truth-preserving)
if it preserves validity in the sense that whenever any interpretation satisfies the hypothesis, that interpretation also
satisfies the conclusion.
For example, one common rule of inference is the rule of substitution. If t is a term and φ is a formula possibly
containing the variable x, then φ[t/x] is the result of replacing all free instances of x by t in φ. The substitution rule
states that for any φ and any term t, one can conclude φ[t/x] from φ provided that no free variable of t becomes
bound during the substitution process. (If some free variable of t becomes bound, then to substitute t for x it is first
necessary to change the bound variables of φ to differ from the free variables of t.)
To see why the restriction on bound variables is necessary, consider the logically valid formula φ given by ∃x(x = y)
, in the signature of (0,1,+,×,=) of arithmetic. If t is the term “x + 1”, the formula φ[t/y] is ∃x(x = x+1) , which will
be false in many interpretations. The problem is that the free variable x of t became bound during the substitution.
The intended replacement can be obtained by renaming the bound variable x of φ to something else, say z, so that
the formula after substitution is ∃z(z = x+ 1) , which is again logically valid.
The substitution rule demonstrates several common aspects of rules of inference. It is entirely syntactical; one can
tell whether it was correctly applied without appeal to any interpretation. It has (syntactically defined) limitations on
when it can be applied, which must be respected to preserve the correctness of derivations. Moreover, as is often
the case, these limitations are necessary because of interactions between free and bound variables that occur during
syntactic manipulations of the formulas involved in the inference rule.

1.4.2 Hilbert-style systems and natural deduction

A deduction in a Hilbert-style deductive system is a list of formulas, each of which is a logical axiom, a hypothesis
that has been assumed for the derivation at hand, or follows from previous formulas via a rule of inference. The
logical axioms consist of several axiom schemas of logically valid formulas; these encompass a significant amount of
propositional logic. The rules of inference enable the manipulation of quantifiers. Typical Hilbert-style systems have
a small number of rules of inference, along with several infinite schemas of logical axioms. It is common to have only
modus ponens and universal generalization as rules of inference.
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Natural deduction systems resemble Hilbert-style systems in that a deduction is a finite list of formulas. However,
natural deduction systems have no logical axioms; they compensate by adding additional rules of inference that can
be used to manipulate the logical connectives in formulas in the proof.

1.4.3 Sequent calculus

Further information: Sequent calculus

The sequent calculus was developed to study the properties of natural deduction systems. Instead of working with
one formula at a time, it uses sequents, which are expressions of the form

A1, . . . , An ⊢ B1, . . . , Bk,

where A1, ..., An, B1, ..., Bk are formulas and the turnstile symbol ⊢ is used as punctuation to separate the two halves.
Intuitively, a sequent expresses the idea that (A1 ∧ · · · ∧An) implies (B1 ∨ · · · ∨Bk) .

1.4.4 Tableaux method

Further information: Method of analytic tableaux

Unlike the methods just described, the derivations in the tableaux method are not lists of formulas. Instead, a deriva-
tion is a tree of formulas. To show that a formula A is provable, the tableaux method attempts to demonstrate that
the negation of A is unsatisfiable. The tree of the derivation has ¬A at its root; the tree branches in a way that reflects
the structure of the formula. For example, to show that C ∨ D is unsatisfiable requires showing that C and D are
each unsatisfiable; this corresponds to a branching point in the tree with parent C ∨D and children C and D.

1.4.5 Resolution

The resolution rule is a single rule of inference that, together with unification, is sound and complete for first-order
logic. As with the tableaux method, a formula is proved by showing that the negation of the formula is unsatisfiable.
Resolution is commonly used in automated theorem proving.
The resolutionmethod works only with formulas that are disjunctions of atomic formulas; arbitrary formulas must first
be converted to this form through Skolemization. The resolution rule states that from the hypothesesA1∨· · ·∨Ak∨C
and B1 ∨ · · · ∨Bl ∨ ¬C , the conclusion A1 ∨ · · · ∨Ak ∨B1 ∨ · · · ∨Bl can be obtained.

1.4.6 Provable identities

The following sentences can be called “identities” because the main connective in each is the biconditional.

¬∀xP (x) ⇔ ∃x¬P (x)

¬∃xP (x) ⇔ ∀x¬P (x)

∀x ∀y P (x, y) ⇔ ∀y ∀xP (x, y)

∃x ∃y P (x, y) ⇔ ∃y ∃xP (x, y)

∀xP (x) ∧ ∀xQ(x) ⇔ ∀x (P (x) ∧Q(x))

∃xP (x) ∨ ∃xQ(x) ⇔ ∃x (P (x) ∨Q(x))

P ∧ ∃xQ(x) ⇔ ∃x (P ∧Q(x)) (where x must not occur free in P )
P ∨ ∀xQ(x) ⇔ ∀x (P ∨Q(x)) (where x must not occur free in P )
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1.5 Equality and its axioms

There are several different conventions for using equality (or identity) in first-order logic. The most common con-
vention, known as first-order logic with equality, includes the equality symbol as a primitive logical symbol which
is always interpreted as the real equality relation between members of the domain of discourse, such that the “two”
given members are the same member. This approach also adds certain axioms about equality to the deductive system
employed. These equality axioms are:

1. Reflexivity. For each variable x, x = x.

2. Substitution for functions. For all variables x and y, and any function symbol f,

x = y→ f(...,x,...) = f(...,y,...).

3. Substitution for formulas. For any variables x and y and any formula φ(x), if φ' is obtained by replacing any
number of free occurrences of x in φ with y, such that these remain free occurrences of y, then

x = y→ (φ → φ').

These are axiom schemas, each of which specifies an infinite set of axioms. The third schema is known as Leibniz’s
law, “the principle of substitutivity”, “the indiscernibility of identicals”, or “the replacement property”. The second
schema, involving the function symbol f, is (equivalent to) a special case of the third schema, using the formula

x = y→ (f(...,x,...) = z → f(...,y,...) = z).

Many other properties of equality are consequences of the axioms above, for example:

1. Symmetry. If x = y then y = x.

2. Transitivity. If x = y and y = z then x = z.

1.5.1 First-order logic without equality

An alternate approach considers the equality relation to be a non-logical symbol. This convention is known as first-
order logic without equality. If an equality relation is included in the signature, the axioms of equality must now be
added to the theories under consideration, if desired, instead of being considered rules of logic. The main difference
between this method and first-order logic with equality is that an interpretation may now interpret two distinct indi-
viduals as “equal” (although, by Leibniz’s law, these will satisfy exactly the same formulas under any interpretation).
That is, the equality relation may now be interpreted by an arbitrary equivalence relation on the domain of discourse
that is congruent with respect to the functions and relations of the interpretation.
When this second convention is followed, the term normal model is used to refer to an interpretation where no
distinct individuals a and b satisfy a = b. In first-order logic with equality, only normal models are considered, and
so there is no term for a model other than a normal model. When first-order logic without equality is studied, it is
necessary to amend the statements of results such as the Löwenheim–Skolem theorem so that only normal models
are considered.
First-order logic without equality is often employed in the context of second-order arithmetic and other higher-order
theories of arithmetic, where the equality relation between sets of natural numbers is usually omitted.

1.5.2 Defining equality within a theory

If a theory has a binary formula A(x,y) which satisfies reflexivity and Leibniz’s law, the theory is said to have equality,
or to be a theory with equality. The theory may not have all instances of the above schemas as axioms, but rather as
derivable theorems. For example, in theories with no function symbols and a finite number of relations, it is possible
to define equality in terms of the relations, by defining the two terms s and t to be equal if any relation is unchanged
by changing s to t in any argument.
Some theories allow other ad hoc definitions of equality:
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• In the theory of partial orders with one relation symbol ≤, one could define s = t to be an abbreviation for s ≤ t
∧ t ≤ s.

• In set theory with one relation ∈ , one may define s = t to be an abbreviation for ∀ x (s ∈ x ↔ t ∈ x) ∧ ∀
x (x ∈ s ↔ x ∈ t). This definition of equality then automatically satisfies the axioms for equality. In this
case, one should replace the usual axiom of extensionality, ∀x∀y[∀z(z ∈ x ⇔ z ∈ y) ⇒ x = y] , by
∀x∀y[∀z(z ∈ x⇔ z ∈ y) ⇒ ∀z(x ∈ z ⇔ y ∈ z)] , i.e. if x and y have the same elements, then they belong
to the same sets.

1.6 Metalogical properties

One motivation for the use of first-order logic, rather than higher-order logic, is that first-order logic has many
metalogical properties that stronger logics do not have. These results concern general properties of first-order logic
itself, rather than properties of individual theories. They provide fundamental tools for the construction of models
of first-order theories.

1.6.1 Completeness and undecidability

Gödel’s completeness theorem, proved by Kurt Gödel in 1929, establishes that there are sound, complete, effective
deductive systems for first-order logic, and thus the first-order logical consequence relation is captured by finite prov-
ability. Naively, the statement that a formula φ logically implies a formula ψ depends on every model of φ; these
models will in general be of arbitrarily large cardinality, and so logical consequence cannot be effectively verified by
checking every model. However, it is possible to enumerate all finite derivations and search for a derivation of ψ from
φ. If ψ is logically implied by φ, such a derivation will eventually be found. Thus first-order logical consequence is
semidecidable: it is possible to make an effective enumeration of all pairs of sentences (φ,ψ) such that ψ is a logical
consequence of φ.
Unlike propositional logic, first-order logic is undecidable (although semidecidable), provided that the language has
at least one predicate of arity at least 2 (other than equality). This means that there is no decision procedure that
determines whether arbitrary formulas are logically valid. This result was established independently byAlonzo Church
and Alan Turing in 1936 and 1937, respectively, giving a negative answer to the Entscheidungsproblem posed by
David Hilbert in 1928. Their proofs demonstrate a connection between the unsolvability of the decision problem for
first-order logic and the unsolvability of the halting problem.
There are systems weaker than full first-order logic for which the logical consequence relation is decidable. These
include propositional logic andmonadic predicate logic, which is first-order logic restricted to unary predicate symbols
and no function symbols. Other logics with no function symbols which are decidable are the guarded fragment of
first-order logic, as well as two-variable logic. The Bernays–Schönfinkel class of first-order formulas is also decidable.
Decidable subsets of first-order logic are also studied in the framework of description logics.

1.6.2 The Löwenheim–Skolem theorem

The Löwenheim–Skolem theorem shows that if a first-order theory of cardinality λ has an infinite model, then it has
models of every infinite cardinality greater than or equal to λ. One of the earliest results in model theory, it implies
that it is not possible to characterize countability or uncountability in a first-order language. That is, there is no
first-order formula φ(x) such that an arbitrary structure M satisfies φ if and only if the domain of discourse of M is
countable (or, in the second case, uncountable).
The Löwenheim–Skolem theorem implies that infinite structures cannot be categorically axiomatized in first-order
logic. For example, there is no first-order theory whose only model is the real line: any first-order theory with an
infinite model also has a model of cardinality larger than the continuum. Since the real line is infinite, any theory
satisfied by the real line is also satisfied by some nonstandard models. When the Löwenheim–Skolem theorem is
applied to first-order set theories, the nonintuitive consequences are known as Skolem’s paradox.

https://en.wikipedia.org/wiki/Partial_order
https://en.wikipedia.org/wiki/Axiom_of_extensionality
https://en.wikipedia.org/wiki/Higher-order_logic
https://en.wikipedia.org/wiki/Metalogic
https://en.wikipedia.org/wiki/G%C3%B6del%2527s_completeness_theorem
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
https://en.wikipedia.org/wiki/Semidecidable
https://en.wikipedia.org/wiki/Propositional_logic
https://en.wikipedia.org/wiki/Decidability_(logic)
https://en.wikipedia.org/wiki/Decision_procedure
https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Monadic_predicate_logic
https://en.wikipedia.org/wiki/Guarded_fragment
https://en.wikipedia.org/wiki/Two-variable_logic
https://en.wikipedia.org/wiki/Bernays%E2%80%93Sch%C3%B6nfinkel_class
https://en.wikipedia.org/wiki/Description_logics
https://en.wikipedia.org/wiki/L%C3%B6wenheim%E2%80%93Skolem_theorem
https://en.wikipedia.org/wiki/Cardinality
https://en.wikipedia.org/wiki/Model_theory
https://en.wikipedia.org/wiki/Countable_set
https://en.wikipedia.org/wiki/Categorical_theory
https://en.wikipedia.org/wiki/Nonstandard_model
https://en.wikipedia.org/wiki/Skolem%2527s_paradox


14 CHAPTER 1. FIRST-ORDER LOGIC

1.6.3 The compactness theorem

The compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it
has a model. This implies that if a formula is a logical consequence of an infinite set of first-order axioms, then it
is a logical consequence of some finite number of those axioms. This theorem was proved first by Kurt Gödel as a
consequence of the completeness theorem, but many additional proofs have been obtained over time. It is a central
tool in model theory, providing a fundamental method for constructing models.
The compactness theorem has a limiting effect on which collections of first-order structures are elementary classes.
For example, the compactness theorem implies that any theory that has arbitrarily large finite models has an infi-
nite model. Thus the class of all finite graphs is not an elementary class (the same holds for many other algebraic
structures).
There are also more subtle limitations of first-order logic that are implied by the compactness theorem. For example,
in computer science, many situations can be modeled as a directed graph of states (nodes) and connections (directed
edges). Validating such a system may require showing that no “bad” state can be reached from any “good” state. Thus
one seeks to determine if the good and bad states are in different connected components of the graph. However, the
compactness theorem can be used to show that connected graphs are not an elementary class in first-order logic, and
there is no formula φ(x,y) of first-order logic, in the logic of graphs, that expresses the idea that there is a path from
x to y. Connectedness can be expressed in second-order logic, however, but not with only existential set quantifiers,
as Σ1

1 also enjoys compactness.

1.6.4 Lindström’s theorem

Main article: Lindström’s theorem

Per Lindström showed that the metalogical properties just discussed actually characterize first-order logic in the sense
that no stronger logic can also have those properties (Ebbinghaus and Flum 1994, Chapter XIII). Lindström defined
a class of abstract logical systems, and a rigorous definition of the relative strength of a member of this class. He
established two theorems for systems of this type:

• A logical system satisfying Lindström’s definition that contains first-order logic and satisfies both the Löwenheim–
Skolem theorem and the compactness theorem must be equivalent to first-order logic.

• A logical system satisfying Lindström’s definition that has a semidecidable logical consequence relation and
satisfies the Löwenheim–Skolem theorem must be equivalent to first-order logic.

1.7 Limitations

Although first-order logic is sufficient for formalizing much of mathematics, and is commonly used in computer
science and other fields, it has certain limitations. These include limitations on its expressiveness and limitations of
the fragments of natural languages that it can describe.
For instance, first-order logic is undecidable, meaning a sound, complete and terminating decision algorithm is im-
possible. This has led to the study of interesting decidable fragments such as C2, first-order logic with two variables
and the counting quantifiers ∃≥n and ∃≤n (these quantifiers are, respectively, “there exists at least n" and “there exists
at most n") (Horrocks 2010).

1.7.1 Expressiveness

The Löwenheim–Skolem theorem shows that if a first-order theory has any infinite model, then it has infinite models
of every cardinality. In particular, no first-order theory with an infinite model can be categorical. Thus there is
no first-order theory whose only model has the set of natural numbers as its domain, or whose only model has the
set of real numbers as its domain. Many extensions of first-order logic, including infinitary logics and higher-order
logics, are more expressive in the sense that they do permit categorical axiomatizations of the natural numbers or
real numbers. This expressiveness comes at a metalogical cost, however: by Lindström’s theorem, the compactness
theorem and the downward Löwenheim–Skolem theorem cannot hold in any logic stronger than first-order.
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1.7.2 Formalizing natural languages

First-order logic is able to formalize many simple quantifier constructions in natural language, such as “every person
who lives in Perth lives in Australia”. But there are many more complicated features of natural language that cannot
be expressed in (single-sorted) first-order logic. “Any logical system which is appropriate as an instrument for the
analysis of natural language needs a much richer structure than first-order predicate logic” (Gamut 1991, p. 75).

1.8 Restrictions, extensions, and variations

There are many variations of first-order logic. Some of these are inessential in the sense that they merely change
notation without affecting the semantics. Others change the expressive power more significantly, by extending the
semantics through additional quantifiers or other new logical symbols. For example, infinitary logics permit formulas
of infinite size, and modal logics add symbols for possibility and necessity.

1.8.1 Restricted languages

First-order logic can be studied in languages with fewer logical symbols than were described above.

• Because ∃xϕ(x) can be expressed as ¬∀x¬ϕ(x) , and ∀xϕ(x) can be expressed as ¬∃x¬ϕ(x) , either of the
two quantifiers ∃ and ∀ can be dropped.

• Since ϕ∨ψ can be expressed as ¬(¬ϕ∧¬ψ) and ϕ∧ψ can be expressed as ¬(¬ϕ∨¬ψ) , either ∨ or ∧ can
be dropped. In other words, it is sufficient to have ¬ and ∨ , or ¬ and ∧ , as the only logical connectives.

• Similarly, it is sufficient to have only¬ and→ as logical connectives, or to have only the Sheffer stroke (NAND)
or the Peirce arrow (NOR) operator.

• It is possible to entirely avoid function symbols and constant symbols, rewriting them via predicate symbols
in an appropriate way. For example, instead of using a constant symbol 0 one may use a predicate 0(x)
(interpreted as x = 0 ), and replace every predicate such as P (0, y) with ∀x (0(x) → P (x, y)) . A
function such as f(x1, x2, ..., xn) will similarly be replaced by a predicate F (x1, x2, ..., xn, y) interpreted
as y = f(x1, x2, ..., xn) . This change requires adding additional axioms to the theory at hand, so that
interpretations of the predicate symbols used have the correct semantics.

Restrictions such as these are useful as a technique to reduce the number of inference rules or axiom schemas in
deductive systems, which leads to shorter proofs of metalogical results. The cost of the restrictions is that it becomes
more difficult to express natural-language statements in the formal system at hand, because the logical connectives
used in the natural language statements must be replaced by their (longer) definitions in terms of the restricted col-
lection of logical connectives. Similarly, derivations in the limited systems may be longer than derivations in systems
that include additional connectives. There is thus a trade-off between the ease of working within the formal system
and the ease of proving results about the formal system.
It is also possible to restrict the arities of function symbols and predicate symbols, in sufficiently expressive theories.
One can in principle dispense entirely with functions of arity greater than 2 and predicates of arity greater than 1
in theories that include a pairing function. This is a function of arity 2 that takes pairs of elements of the domain
and returns an ordered pair containing them. It is also sufficient to have two predicate symbols of arity 2 that define
projection functions from an ordered pair to its components. In either case it is necessary that the natural axioms for
a pairing function and its projections are satisfied.

1.8.2 Many-sorted logic

Ordinary first-order interpretations have a single domain of discourse over which all quantifiers range. Many-sorted
first-order logic allows variables to have different sorts, which have different domains. This is also called typed first-
order logic, and the sorts called types (as in data type), but it is not the same as first-order type theory. Many-sorted
first-order logic is often used in the study of second-order arithmetic.
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When there are only finitely many sorts in a theory, many-sorted first-order logic can be reduced to single-sorted first-
order logic. One introduces into the single-sorted theory a unary predicate symbol for each sort in the many-sorted
theory, and adds an axiom saying that these unary predicates partition the domain of discourse. For example, if there
are two sorts, one adds predicate symbols P1(x) and P2(x) and the axiom

∀x(P1(x) ∨ P2(x)) ∧ ¬∃x(P1(x) ∧ P2(x))

Then the elements satisfying P1 are thought of as elements of the first sort, and elements satisfying P2 as elements
of the second sort. One can quantify over each sort by using the corresponding predicate symbol to limit the range
of quantification. For example, to say there is an element of the first sort satisfying formula φ(x), one writes

∃x(P1(x) ∧ ϕ(x))

1.8.3 Additional quantifiers

Additional quantifiers can be added to first-order logic.

• Sometimes it is useful to say that "P(x) holds for exactly one x", which can be expressed as ∃! x P(x). This
notation, called uniqueness quantification, may be taken to abbreviate a formula such as ∃ x (P(x) ∧∀ y (P(y)
→ (x = y))).

• First-order logic with extra quantifiers has new quantifiers Qx,..., with meanings such as “there are many x
such that ...”. Also see branching quantifiers and the plural quantifiers of George Boolos and others.

• Bounded quantifiers are often used in the study of set theory or arithmetic.

1.8.4 Infinitary logics

Main article: Infinitary logic

Infinitary logic allows infinitely long sentences. For example, one may allow a conjunction or disjunction of infinitely
many formulas, or quantification over infinitely many variables. Infinitely long sentences arise in areas of mathematics
including topology and model theory.
Infinitary logic generalizes first-order logic to allow formulas of infinite length. The most common way in which
formulas can become infinite is through infinite conjunctions and disjunctions. However, it is also possible to admit
generalized signatures in which function and relation symbols are allowed to have infinite arities, or in which quantifiers
can bind infinitely many variables. Because an infinite formula cannot be represented by a finite string, it is necessary
to choose some other representation of formulas; the usual representation in this context is a tree. Thus formulas are,
essentially, identified with their parse trees, rather than with the strings being parsed.
The most commonly studied infinitary logics are denoted Lαᵦ, where α and β are each either cardinal numbers
or the symbol ∞. In this notation, ordinary first-order logic is Lωω. In the logic L∞ω, arbitrary conjunctions or
disjunctions are allowed when building formulas, and there is an unlimited supply of variables. More generally, the
logic that permits conjunctions or disjunctions with less than κ constituents is known as Lκω. For example, Lω1ω
permits countable conjunctions and disjunctions.
The set of free variables in a formula of Lκω can have any cardinality strictly less than κ, yet only finitely many of
them can be in the scope of any quantifier when a formula appears as a subformula of another.[9] In other infinitary
logics, a subformula may be in the scope of infinitely many quantifiers. For example, in Lκ∞, a single universal or ex-
istential quantifier may bind arbitrarily many variables simultaneously. Similarly, the logic Lκλ permits simultaneous
quantification over fewer than λ variables, as well as conjunctions and disjunctions of size less than κ.

1.8.5 Non-classical and modal logics

• Intuitionistic first-order logic uses intuitionistic rather than classical propositional calculus; for example, ¬¬φ
need not be equivalent to φ.
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• First-order modal logic allows one to describe other possible worlds as well as this contingently true world
which we inhabit. In some versions, the set of possible worlds varies depending on which possible world one
inhabits. Modal logic has extra modal operators with meanings which can be characterized informally as, for
example “it is necessary that φ" (true in all possible worlds) and “it is possible that φ" (true in some possible
world). With standard first-order logic we have a single domain and each predicate is assigned one extension.
With first-order modal logic we have a domain function that assigns each possible world its own domain, so that
each predicate gets an extension only relative to these possible worlds. This allows us to model cases where,
for example, Alex is a Philosopher, but might have been a Mathematician, and might not have existed at all.
In the first possible world P(a) is true, in the second P(a) is false, and in the third possible world there is no a
in the domain at all.

• first-order fuzzy logics are first-order extensions of propositional fuzzy logics rather than classical propositional
calculus.

1.8.6 Fixpoint logic

Fixpoint logic extends first-order logic by adding the closure under the least fixed points of positive operators.[10]

1.8.7 Higher-order logics

Main article: Higher-order logic

The characteristic feature of first-order logic is that individuals can be quantified, but not predicates. Thus

∃a(Phil(a))

is a legal first-order formula, but

∃Phil(Phil(a))

is not, in most formalizations of first-order logic. Second-order logic extends first-order logic by adding the latter
type of quantification. Other higher-order logics allow quantification over even higher types than second-order logic
permits. These higher types include relations between relations, functions from relations to relations between relations,
and other higher-type objects. Thus the “first” in first-order logic describes the type of objects that can be quantified.
Unlike first-order logic, for which only one semantics is studied, there are several possible semantics for second-
order logic. The most commonly employed semantics for second-order and higher-order logic is known as full
semantics. The combination of additional quantifiers and the full semantics for these quantifiers makes higher-order
logic stronger than first-order logic. In particular, the (semantic) logical consequence relation for second-order and
higher-order logic is not semidecidable; there is no effective deduction system for second-order logic that is sound
and complete under full semantics.
Second-order logic with full semantics is more expressive than first-order logic. For example, it is possible to create
axiom systems in second-order logic that uniquely characterize the natural numbers and the real line. The cost of
this expressiveness is that second-order and higher-order logics have fewer attractive metalogical properties than first-
order logic. For example, the Löwenheim–Skolem theorem and compactness theorem of first-order logic become
false when generalized to higher-order logics with full semantics.

1.9 Automated theorem proving and formal methods

Further information: First-order theorem proving

Automated theorem proving refers to the development of computer programs that search and find derivations (formal
proofs) of mathematical theorems. Finding derivations is a difficult task because the search space can be very large; an
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exhaustive search of every possible derivation is theoretically possible but computationally infeasible for many systems
of interest in mathematics. Thus complicated heuristic functions are developed to attempt to find a derivation in less
time than a blind search.
The related area of automated proof verification uses computer programs to check that human-created proofs are
correct. Unlike complicated automated theorem provers, verification systems may be small enough that their correct-
ness can be checked both by hand and through automated software verification. This validation of the proof verifier
is needed to give confidence that any derivation labeled as “correct” is actually correct.
Some proof verifiers, such as Metamath, insist on having a complete derivation as input. Others, such as Mizar and
Isabelle, take a well-formatted proof sketch (which may still be very long and detailed) and fill in the missing pieces
by doing simple proof searches or applying known decision procedures: the resulting derivation is then verified by a
small, core “kernel”. Many such systems are primarily intended for interactive use by human mathematicians: these
are known as proof assistants. They may also use formal logics that are stronger than first-order logic, such as type
theory. Because a full derivation of any nontrivial result in a first-order deductive system will be extremely long for
a human to write,[11] results are often formalized as a series of lemmas, for which derivations can be constructed
separately.
Automated theorem provers are also used to implement formal verification in computer science. In this setting,
theorem provers are used to verify the correctness of programs and of hardware such as processors with respect to a
formal specification. Because such analysis is time-consuming and thus expensive, it is usually reserved for projects
in which a malfunction would have grave human or financial consequences.

1.10 See also

• ACL2 — A Computational Logic for Applicative Common Lisp.

• Equiconsistency

• Extension by definitions

• Herbrandization

• Higher-order logic

• List of logic symbols

• Löwenheim number

• Prenex normal form

• Relational algebra

• Relational model

• Second-order logic

• Skolem normal form

• Tarski’s World

• Truth table

• Type (model theory)

• Prolog

1.11 Notes
[1] First Order Logic CSC 2501: Symbolic Computation and AI, Dr. J.P.E. Hodgson, Saint Joseph’s University, Philadelphia

[2] Mendelson, Elliott (1964). Introduction to Mathematical Logic. Van Nostrand Reinhold. p. 56.
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[3] The word language is sometimes used as a synonym for signature, but this can be confusing because “language” can also
refer to the set of formulas.

[4] More precisely, there is only one language of each variant of one-sorted first-order logic: with or without equality, with or
without functions, with or without propositional variables, ....

[5] Some authors who use the term “well-formed formula” use “formula” to mean any string of symbols from the alphabet.
However, most authors in mathematical logic use “formula” to mean “well-formed formula” and have no term for non-well-
formed formulas. In every context, it is only the well-formed formulas that are of interest.

[6] The SMT-LIB Standard: Version 2.0, by Clark Barrett, Aaron Stump, and Cesare Tinelli. http://smtlib.cs.uiowa.edu/
language.shtml

[7] e.g. the matrix shown at 4

[8] e.g. the matrix shown at 2

[9] Some authors only admit formulas with finitely many free variables in Lκω, and more generally only formulas with < λ free
variables in Lκλ.

[10] Bosse, Uwe (1993). “An Ehrenfeucht–Fraïssé game for fixpoint logic and stratified fixpoint logic”. In Börger, Egon.
Computer Science Logic: 6th Workshop, CSL'92, San Miniato, Italy, September 28 - October 2, 1992. Selected Papers.
Lecture Notes in Computer Science 702. Springer-Verlag. pp. 100–114. ISBN 3-540-56992-8. Zbl 0808.03024.

[11] Avigad et al. (2007) discuss the process of formally verifying a proof of the prime number theorem. The formalized proof
required approximately 30,000 lines of input to the Isabelle proof verifier.
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entitled “Logic, Computation and Set Theory” and covers Ordinals and cardinals, Posets and Zorn’s Lemma,
Propositional logic, Predicate logic, Set theory and Consistency issues related to ZFC and other set theories.

• Tree Proof Generator can validate or invalidate formulas of first-order logic through the semantic tableaux
method.
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A tableaux proof for the propositional formula ((a ∨ ¬b) Λ b) → a.
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Chapter 2

Peano axioms

In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates,
are a set of axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano.
These axioms have been used nearly unchanged in a number of metamathematical investigations, including research
into fundamental questions of whether number theory is consistent and complete.
The need to formalize arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in
the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and
induction.[1] In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic.[2] In 1888,
Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a
more precisely formulated version of them as a collection of axioms in his book, The principles of arithmetic presented
by a new method (Latin: Arithmetices principia, nova methodo exposita).
The Peano axioms contain three types of statements. The first axiom asserts the existence of at least one member of
the set of natural numbers. The next four are general statements about equality; in modern treatments these are often
not taken as part of the Peano axioms, but rather as axioms of the “underlying logic”.[3] The next three axioms are
first-order statements about natural numbers expressing the fundamental properties of the successor operation. The
ninth, final axiom is a second order statement of the principle of mathematical induction over the natural numbers.
A weaker first-order system called Peano arithmetic is obtained by explicitly adding the addition and multiplication
operation symbols and replacing the second-order induction axiom with a first-order axiom schema.

2.1 Formulation

When Peano formulated his axioms, the language of mathematical logic was in its infancy. The system of logical
notation he created to present the axioms did not prove to be popular, although it was the genesis of the modern
notation for set membership (∈, which comes from Peano’s ε) and implication (⊃, which comes from Peano’s reversed
'C'.) Peano maintained a clear distinction between mathematical and logical symbols, which was not yet common in
mathematics; such a separation had first been introduced in the Begriffsschrift by Gottlob Frege, published in 1879.[4]
Peano was unaware of Frege’s work and independently recreated his logical apparatus based on the work of Boole
and Schröder.[5]

The Peano axioms define the arithmetical properties of natural numbers, usually represented as a set N or N. The
signature (a formal language’s non-logical symbols) for the axioms includes a constant symbol 0 and a unary function
symbol S.
The constant 0 is assumed to be a natural number:

1. 0 is a natural number.

The next four axioms describe the equality relation. Since they are logically valid in first-order logic with equality,
they are not considered to be part of “the Peano axioms” in modern treatments.[6]

1. For every natural number x, x = x. That is, equality is reflexive.
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2. For all natural numbers x and y, if x = y, then y = x. That is, equality is symmetric.

3. For all natural numbers x, y and z, if x = y and y = z, then x = z. That is, equality is transitive.

4. For all a and b, if b is a natural number and a = b, then a is also a natural number. That is, the natural numbers
are closed under equality.

The remaining axioms define the arithmetical properties of the natural numbers. The naturals are assumed to be
closed under a single-valued "successor" function S.

1. For every natural number n, S(n) is a natural number.

2. For all natural numbers m and n, m = n if and only if S(m) = S(n). That is, S is an injection.

3. For every natural number n, S(n) = 0 is false. That is, there is no natural number whose successor is 0.

Peano’s original formulation of the axioms used 1 instead of 0 as the “first” natural number.[7] This choice is arbitrary,
as axiom 1 does not endow the constant 0 with any additional properties. However, because 0 is the additive identity
in arithmetic, most modern formulations of the Peano axioms start from 0. Axioms 1, 6, 7, 8 define a unary repre-
sentation of the intuitive notion of natural numbers: the number 1 can be defined as S(0), 2 as S(S(0)), etc. However,
considering the notion of natural numbers as can be derived from the axioms, axioms 1, 6, 7, 8 do not imply that
the successor function generates all the natural numbers different than 0. Put differently, they do not guarantee that
every natural number other than zero must succeed some other natural number.
The intuitive notion that all natural numbers observe a succession relation with one (in the case of the starting number)
or two (for all other numbers) other numbers requires an additional axiom, which is sometimes called the axiom of
induction.

1. If K is a set such that:

• 0 is in K, and
• for every natural number n, if n is in K, then S(n) is in K,

then K contains every natural number.

The induction axiom is sometimes stated in the following form:

1. If φ is a unary predicate such that:

• φ(0) is true, and
• for every natural number n, if φ(n) is true, then φ(S(n)) is true,

then φ(n) is true for every natural number n.

In Peano’s original formulation, the induction axiom is a second-order axiom. It is now common to replace this
second-order principle with a weaker first-order induction scheme. There are important differences between the
second-order and first-order formulations, as discussed in the section § Models below.

2.2 Arithmetic

The Peano axioms can be augmented with the operations of addition and multiplication and the usual total (linear)
ordering on N. The respective functions and relations are constructed in second-order logic, and are shown to be
unique using the Peano axioms.
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2.2.1 Addition

Addition is a function that maps two natural numbers (two elements of N) to another one. It is defined recursively as:

a+ 0 = a, (1)
a+ S(b) = S(a+ b). (2)

For example:

a+ 1 = a+ S(0) by definition
= S(a+ 0) using (2)
= S(a), using (1)

a+ 2 = a+ S(1) by definition
= S(a+ 1) using (2)
= S(S(a)) using a+ 1 = S(a)

a+ 3 = a+ S(2) by definition
= S(a+ 2) using (2)
= S(S(S(a)) using a+ 2 = S(S(a))

etc.

The structure (N, +) is a commutative semigroup with identity element 0. (N, +) is also a cancellative magma, and
thus embeddable in a group. The smallest group embedding N is the integers.

2.2.2 Multiplication

Similarly, multiplication is a function mapping two natural numbers to another one. Given addition, it is defined
recursively as:

a · 0 = 0,

a · S(b) = a+ (a · b).

It is easy to see that S(0) (or “1”, in the familiar language of decimal representation) is the multiplicative identity:

a · S(0) = a + (a · 0) = a + 0 = a

Moreover, multiplication distributes over addition:

a · (b + c) = (a · b) + (a · c).

Thus, (N, +, 0, ·, S(0)) is a commutative semiring.

2.2.3 Inequalities

The usual total order relation ≤ on natural numbers can be defined as follows, assuming 0 is a natural number:

For all a, b ∈ N, a ≤ b if and only if there exists some c ∈ N such that a + c = b.

This relation is stable under addition and multiplication: for a, b, c ∈ N , if a ≤ b, then:
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• a + c ≤ b + c, and
• a · c ≤ b · c.

Thus, the structure (N, +, ·, 1, 0, ≤) is an ordered semiring; because there is no natural number between 0 and 1, it
is a discrete ordered semiring.
The axiom of induction is sometimes stated in the following strong form, making use of the ≤ order:

For any predicate φ, if
• φ(0) is true, and
• for every n, k ∈ N, if k ≤ n implies that φ(k) is true, then φ(S(n)) is true,

then for every n ∈ N, φ(n) is true.

This form of the induction axiom is a simple consequence of the standard formulation, but is often better suited for
reasoning about the ≤ order. For example, to show that the naturals are well-ordered—every nonempty subset of N
has a least element—one can reason as follows. Let a nonempty X ⊆ N be given and assume X has no least element.

• Because 0 is the least element of N, it must be that 0 ∉ X.
• For any n ∈ N, suppose for every k ≤ n, k ∉ X. Then S(n) ∉ X, for otherwise it would be the least element of X.

Thus, by the strong induction principle, for every n ∈ N, n ∉ X. Thus, X ∩ N = ∅, which contradicts X being a
nonempty subset of N. Thus X has a least element.

2.3 First-order theory of arithmetic

All of the Peano axioms except the ninth axiom (the induction axiom) are statements in first-order logic.[8] The
arithmetical operations of addition and multiplication and the order relation can also be defined using first-order
axioms. The axiom of induction is in second-order, since it quantifies over predicates (equivalently, sets of natural
numbers rather than natural numbers), but it can be transformed into a first-order axiom schema of induction. Such a
schema includes one axiom per predicate definable in the first-order language of Peano arithmetic, making it weaker
than the second-order axiom.[9]

First-order axiomatizations of Peano arithmetic have an important limitation, however. In second-order logic, it is
possible to define the addition and multiplication operations from the successor operation, but this cannot be done
in the more restrictive setting of first-order logic. Therefore, the addition and multiplication operations are directly
included in the signature of Peano arithmetic, and axioms are included that relate the three operations to each other.
The following list of axioms (along with the usual axioms of equality), which contains six of the seven axioms of
Robinson arithmetic, is sufficient for this purpose:[10]

• ∀x∈N. 0 ≠ S(x)
• ∀x,y∈N. S(x) = S(y) ⇒ x = y

• ∀x∈N. x + 0 = x

• ∀x,y∈N. x + S(y) = S(x + y)
• ∀x∈N. x ⋅ 0 = 0
• ∀x,y∈N. x ⋅ S(y) = x ⋅ y + x

In addition to this list of numerical axioms, Peano arithmetic contains the induction schema, which consists of a
countably infinite set of axioms. For each formula φ(x, y1, ..., yk) in the language of Peano arithmetic, the first-
order induction axiom for φ is the sentence

∀ȳ(φ(0, ȳ) ∧ ∀x(φ(x, ȳ) ⇒ φ(S(x), ȳ)) ⇒ ∀xφ(x, ȳ))

where ȳ is an abbreviation for y1,...,yk. The first-order induction schema includes every instance of the first-order
induction axiom, that is, it includes the induction axiom for every formula φ.
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2.3.1 Equivalent axiomatizations

There are many different, but equivalent, axiomatizations of Peano arithmetic. While some axiomatizations, such as
the one just described, use a signature that only has symbols for 0 and the successor, addition, and multiplications
operations, other axiomatizations use the language of ordered semirings, including an additional order relation symbol.
One such axiomatization begins with the following axioms that describe a discrete ordered semiring.[11]

1. ∀x, y, z ∈ N (x+ y) + z = x+ (y + z) , i.e., addition is associative.

2. ∀x, y ∈ N x+ y = y + x , i.e., addition is commutative.

3. ∀x, y, z ∈ N (x · y) · z = x · (y · z) , i.e., multiplication is associative.

4. ∀x, y ∈ N x · y = y · x , i.e., multiplication is commutative.

5. ∀x, y, z ∈ N x · (y + z) = (x · y) + (x · z) , i.e., the distributive law.

6. ∀x ∈ N x+ 0 = x ∧ x · 0 = 0 , i.e., zero is the identity element for addition.

7. ∀x ∈ N x · 1 = x , i.e., one is the identity element for multiplication.

8. ∀x, y, z ∈ N x < y ∧ y < z ⇒ x < z , i.e., the '<' operator is transitive.

9. ∀x ∈ N ¬(x < x) , i.e., the '<' operator is irreflexive.

10. ∀x, y ∈ N x < y ∨ x = y ∨ y < x .

11. ∀x, y, z ∈ N x < y ⇒ x+ z < y + z .

12. ∀x, y, z ∈ N 0 < z ∧ x < y ⇒ x · z < y · z .

13. ∀x, y ∈ N x < y ⇒ ∃z ∈ Nx+ z = y .

14. 0 < 1 ∧ ∀x ∈ N x > 0 ⇒ x ≥ 1 .

15. ∀x ∈ N . x ≥ 0 .

The theory defined by these axioms is known as PA−; PA is obtained by adding the first-order induction schema.
An important property of PA− is that any structure M satisfying this theory has an initial segment (ordered by ≤)
isomorphic to N. Elements of M \ N are known as nonstandard elements.

2.4 Models

A model of the Peano axioms is a triple (N, 0, S), where N is a (necessarily infinite) set, 0 ∈ N and S : N → N
satisfies the axioms above. Dedekind proved in his 1888 book,What are numbers and what should they be (German:
Was sind und was sollen die Zahlen) that any two models of the Peano axioms (including the second-order induction
axiom) are isomorphic. In particular, given two models (NA, 0A, SA) and (NB, 0B, SB) of the Peano axioms, there
is a unique homomorphism f : NA→ NB satisfying

f(0A) = 0B

f(SA(n)) = SB(f(n))

and it is a bijection. This means that second-order Peano axioms are categorical. This is not the case with any
first-order reformulation of the Peano axioms, however.
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2.4.1 Nonstandard models

Although the usual natural numbers satisfy the axioms of PA, there are other non-standard models as well; the
compactness theorem implies that the existence of nonstandard elements cannot be excluded in first-order logic. The
upward Löwenheim–Skolem theorem shows that there are nonstandard models of PA of all infinite cardinalities. This
is not the case for the original (second-order) Peano axioms, which have only one model, up to isomorphism. This
illustrates one way the first-order system PA is weaker than the second-order Peano axioms.
When interpreted as a proof within a first-order set theory, such as ZFC, Dedekind’s categoricity proof for PA shows
that each model of set theory has a unique model of the Peano axioms, up to isomorphism, that embeds as an initial
segment of all other models of PA contained within that model of set theory. In the standard model of set theory,
this smallest model of PA is the standard model of PA; however, in a nonstandard model of set theory, it may be a
nonstandard model of PA. This situation cannot be avoided with any first-order formalization of set theory.
It is natural to ask whether a countable nonstandard model can be explicitly constructed. The answer is affirmative
as Skolem in 1933 provided an explicit construction of such a nonstandard model. On the other hand, Tennenbaum’s
theorem, proved in 1959, shows that there is no countable nonstandard model of PA in which either the addition or
multiplication operation is computable.[12] This result shows it is difficult to be completely explicit in describing the
addition and multiplication operations of a countable nonstandard model of PA. However, there is only one possible
order type of a countable nonstandard model. Letting ω be the order type of the natural numbers, ζ be the order type
of the integers, and η be the order type of the rationals, the order type of any countable nonstandard model of PA is
ω + ζ·η, which can be visualized as a copy of the natural numbers followed by a dense linear ordering of copies of
the integers.

2.4.2 Set-theoretic models

Main article: Set-theoretic definition of natural numbers

The Peano axioms can be derived from set theoretic constructions of the natural numbers and axioms of set theory
such as the ZF.[13] The standard construction of the naturals, due to John von Neumann, starts from a definition of 0
as the empty set, ∅, and an operator s on sets defined as:

s(a) = a ∪ { a }.

The set of natural numbers N is defined as the intersection of all sets closed under s that contain the empty set. Each
natural number is equal (as a set) to the set of natural numbers less than it:

0 = ∅
1 = s(0) = s(∅) = ∅ ∪ {∅} = {∅} = {0}
2 = s(1) = s({0}) = {0} ∪ {{0}} = {0, {0}} = {0, 1}
3 = s(2) = s({0, 1}) = {0, 1} ∪ {{0, 1}} = {0, 1, {0, 1}} = {0, 1, 2}

and so on. The set N together with 0 and the successor function s : N→ N satisfies the Peano axioms.
Peano arithmetic is equiconsistent with several weak systems of set theory.[14] One such system is ZFCwith the axiom
of infinity replaced by its negation. Another such system consists of general set theory (extensionality, existence of
the empty set, and the axiom of adjunction), augmented by an axiom schema stating that a property that holds for the
empty set and holds of an adjunction whenever it holds of the adjunct must hold for all sets.

2.4.3 Interpretation in category theory

The Peano axioms can also be understood using category theory. Let C be a category with terminal object 1C, and
define the category of pointed unary systems, US1(C) as follows:

• The objects of US1(C) are triples (X, 0X, SX) where X is an object of C, and 0X : 1C → X and SX : X → X
are C-morphisms.
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• A morphism φ : (X, 0X, SX) → (Y, 0Y , SY) is a C-morphism φ : X → Y with φ 0X = 0Y and φ SX = SY φ.

Then C is said to satisfy the Dedekind–Peano axioms if US1(C) has an initial object; this initial object is known as a
natural number object in C. If (N, 0, S) is this initial object, and (X, 0X, SX) is any other object, then the unique map
u : (N, 0, S) → (X, 0X, SX) is such that

u0 = 0X ,

u(Sx) = SX(ux).

This is precisely the recursive definition of 0X and SX.

2.5 Consistency

Further information: Hilbert’s second problem and Consistency

When the Peano axioms were first proposed, Bertrand Russell and others agreed that these axioms implicitly defined
what we mean by a “natural number”.[15] Henri Poincaré was more cautious, saying they only defined natural numbers
if they were consistent; if there is a proof that starts from just these axioms and derives a contradiction such as 0 = 1,
then the axioms are inconsistent, and don't define anything..[16] In 1900, David Hilbert posed the problem of proving
their consistency using only finitistic methods as the second of his twenty-three problems.[17] In 1931, Kurt Gödel
proved his second incompleteness theorem, which shows that such a consistency proof cannot be formalized within
Peano arithmetic itself.[18]

Although it is widely claimed that Gödel’s theorem rules out the possibility of a finitistic consistency proof for Peano
arithmetic, this depends on exactly what one means by a finitistic proof. Gödel himself pointed out the possibility of
giving a finitistic consistency proof of Peano arithmetic or stronger systems by using finitistic methods that are not
formalizable in Peano arithmetic, and in 1958, Gödel published a method for proving the consistency of arithmetic
using type theory.[19] In 1936, Gerhard Gentzen gave a proof of the consistency of Peano’s axioms, using transfinite
induction up to an ordinal called ε0.[20] Gentzen explained: “The aim of the present paper is to prove the consistency
of elementary number theory or, rather, to reduce the question of consistency to certain fundamental principles”.
Gentzen’s proof is arguably finitistic, since the transfinite ordinal ε0 can be encoded in terms of finite objects (for
example, as a Turing machine describing a suitable order on the integers, or more abstractly as consisting of the
finite trees, suitably linearly ordered). Whether or not Gentzen’s proof meets the requirements Hilbert envisioned is
unclear: there is no generally accepted definition of exactly what is meant by a finitistic proof, and Hilbert himself
never gave a precise definition.
The vast majority of contemporary mathematicians believe that Peano’s axioms are consistent, relying either on in-
tuition or the acceptance of a consistency proof such as Gentzen’s proof. The small number of mathematicians who
advocate ultrafinitism reject Peano’s axioms because the axioms require an infinite set of natural numbers.

2.6 See also

• Foundations of mathematics

• Frege’s theorem

• Goodstein’s theorem

• Non-standard model of arithmetic

• Paris–Harrington theorem

• Presburger arithmetic

• Robinson arithmetic

• Second-order arithmetic
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2.7 Footnotes
[1] Grassmann 1861

[2] Peirce 1881, Shields 1997

[3] van Heijenoort 1967, p. 94

[4] van Heijenoort 1967, p. 2

[5] van Heijenoort 1967, p. 83

[6] van Heijenoort 1967, p. 83

[7] Peano 1889, p. 1

[8] Partee et al. 2012, p. 215

[9] Harsanyi 1983

[10] Mendelson 1997, p. 155

[11] Kaye 1991, pp. 16–18

[12] Kaye 1991, Section 11.3

[13] Suppes 1960, Hatcher 1982

[14] Tarski & Givant 1987, Section 7.6

[15] Fritz 1952, p. 137
An illustration of 'interpretation' is Russell’s own definition of 'cardinal number'. The uninterpreted system in this case
is Peano’s axioms for the number system, whose three primitive ideas and five axioms, Peano believed, were sufficient to
enable one to derive all the properties of the system of natural numbers. Actually, Russell maintains, Peano’s axioms define
any progression of the form x0, x1, x2, . . . , xn, . . . of which the series of the natural numbers is one instance.

[16] Gray 2013, p. 133
So Poincaré turned to see whether logicism could generate arithmetic, more precisely, the arithmetic of ordinals. Couturat,
said Poincaré, had accepted the Peano axioms as a definition of a number. But this will not do. The axioms cannot be
shown to be free of contradiction by finding examples of them, and any attempt to show that they were contradiction-free by
examining the totality of their implications would require the very principle of mathematical induction Couturat believed
they implied. For (in a further passage dropped from S&M) either one assumed the principle in order to prove it, which
would only prove that if it is true it is not self-contradictory, which says nothing; or one used the principle in another form
than the one stated, in which case one must show that the number of steps in one’s reasoning was an integer according to
the new definition, but this could not be done (1905c, 834).

[17] Hilbert 1900

[18] Gödel 1931

[19] Gödel 1958

[20] Gentzen 1936
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Chapter 3

Zermelo–Fraenkel set theory

“ZFC” redirects here. For other uses, see ZFC (disambiguation).

In mathematics, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel,
is one of several axiomatic systems that were proposed in the early twentieth century to formulate a theory of sets
free of paradoxes such as Russell’s paradox. Zermelo–Fraenkel set theory with the historically controversial axiom
of choice included is commonly abbreviated ZFC, where C stands for choice.[1] Many authors use ZF to refer to
the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded. Today ZFC is the standard form of
axiomatic set theory and as such is the most common foundation of mathematics.
ZFC is intended to formalize a single primitive notion, that of a hereditary well-founded set, so that all entities in
the universe of discourse are such sets. Thus the axioms of ZFC refer only to pure sets and prevent its models from
containing urelements (elements of sets that are not themselves sets). Furthermore, proper classes (collections of
mathematical objects defined by a property shared by their members which are too big to be sets) can only be treated
indirectly. Specifically, ZFC does not allow for the existence of a universal set (a set containing all sets) nor for
unrestricted comprehension, thereby avoiding Russell’s paradox. Von Neumann–Bernays–Gödel set theory (NBG)
is a commonly used conservative extension of ZFC that does allow explicit treatment of proper classes.
Formally, ZFC is a one-sorted theory in first-order logic. The signature has equality and a single primitive binary
relation, set membership, which is usually denoted ∈. The formula a ∈ b means that the set a is a member of the set
b (which is also read, "a is an element of b" or "a is in b").
There are many equivalent formulations of the ZFC axioms. Most of the ZFC axioms state the existence of particular
sets defined from other sets. For example, the axiom of pairing says that given any two sets a and b there is a new set
{a, b} containing exactly a and b. Other axioms describe properties of set membership. A goal of the ZFC axioms
is that each axiom should be true if interpreted as a statement about the collection of all sets in the von Neumann
universe (also known as the cumulative hierarchy).
The metamathematics of ZFC has been extensively studied. Landmark results in this area established the indepen-
dence of the continuum hypothesis from ZFC, and of the axiom of choice from the remaining ZFC axioms. The
consistency of a theory such as ZFC cannot be proved within the theory itself.

3.1 History

In 1908, Ernst Zermelo proposed the first axiomatic set theory, Zermelo set theory. However, as first pointed out
by Abraham Fraenkel in a 1921 letter to Zermelo, this theory was incapable of proving the existence of certain sets
and cardinal numbers whose existence was taken for granted by most set theorists of the time, notably the cardinal
number ℵω and the set {Z0, ℘(Z0), ℘(℘(Z0)),...}, where Z0 is any infinite set and ℘ is the power set operation.[2]
Moreover, one of Zermelo’s axioms invoked a concept, that of a “definite” property, whose operational meaning
was not clear. In 1922, Fraenkel and Thoralf Skolem independently proposed operationalizing a “definite” property
as one that could be formulated as a first order theory whose atomic formulas were limited to set membership and
identity. They also independently proposed replacing the axiom schema of specification with the axiom schema of
replacement. Appending this schema, as well as the axiom of regularity (first proposed by Dimitry Mirimanoff in
1917), to Zermelo set theory yields the theory denoted by ZF. Adding to ZF either the axiom of choice (AC) or a
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statement that is equivalent to it yields ZFC.

3.2 Axioms

There are many equivalent formulations of the ZFC axioms; for a discussion of this see Fraenkel, Bar-Hillel & Lévy
1973. The following particular axiom set is from Kunen (1980). The axioms per se are expressed in the symbolism
of first order logic. The associated English prose is only intended to aid the intuition.
All formulations of ZFC imply that at least one set exists. Kunen includes an axiom that directly asserts the exis-
tence of a set, in addition to the axioms given below (although he notes that he does so only “for emphasis”).[3] Its
omission here can be justified in two ways. First, in the standard semantics of first-order logic in which ZFC is typi-
cally formalized, the domain of discourse must be nonempty. Hence, it is a logical theorem of first-order logic that
something exists — usually expressed as the assertion that something is identical to itself, ∃x(x=x). Consequently,
it is a theorem of every first-order theory that something exists. However, as noted above, because in the intended
semantics of ZFC there are only sets, the interpretation of this logical theorem in the context of ZFC is that some
set exists. Hence, there is no need for a separate axiom asserting that a set exists. Second, however, even if ZFC is
formulated in so-called free logic, in which it is not provable from logic alone that something exists, the axiom of
infinity (below) asserts that an infinite set exists. This implies that a set exists and so, once again, it is superfluous to
include an axiom asserting as much.

3.2.1 1. Axiom of extensionality

Main article: Axiom of extensionality

Two sets are equal (are the same set) if they have the same elements.

∀x∀y[∀z(z ∈ x⇔ z ∈ y) ⇒ x = y].

The converse of this axiom follows from the substitution property of equality. If the background logic does not
include equality "=", x=y may be defined as an abbreviation for the following formula:[4]

∀z[z ∈ x⇔ z ∈ y] ∧ ∀w[x ∈ w ⇔ y ∈ w].

In this case, the axiom of extensionality can be reformulated as

∀x∀y[∀z(z ∈ x⇔ z ∈ y) ⇒ ∀w(x ∈ w ⇔ y ∈ w)],

which says that if x and y have the same elements, then they belong to the same sets.[5]

3.2.2 2. Axiom of regularity (also called the Axiom of foundation)

Main article: Axiom of regularity

Every non-empty set x contains a member y such that x and y are disjoint sets.

∀x[∃a(a ∈ x) ⇒ ∃y(y ∈ x ∧ ¬∃z(z ∈ y ∧ z ∈ x))]. [6]

This implies, for example, that no set is an element of itself and that every set has an ordinal rank.
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3.2.3 3. Axiom schema of specification (also called the axiom schema of separation or of
restricted comprehension)

Main article: Axiom schema of specification

Subsets are commonly constructed using set builder notation. For example, the even integers can be constructed as
the subset of the integers Z satisfying the congruence modulo predicate x ≡ 0 (mod 2) :

{x ∈ Z : x ≡ 0 (mod 2)}.

In general, the subset of a set z obeying a formula ϕ (x) with one free variable x may be written as:

{x ∈ z : ϕ(x)}.

The axiom schema of specification states that this subset always exists (it is an axiom schema because there is one ax-
iom for each ϕ ). Formally, let ϕbe any formula in the language of ZFC with all free variables among x, z, w1, . . . , wn

(y is not free in ϕ). Then:

∀z∀w1∀w2 . . .∀wn∃y∀x[x ∈ y ⇔ (x ∈ z ∧ ϕ)].

Note that the axiom schema of specification can only construct subsets, and does not allow the construction of sets
of the more general form:

{x : ϕ(x)}.

This restriction is necessary to avoid Russell’s paradox and its variants that accompany naive set theorywith unrestricted
comprehension.
In some other axiomatizations of ZF, this axiom is redundant in that it follows from the axiom schema of replacement
and the axiom of the empty set.
On the other hand, the axiom of specification can be used to prove the existence of the empty set, denoted ∅ , once
at least one set is known to exist (see above). One way to do this is to use a property ϕwhich no set has. For example,
if w is any existing set, the empty set can be constructed as

∅ = {u ∈ w | (u ∈ u) ∧ ¬(u ∈ u)}

Thus the axiom of the empty set is implied by the nine axioms presented here. The axiom of extensionality implies
the empty set is unique (does not depend on w). It is common to make a definitional extension that adds the symbol
∅ to the language of ZFC.

3.2.4 4. Axiom of pairing

Main article: Axiom of pairing

If x and y are sets, then there exists a set which contains x and y as elements.

∀x∀y∃z(x ∈ z ∧ y ∈ z).

The axiom schema of specification must be used to reduce this to a set with exactly these two elements. The axiom
of pairing is part of Z, but is redundant in ZF because it follows from the axiom schema of replacement, if we are
given a set with at least two elements. The existence of a set with at least two elements is assured by either the axiom
of infinity, or by the axiom schema of specification and the axiom of the power set applied twice to any set.
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3.2.5 5. Axiom of union

Main article: Axiom of union

The union over the elements of a set exists. For example, the union over the elements of the set {{1, 2}, {2, 3}} is
{1, 2, 3} .
Formally, for any set of sets F there is a set A containing every element that is a member of some member of F :

∀F ∃A∀Y ∀x[(x ∈ Y ∧ Y ∈ F) ⇒ x ∈ A].

A B

f(x)

f : A → B

x

Axiom schema of replacement: the image of the domain set A under the definable function f (i.e. the range of f) falls inside a set B.

3.2.6 6. Axiom schema of replacement

Main article: Axiom schema of replacement

The axiom schema of replacement asserts that the image of a set under any definable function will also fall inside a
set.
Formally, let ϕbe any formula in the language of ZFC whose free variables are among x, y,A,w1, . . . , wn , so that
in particular B is not free in ϕ . Then:

∀A∀w1∀w2 . . .∀wn

[
∀x(x ∈ A⇒ ∃!y ϕ) ⇒ ∃B ∀x

(
x ∈ A⇒ ∃y(y ∈ B ∧ ϕ)

)]
.
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In other words, if the relation ϕrepresents a definable function f, A represents its domain, and f(x) is a set for every
x in that domain, then the range of f is a subset of some set B . The form stated here, in which B may be larger than
strictly necessary, is sometimes called the axiom schema of collection.

3.2.7 7. Axiom of infinity

Main article: Axiom of infinity

Let S(w)abbreviate w ∪ {w} , where w is some set. (We can see that {w} is a valid set by applying the Axiom of
Pairing with x = y = w so that the set z is {w}). Then there exists a set X such that the empty set ∅ is a member
of X and, whenever a set y is a member of X, then S(y) is also a member of X.

∃X [∅ ∈ X ∧ ∀y(y ∈ X ⇒ S(y) ∈ X)] .

More colloquially, there exists a set X having infinitely many members. (It must be established, however, that these
members are all different, because if two elements are same, the sequence will loop around in a finite cycle of sets.
The axiom of regularity prevents this from happening.) The minimal set X satisfying the axiom of infinity is the von
Neumann ordinal ω, which can also be thought of as the set of natural numbers N .

3.2.8 8. Axiom of power set

Main article: Axiom of power set

By definition a set z is a subset of a set x if and only if every element of z is also an element of x:

(z ⊆ x) ⇔ (∀q(q ∈ z ⇒ q ∈ x)).

The Axiom of Power Set states that for any set x, there is a set y that contains every subset of x:

∀x∃y∀z[z ⊆ x⇒ z ∈ y].

The axiom schema of specification is then used to define the power set P(x) as the subset of such a y containing the
subsets of x exactly:

P (x) = {z ∈ y : z ⊆ x}

Axioms 1–8 define ZF. Alternative forms of these axioms are often encountered, some of which are listed in Jech
(2003). Some ZF axiomatizations include an axiom asserting that the empty set exists. The axioms of pairing, union,
replacement, and power set are often stated so that the members of the set x whose existence is being asserted are
just those sets which the axiom asserts x must contain.
The following axiom is added to turn ZF into ZFC:

3.2.9 9. Well-ordering theorem

Main article: Well-ordering theorem

For any set X, there is a binary relation R which well-orders X. This means R is a linear order on X such that every
nonempty subset of X has a member which is minimal under R.

∀X∃R(R well-orders X).
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Given axioms 1–8, there are many statements provably equivalent to axiom 9, the best known of which is the axiom
of choice (AC), which goes as follows. Let X be a set whose members are all non-empty. Then there exists a function
f from X to the union of the members of X, called a "choice function", such that for all Y ∈ X one has f(Y) ∈ Y.
Since the existence of a choice function when X is a finite set is easily proved from axioms 1–8, AC only matters for
certain infinite sets. AC is characterized as nonconstructive because it asserts the existence of a choice set but says
nothing about how the choice set is to be “constructed.” Much research has sought to characterize the definability (or
lack thereof) of certain sets whose existence AC asserts.

3.3 Motivation via the cumulative hierarchy

One motivation for the ZFC axioms is the cumulative hierarchy of sets introduced by John von Neumann.[7] In this
viewpoint, the universe of set theory is built up in stages, with one stage for each ordinal number. At stage 0 there
are no sets yet. At each following stage, a set is added to the universe if all of its elements have been added at
previous stages. Thus the empty set is added at stage 1, and the set containing the empty set is added at stage 2.[8]
The collection of all sets that are obtained in this way, over all the stages, is known as V. The sets in V can be arranged
into a hierarchy by assigning to each set the first stage at which that set was added to V.
It is provable that a set is in V if and only if the set is pure and well-founded; and provable that V satisfies all the
axioms of ZFC, if the class of ordinals has appropriate reflection properties. For example, suppose that a set x is
added at stage α, which means that every element of x was added at a stage earlier than α. Then every subset of x is
also added at stage α, because all elements of any subset of x were also added before stage α. This means that any
subset of x which the axiom of separation can construct is added at stage α, and that the powerset of x will be added
at the next stage after α. For a complete argument that V satisfies ZFC see Shoenfield (1977).
The picture of the universe of sets stratified into the cumulative hierarchy is characteristic of ZFC and related ax-
iomatic set theories such as Von Neumann–Bernays–Gödel set theory (often called NBG) and Morse–Kelley set
theory. The cumulative hierarchy is not compatible with other set theories such as New Foundations.
It is possible to change the definition of V so that at each stage, instead of adding all the subsets of the union of
the previous stages, subsets are only added if they are definable in a certain sense. This results in a more “narrow”
hierarchy which gives the constructible universe L, which also satisfies all the axioms of ZFC, including the axiom of
choice. It is independent from the ZFC axioms whether V = L. Although the structure of L is more regular and well
behaved than that of V, few mathematicians argue that V = L should be added to ZFC as an additional axiom.

3.4 Metamathematics

The axiom schemata of replacement and separation each contain infinitely many instances. Montague (1961) included
a result first proved in his 1957 Ph.D. thesis: if ZFC is consistent, it is impossible to axiomatize ZFC using only finitely
many axioms. On the other hand, Von Neumann–Bernays–Gödel set theory (NBG) can be finitely axiomatized. The
ontology of NBG includes proper classes as well as sets; a set is any class that can be a member of another class.
NBG and ZFC are equivalent set theories in the sense that any theorem not mentioning classes and provable in one
theory can be proved in the other.
Gödel’s second incompleteness theorem says that a recursively axiomatizable system that can interpret Robinson
arithmetic can prove its own consistency only if it is inconsistent. Moreover, Robinson arithmetic can be interpreted
in general set theory, a small fragment of ZFC. Hence the consistency of ZFC cannot be proved within ZFC itself
(unless it is actually inconsistent). Thus, to the extent that ZFC is identifiedwith ordinarymathematics, the consistency
of ZFC cannot be demonstrated in ordinary mathematics. The consistency of ZFC does follow from the existence of
a weakly inaccessible cardinal, which is unprovable in ZFC if ZFC is consistent. Nevertheless, it is deemed unlikely
that ZFC harbors an unsuspected contradiction; it is widely believed that if ZFC were inconsistent, that fact would
have been uncovered by now. This much is certain — ZFC is immune to the classic paradoxes of naive set theory:
Russell’s paradox, the Burali-Forti paradox, and Cantor’s paradox.
Abian & LaMacchia (1978) studied a subtheory of ZFC consisting of the axioms of extensionality, union, powerset,
replacement, and choice. Using models, they proved this subtheory consistent, and proved that each of the axioms
of extensionality, replacement, and power set is independent of the four remaining axioms of this subtheory. If this
subtheory is augmented with the axiom of infinity, each of the axioms of union, choice, and infinity is independent
of the five remaining axioms. Because there are non-well-founded models that satisfy each axiom of ZFC except the
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axiom of regularity, that axiom is independent of the other ZFC axioms.
If consistent, ZFC cannot prove the existence of the inaccessible cardinals that category theory requires. Huge sets of
this nature are possible if ZF is augmented with Tarski’s axiom.[9] Assuming that axiom turns the axioms of infinity,
power set, and choice (7 − 9 above) into theorems.

3.4.1 Independence

Many important statements are independent of ZFC (see list of statements undecidable in ZFC). The independence
is usually proved by forcing, whereby it is shown that every countable transitive model of ZFC (sometimes augmented
with large cardinal axioms) can be expanded to satisfy the statement in question. A different expansion is then shown
to satisfy the negation of the statement. An independence proof by forcing automatically proves independence from
arithmetical statements, other concrete statements, and large cardinal axioms. Some statements independent of ZFC
can be proven to hold in particular inner models, such as in the constructible universe. However, some statements
that are true about constructible sets are not consistent with hypothesized large cardinal axioms.
Forcing proves that the following statements are independent of ZFC:

• Continuum hypothesis

• Diamond principle

• Suslin hypothesis

• Martin’s axiom (which is not a ZFC axiom)

• Axiom of Constructibility (V=L) (which is also not a ZFC axiom).

Remarks:

• The consistency of V=L is provable by inner models but not forcing: every model of ZF can be trimmed to
become a model of ZFC + V=L.

• The Diamond Principle implies the Continuum Hypothesis and the negation of the Suslin Hypothesis.

• Martin’s axiom plus the negation of the Continuum Hypothesis implies the Suslin Hypothesis.

• The constructible universe satisfies the Generalized Continuum Hypothesis, the Diamond Principle, Martin’s
Axiom and the Kurepa Hypothesis.

• The failure of the Kurepa hypothesis is equiconsistent with the existence of a strongly inaccessible cardinal.

A variation on the method of forcing can also be used to demonstrate the consistency and unprovability of the axiom
of choice, i.e., that the axiom of choice is independent of ZF. The consistency of choice can be (relatively) easily
verified by proving that the inner model L satisfies choice. (Thus every model of ZF contains a submodel of ZFC, so
that Con(ZF) implies Con(ZFC).) Since forcing preserves choice, we cannot directly produce a model contradicting
choice from a model satisfying choice. However, we can use forcing to create a model which contains a suitable
submodel, namely one satisfying ZF but not C.
Another method of proving independence results, one owing nothing to forcing, is based on Gödel’s second in-
completeness theorem. This approach employs the statement whose independence is being examined, to prove the
existence of a set model of ZFC, in which case Con(ZFC) is true. Since ZFC satisfies the conditions of Gödel’s
second theorem, the consistency of ZFC is unprovable in ZFC (provided that ZFC is, in fact, consistent). Hence no
statement allowing such a proof can be proved in ZFC. This method can prove that the existence of large cardinals
is not provable in ZFC, but cannot prove that assuming such cardinals, given ZFC, is free of contradiction.

3.5 Criticisms

For criticism of set theory in general, see Objections to set theory
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ZFC has been criticized both for being excessively strong and for being excessively weak, as well as for its failure to
capture objects such as proper classes and the universal set.
Many mathematical theorems can be proven in much weaker systems than ZFC, such as Peano arithmetic and second
order arithmetic (as explored by the program of reverse mathematics). Saunders Mac Lane and Solomon Feferman
have both made this point. Some of “mainstream mathematics” (mathematics not directly connected with axiomatic
set theory) is beyond Peano arithmetic and second order arithmetic, but still, all such mathematics can be carried
out in ZC (Zermelo set theory with choice), another theory weaker than ZFC. Much of the power of ZFC, including
the axiom of regularity and the axiom schema of replacement, is included primarily to facilitate the study of the set
theory itself.
On the other hand, among axiomatic set theories, ZFC is comparatively weak. Unlike New Foundations, ZFC does
not admit the existence of a universal set. Hence the universe of sets under ZFC is not closed under the elementary
operations of the algebra of sets. Unlike von Neumann–Bernays–Gödel set theory and Morse–Kelley set theory
(MK), ZFC does not admit the existence of proper classes. A further comparative weakness of ZFC is that the axiom
of choice included in ZFC is weaker than the axiom of global choice included in MK.
There are numerous mathematical statements undecidable in ZFC. These include the continuum hypothesis, the
Whitehead problem, and the Normal Moore space conjecture. Some of these conjectures are provable with the
addition of axioms such as Martin’s axiom, large cardinal axioms to ZFC. Some others are decided in ZF+AD where
AD is the axiom of determinacy, a strong supposition incompatible with choice. One attraction of large cardinal
axioms is that they enable many results from ZF+AD to be established in ZFC adjoined by some large cardinal axiom
(see projective determinacy). The Mizar system and Metamath have adopted Tarski–Grothendieck set theory, an
extension of ZFC, so that proofs involving Grothendieck universes (encountered in category theory and algebraic
geometry) can be formalized.

3.6 See also
• Foundation of mathematics
• Inner model
• Large cardinal axiom

Related axiomatic set theories:

• Morse–Kelley set theory
• Von Neumann–Bernays–Gödel set theory
• Tarski–Grothendieck set theory
• Constructive set theory
• Internal set theory
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Chapter 4

Presburger arithmetic

Presburger arithmetic is the first-order theory of the natural numbers with addition, named in honor of Mojżesz
Presburger, who introduced it in 1929. The signature of Presburger arithmetic contains only the addition operation
and equality, omitting the multiplication operation entirely. The axioms include a schema of induction.
Presburger arithmetic is much weaker than Peano arithmetic, which includes both addition and multiplication oper-
ations. Unlike Peano arithmetic, Presburger arithmetic is a decidable theory. This means it is possible to algorithmi-
cally determine, for any sentence in the language of Presburger arithmetic, whether that sentence is provable from the
axioms of Presburger arithmetic. The asymptotic running-time computational complexity of this decision problem
is doubly exponential, however, as shown by Fischer & Rabin (1974).

4.1 Overview

The language of Presburger arithmetic contains constants 0 and 1 and a binary function +, interpreted as addition. In
this language, the axioms of Presburger arithmetic are the universal closures of the following:

1. ¬(0 = x + 1)

2. x + 1 = y + 1 → x = y

3. x + 0 = x

4. x + (y + 1) = (x + y) + 1

5. Let P(x) be a first-order formula in the language of Presburger arithmetic with a free variable x (and possibly
other free variables). Then the following formula is an axiom:

(P(0) ∧ ∀x(P(x) → P(x + 1))) → ∀y P(y).

(5) is an axiom schema of induction, representing infinitely many axioms. Since the axioms in the schema in (5)
cannot be replaced by any finite number of axioms, Presburger arithmetic is not finitely axiomatizable in first-order
logic.
Presburger arithmetic cannot formalize concepts such as divisibility or prime number. Generally, any number con-
cept leading to multiplication cannot be defined in Presburger arithmetic, since that leads to incompleteness and
undecidability. However, it can formulate individual instances of divisibility; for example, it proves “for all x, there
exists y : (y + y = x) ∨ (y + y + 1 = x)". This states that every number is either even or odd.

4.2 Properties

Mojżesz Presburger proved Presburger arithmetic to be:
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• consistent: There is no statement in Presburger arithmetic which can be deduced from the axioms such that its
negation can also be deduced.

• complete: For each statement in the language of Presburger arithmetic, either it is possible to deduce it from
the axioms or it is possible to deduce its negation.

• decidable: There exists an algorithm which decides whether any given statement in Presburger arithmetic is a
theorem or a nontheorem.

The decidability of Presburger arithmetic can be shown using quantifier elimination, supplemented by reasoning about
arithmetical congruence (Enderton 2001, p. 188).
Peano arithmetic, which is Presburger arithmetic augmented with multiplication, is not decidable, as a consequence
of the negative answer to the Entscheidungsproblem. By Gödel’s incompleteness theorem, Peano arithmetic is in-
complete and its consistency is not internally provable (but see Gentzen’s consistency proof).
The decision problem for Presburger arithmetic is an interesting example in computational complexity theory and
computation. Let n be the length of a statement in Presburger arithmetic. Then Fischer and Rabin (1974) proved that
any decision algorithm for Presburger arithmetic has a worst-case runtime of at least 22cn , for some constant c>0.
Hence, the decision problem for Presburger arithmetic is an example of a decision problem that has been proved to
require more than exponential run time. Fischer and Rabin also proved that for any reasonable axiomatization (defined
precisely in their paper), there exist theorems of length n which have doubly exponential length proofs. Intuitively,
this means there are computational limits on what can be proven by computer programs. Fischer and Rabin’s work
also implies that Presburger arithmetic can be used to define formulas which correctly calculate any algorithm as long
as the inputs are less than relatively large bounds. The bounds can be increased, but only by using new formulas. On
the other hand, a triply exponential upper bound on a decision procedure for Presburger Arithmetic was proved by
Oppen (1978). A more tight complexity bound was shown using alternating complexity classes by Berman (1980).

4.3 Applications

Because Presburger arithmetic is decidable, automatic theorem provers for Presburger arithmetic exist. For example,
the Coq proof assistant system features the tactic omega for Presburger arithmetic and the Isabelle proof assistant
contains a verified quantifier elimination procedure by Nipkow (2010). The double exponential complexity of the
theory makes it infeasible to use the theorem provers on complicated formulas, but this behavior occurs only in
the presence of nested quantifiers: Oppen and Nelson (1980) describe an automatic theorem prover which uses the
simplex algorithm on an extended Presburger arithmetic without nested quantifiers to prove some of the instances
of quantifier-free Presburger arithmetic formulas. More recent Satisfiability Modulo Theories solvers use complete
integer programming techniques to handle quantifier-free fragment of Presburger arithmetic theory (King, Barrett,
Tinelli 2014).
Presburger arithmetic can be extended to includemultiplication by constants, since multiplication is repeated addition.
Most array subscript calculations then fall within the region of decidable problems. This approach is the basis of at
least five proof-of-correctness systems for computer programs, beginning with the Stanford Pascal Verifier in the late
1970s and continuing through to Microsoft’s Spec# system of 2005.

4.4 Presburger-definable integer relation

Some properties are now given about integer relations definable in Presburger Arithmetic. For the sake of simplicity,
all relations considered in this sections are over natural integers.
A relation is Presburger-definable if and only if it is a semilinear set.[1]

A unary integer relation R , that is, a set of natural integers, is Presburger-definable if and only if it is ultimately
periodic. That is, if there exists a threshold t ∈ N and a positive period p ∈ N>0 such that, for all integer n such that
|n| ≥ t , n ∈ R if and only if n+ p ∈ R .
By the Cobham–Semenov theorem, a relation is Presburger-definable if and only if it is definable in Büchi arithmetic
of base k for all k ≥ 2 .[2][3] A relation definable in Büchi aritmetic of base k and k′ for k and k′ being multiplicatively
independent integers is Presburger definable.
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An integer relation R is Presburger-definable if and only if all sets of integers which are definable in first order logic
with addition andR (that is, Presburger Arithmetic plus a predicate forR ) are Presburger-definable.[4] Equivalently,
for each relation R which is not Presburger-definable, there exists a first-order formula with addition and R which
defines a set of integer which is not definable using only addition.

4.4.1 Muchnik’s characterization

Presburger-definable relations admit another characterization: by Muchnik’s theorem.[5] It is more complicated to
state, but led to the proof of the two former characterizations. Before Muchnik’s theorem can be stated, some
additional definitions must be introduced.
For a set R ⊆ Nd , the section xi = j of R , for i < d and j ∈ N is defined as {(x0, . . . , xi−1, xi+1, . . . , xd−1) ∈
Nd−1 | (x0, . . . , xi−1, j, xi+1, . . . , xd−1) ∈ R} .
Given two sets R,S ⊆ Nd and a d -tuple of integers (p0, . . . , pd−1) ∈ Nd , the set R is called (p0, . . . , pd−1)
-periodic in S if, for all (x0, . . . , xd−1) ∈ S such that (x0 + p0, . . . , xd−1 + pd−1) ∈ S , then (x0, . . . , xd−1) ∈ R
if and only if (x0 + p0, . . . , xd−1 + pd−1) ∈ R . For s ∈ N , the set R is said to be s -periodic in S if it is
(p0, . . . , pd−1) -periodic for some (p0, . . . , pd−1) ∈ Zd such that

∑d−1
i=0 |pi| < s .

Finally, for k, x0, . . . , xd−1 ∈ N , let C(k, (x0, . . . , xd−1)) = {(x0 + c0, . . . , xd−1 + cd−1) | 0 ≤ ci < k} denote
the cube of size k whose lesser corner is (x0, . . . , xd−1) .
Muchnik’s theorem then says that a set R ⊆ Nd is Presburger-definable if and only if:

• if the dimension d is greater than 1 then all sections of R are Presburger-definable and

• there exists s ∈ N such that, for every k ∈ N , there exists t ∈ N such that for all (x0, . . . , xd−1) ∈ Nd with∑d−1
i=0 xi > t , R is s -periodic in C(k, (x0, . . . , xd−1)) .

Intuitively, the integer s represents the length of a shift, the integer k is the size of the cubes and t is the threshold before
the periodicity. This result remains true when the condition

∑d−1
i=0 xi > t is replaced either by min(x0, . . . , xd−1) >

t or by max(x0, . . . , xd−1) > t .
This characterization led to the so-called “definable criterion for definability in Presburger arithmetic”, that is: there
exists a first-order formula with addition and a d -ary predicate R which holds if and only if R is interpreted by a
Presburger-definable relation. Muchnik’s theorem also allows one to prove that it is decidable whether an automatic
sequence accepts a Presburger-definable set.

4.5 See also

• Robinson arithmetic
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Chapter 5

Lambda calculus

Lambda calculus (also written as λ-calculus) is a formal system in mathematical logic for expressing computation
based on function abstraction and application using variable binding and substitution. It is a universal model of
computation that can be used to simulate any single-taped Turing machine and was first introduced by mathematician
Alonzo Church in the 1930s as part of an investigation into the foundations of mathematics.

5.1 Explanation and applications

Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate
any single-taped Turing machine.[1] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and
lambda terms to denote binding a variable in a function.
Lambda calculus may be typed and untyped. In typed lambda calculus functions can be applied only if they are
capable of accepting the given input’s “type” of data.
Lambda calculus has applications in many different areas in mathematics, philosophy,[2] linguistics,[3][4] and computer
science.[5] Lambda calculus has played an important role in the development of the theory of programming languages.
Functional programming languages implement the lambda calculus. Lambda calculus also is a current research topic
in Category theory.[6]

5.2 Lambda calculus in history of mathematics

The lambda calculus was introduced by mathematician Alonzo Church in the 1930s as part of an investigation into the
foundations of mathematics.[7][8] The original system was shown to be logically inconsistent in 1935 when Stephen
Kleene and J. B. Rosser developed the Kleene–Rosser paradox.
Subsequently, in 1936 Church isolated and published just the portion relevant to computation, what is now called the
untyped lambda calculus.[9] In 1940, he also introduced a computationally weaker, but logically consistent system,
known as the simply typed lambda calculus.[10]

Until the 1960s when its relation to programming languages was clarified, the λ-calculus was only a formalism. Thanks
to Montague and other linguists’ applications in the semantics of natural language, the λ-calculus has begun to enjoy
a respectable place in linguistics (see Heim and Kratzer 1998) and computer science, too.[11]

5.3 Informal description

5.3.1 Motivation

Computable functions are a fundamental concept within computer science and mathematics. The λ-calculus provides
a simple semantics for computation, enabling properties of computation to be studied formally. The λ-calculus
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incorporates two simplifications that make this semantics simple. The first simplification is that the λ-calculus treats
functions “anonymously”, without giving them explicit names. For example, the function

square_sum(x, y) = x2 + y2

can be rewritten in anonymous form as

(x, y) 7→ x2 + y2

(read as “the pair of x and y is mapped to x2 + y2 "). Similarly,

id(x) = x

can be rewritten in anonymous form as x 7→ x , where the input is simply mapped to itself.
The second simplification is that the λ-calculus only uses functions of a single input. An ordinary function that requires
two inputs, for instance the square_sum function, can be reworked into an equivalent function that accepts a single
input, and as output returns another function, that in turn accepts a single input. For example,

(x, y) 7→ x2 + y2

can be reworked into

x 7→ (y 7→ x2 + y2)

This method, known as currying, transforms a function that takes multiple arguments into a chain of functions each
with a single argument.
Function application of the square_sum function to the arguments (5, 2), yields at once

((x, y) 7→ x2 + y2)(5, 2)

= 52 + 22

= 29

whereas evaluation of the curried version requires one more step

((x 7→ (y 7→ x2 + y2))(5))(2)

= (y 7→ 52 + y2)(2)

= 52 + 22

= 29

to arrive at the same result.

5.3.2 The lambda calculus

The lambda calculus consists of a language of lambda terms, which is defined by a certain formal syntax, and a set
of transformation rules, which allow manipulation of the lambda terms. These transformation rules can be viewed as
an equational theory or as an operational definition.
As described above, all functions in the lambda calculus are anonymous functions, having no names. They only accept
one input variable, with currying used to implement functions with several variables.
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Lambda terms

The syntax of the lambda calculus defines some expressions as valid lambda calculus expressions and some as invalid,
just as some strings of characters are valid C programs and some are not. A valid lambda calculus expression is called
a “lambda term”.
The following three rules give an inductive definition that can be applied to build all syntactically valid lambda terms:

• a variable, x , is itself a valid lambda term

• if t is a lambda term, and x is a variable, then (λx.t) is a lambda term (called a lambda abstraction);

• if t and s are lambda terms, then (ts) is a lambda term (called an application).

Nothing else is a lambda term. Thus a lambda term is valid if and only if it can be obtained by repeated application of
these three rules. However, some parentheses can be omitted according to certain rules. For example, the outermost
parentheses are usually not written. See Notation, below.
A lambda abstraction λx.t is a definition of an anonymous function that is capable of taking a single input x and
substituting it into the expression t . It thus defines an anonymous function that takes x and returns t . For example,
λx.x2 + 2 is a lambda abstraction for the function f(x) = x2 + 2 using the term x2 + 2 for t . The definition of
a function with a lambda abstraction merely “sets up” the function but does not invoke it. The abstraction binds the
variable x in the term t .
An application ts represents the application of a function t to an input s , that is, it represents the act of calling
function t on input s to produce t(s) .
There is no concept in lambda calculus of variable declaration. In a definition such as λx.x+ y (i.e. f(x) = x+ y
), the lambda calculus treats y as a variable that is not yet defined. The lambda abstraction λx.x+ y is syntactically
valid, and represents a function that adds its input to the yet-unknown y .
Bracketing may be used and may be needed to disambiguate terms. For example, λx.((λx.x)x) and (λx.(λx.x))x
denote different terms (although they coincidentally reduce to the same value). Here the first example defines a
function that defines a function and returns the result of applying x to the child-function (apply function then return),
while the second example defines a function that returns a function for any input and then returns it on application of
x (return function then apply).

Functions that operate on functions

In lambda calculus, functions are taken to be 'first class values', so functions may be used as the inputs, or be returned
as outputs from other functions.
For example, λx.x represents the identity function, x 7→ x , and (λx.x)y represents the identity function applied to
y . Further, (λx.y) represents the constant function x 7→ y , the function that always returns y , no matter the input.
In lambda calculus, function application is regarded as left-associative, so that stx means (st)x .
There are several notions of “equivalence” and “reduction” that allow lambda terms to be “reduced” to “equivalent”
lambda terms.

Alpha equivalence

A basic form of equivalence, definable on lambda terms, is alpha equivalence. It captures the intuition that the
particular choice of a bound variable, in a lambda abstraction, does not (usually) matter. For instance, λx.x and λy.y
are alpha-equivalent lambda terms, and they both represent the same function (the identity function). The terms x
and y are not alpha-equivalent, because they are not bound in a lambda abstraction. In many presentations, it is usual
to identify alpha-equivalent lambda terms.
The following definitions are necessary in order to be able to define beta reduction:
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Free variables

The free variables of a term are those variables not bound by a lambda abstraction. The set of free variables of an
expression is defined inductively:

• The free variables of x are just x

• The set of free variables of λx.t is the set of free variables of t , but with x removed

• The set of free variables of ts is the union of the set of free variables of t and the set of free variables of s .

For example, the lambda term representing the identity λx.x has no free variables, but the function λx.yx has a
single free variable, y .

Capture-avoiding substitutions

Suppose t , s and r are lambda terms and x and y are variables. The notation t[x := r] indicates substitution of r for
x in t in a capture-avoiding manner. This is defined so that:

• x[x := r] = r ;

• y[x := r] = y if x ̸= y ;

• (ts)[x := r] = (t[x := r])(s[x := r]) ;

• (λx.t)[x := r] = λx.t ;

• (λy.t)[x := r] = λy.(t[x := r]) if x ̸= y and y is not in the free variables of r . The variable y is said to be
“fresh” for r .

For example, (λx.x)[y := y] = λx.(x[y := y]) = λx.x , and ((λx.y)x)[x := y] = ((λx.y)[x := y])(x[x :=
y]) = (λx.y)y .
The freshness condition (requiring that y is not in the free variables of r ) is crucial in order to ensure that substitution
does not change the meaning of functions. For example, a substitution is made that ignores the freshness condition:
(λx.y)[y := x] = λx.(y[y := x]) = λx.x . This substitution turns the constant function λx.y into the identity λx.x
by substitution.
In general, failure to meet the freshness condition can be remedied by alpha-renaming with a suitable fresh variable.
For example, switching back to our correct notion of substitution, in (λx.y)[y := x] the lambda abstraction can be
renamed with a fresh variable z , to obtain (λz.y)[y := x] = λz.(y[y := x]) = λz.x , and the meaning of the
function is preserved by substitution.

Beta reduction

The beta reduction rule states that an application of the form (λx.t)s reduces to the term t[x := s] . The notation
(λx.t)s → t[x := s] is used to indicate that (λx.t)s beta reduces to t[x := s] . For example, for every s ,
(λx.x)s→ x[x := s] = s . This demonstrates that λx.x really is the identity. Similarly, (λx.y)s→ y[x := s] = y
, which demonstrates that λx.y is a constant function.
The lambda calculus may be seen as an idealised functional programming language, like Haskell or Standard ML.
Under this view, beta reduction corresponds to a computational step. This step can be repeated by additional
beta conversions until there are no more applications left to reduce. In the untyped lambda calculus, as presented
here, this reduction process may not terminate. For instance, consider the term Ω = (λx.xx)(λx.xx) . Here
(λx.xx)(λx.xx) → (xx)[x := λx.xx] = (x[x := λx.xx])(x[x := λx.xx]) = (λx.xx)(λx.xx) . That is, the
term reduces to itself in a single beta reduction, and therefore the reduction process will never terminate.
Another aspect of the untyped lambda calculus is that it does not distinguish between different kinds of data. For
instance, it may be desirable to write a function that only operates on numbers. However, in the untyped lambda
calculus, there is no way to prevent a function from being applied to truth values, strings, or other non-number
objects.
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5.4 Formal definition

Main article: Lambda calculus definition

5.4.1 Definition

Lambda expressions are composed of:

• variables v1, v2, ..., v⛼, ...

• the abstraction symbols lambda 'λ' and dot '.'

• parentheses ( )

The set of lambda expressions, Λ, can be defined inductively:

1. If x is a variable, then x ∈ Λ

2. If x is a variable and M ∈ Λ, then (λx.M) ∈ Λ

3. If M, N ∈ Λ, then (M N) ∈ Λ

Instances of rule 2 are known as abstractions and instances of rule 3 are known as applications.[12]

5.4.2 Notation

To keep the notation of lambda expressions uncluttered, the following conventions are usually applied:

• Outermost parentheses are dropped: M N instead of (M N)

• Applications are assumed to be left associative: M N P may be written instead of ((M N) P)[13]

• The body of an abstraction extends as far right as possible: λx.M N means λx.(M N) and not (λx.M) N

• A sequence of abstractions is contracted: λx.λy.λz.N is abbreviated as λxyz.N[14][15]

5.4.3 Free and bound variables

The abstraction operator, λ, is said to bind its variable wherever it occurs in the body of the abstraction. Variables
that fall within the scope of an abstraction are said to be bound. All other variables are called free. For example,
in the following expression y is a bound variable and x is free: λy.x x y. Also note that a variable is bound by its
“nearest” abstraction. In the following example the single occurrence of x in the expression is bound by the second
lambda: λx.y (λx.z x)
The set of free variables of a lambda expression, M, is denoted as FV(M) and is defined by recursion on the structure
of the terms, as follows:

1. FV(x) = {x}, where x is a variable

2. FV(λx.M) = FV(M) \ {x}

3. FV(M N) = FV(M) ∪ FV(N)[16]

An expression that contains no free variables is said to be closed. Closed lambda expressions are also known as
combinators and are equivalent to terms in combinatory logic.
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5.5 Reduction

The meaning of lambda expressions is defined by how expressions can be reduced.[17]

There are three kinds of reduction:

• α-conversion: changing bound variables (alpha);

• β-reduction: applying functions to their arguments (beta);

• η-conversion: which captures a notion of extensionality (eta).

We also speak of the resulting equivalences: two expressions are β-equivalent, if they can be β-converted into the
same expression, and α/η-equivalence are defined similarly.
The term redex, short for reducible expression, refers to subterms that can be reduced by one of the reduction rules.
For example, (λx.M) N is a beta-redex in expressing the substitution of N for x in M; if x is not free in M, λx.M x
is also an eta-redex. The expression to which a redex reduces is called its reduct; using the previous example, the
reducts of these expressions are respectively M[x:=N] and M.

5.5.1 α-conversion

Alpha-conversion, sometimes known as alpha-renaming,[18] allows bound variable names to be changed. For exam-
ple, alpha-conversion of λx.x might yield λy.y. Terms that differ only by alpha-conversion are called α-equivalent.
Frequently, in uses of lambda calculus, α-equivalent terms are considered to be equivalent.
The precise rules for alpha-conversion are not completely trivial. First, when alpha-converting an abstraction, the
only variable occurrences that are renamed are those that are bound to the same abstraction. For example, an alpha-
conversion of λx.λx.x could result in λy.λx.x, but it could not result in λy.λx.y. The latter has a different meaning from
the original.
Second, alpha-conversion is not possible if it would result in a variable getting captured by a different abstraction.
For example, if we replace x with y in λx.λy.x, we get λy.λy.y, which is not at all the same.
In programming languages with static scope, alpha-conversion can be used to make name resolution simpler by
ensuring that no variable name masks a name in a containing scope (see alpha renaming to make name resolution
trivial).
In the De Bruijn index notation, any two alpha-equivalent terms are literally identical.

Substitution

Substitution, written E[V := R], is the process of replacing all free occurrences of the variable V in the expression E
with expression R. Substitution on terms of the λ-calculus is defined by recursion on the structure of terms, as follows
(note: x and y are only variables while M and N are any λ expression).
x[x := N] ≡ N y[x := N] ≡ y, if x ≠ y (M1 M2)[x := N] ≡ (M1[x := N]) (M2[x := N]) (λx.M)[x := N] ≡ λx.M (λy.M)[x
:= N] ≡ λy.(M[x := N]), if x ≠ y, provided y ∉ FV(N)
To substitute into a lambda abstraction, it is sometimes necessary to α-convert the expression. For example, it is not
correct for (λx.y)[y := x] to result in (λx.x), because the substituted x was supposed to be free but ended up being
bound. The correct substitution in this case is (λz.x), up to α-equivalence. Notice that substitution is defined uniquely
up to α-equivalence.

5.5.2 β-reduction

Beta-reduction captures the idea of function application. Beta-reduction is defined in terms of substitution: the beta-
reduction of ((λV.E) E′ ) is E[V := E′ ].
For example, assuming some encoding of 2, 7, ×, we have the following β-reduction: ((λn.n×2) 7) → 7×2.
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5.5.3 η-conversion

Eta-conversion expresses the idea of extensionality, which in this context is that two functions are the same if and
only if they give the same result for all arguments. Eta-conversion converts between λx.(f x) and f whenever x does
not appear free in f.

5.6 Normal forms and confluence

Main article: Normalization property (abstract rewriting)

For the untyped lambda calculus, β-reduction as a rewriting rule is neither strongly normalising nor weakly normal-
ising.
However, it can be shown that β-reduction is confluent. (Of course, we are working up to α-conversion, i.e. we
consider two normal forms to be equal, if it is possible to α-convert one into the other.)
Therefore, both strongly normalising terms and weakly normalising terms have a unique normal form. For strongly
normalising terms, any reduction strategy is guaranteed to yield the normal form, whereas for weakly normalising
terms, some reduction strategies may fail to find it.

5.7 Encoding datatypes

Main articles: Church encoding and Mogensen–Scott encoding

The basic lambda calculus may be used to model booleans, arithmetic, data structures and recursion, as illustrated in
the following sub-sections.

5.7.1 Arithmetic in lambda calculus

There are several possible ways to define the natural numbers in lambda calculus, but by far the most common are
the Church numerals, which can be defined as follows:

0 := λf.λx.x
1 := λf.λx.f x

2 := λf.λx.f (f x)
3 := λf.λx.f (f (f x))

and so on. Or using the alternative syntax presented above in Notation:

0 := λfx.x
1 := λfx.f x

2 := λfx.f (f x)
3 := λfx.f (f (f x))

A Church numeral is a higher-order function—it takes a single-argument function f, and returns another single-
argument function. The Church numeral n is a function that takes a function f as argument and returns the n-th
composition of f, i.e. the function f composed with itself n times. This is denoted f(n) and is in fact the n-th power
of f (considered as an operator); f(0) is defined to be the identity function. Such repeated compositions (of a single
function f) obey the laws of exponents, which is why these numerals can be used for arithmetic. (In Church’s original
lambda calculus, the formal parameter of a lambda expression was required to occur at least once in the function
body, which made the above definition of 0 impossible.)
We can define a successor function, which takes a number n and returns n + 1 by adding another application of f,where
'(mf)x' means the function 'f' is applied 'm' times on 'x':
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SUCC := λn.λf.λx.f (n f x)

Because the m-th composition of f composed with the n-th composition of f gives the m+n-th composition of f,
addition can be defined as follows:

PLUS := λm.λn.λf.λx.m f (n f x)

PLUS can be thought of as a function taking two natural numbers as arguments and returning a natural number; it
can be verified that

PLUS 2 3

and

5

are β-equivalent lambda expressions. Since adding m to a number n can be accomplished by adding 1 m times, an
equivalent definition is:

PLUS := λm.λn.m SUCC n [19]

Similarly, multiplication can be defined as

MULT := λm.λn.λf.m (n f)[20]

Alternatively

MULT := λm.λn.m (PLUS n) 0

since multiplying m and n is the same as repeating the add n function m times and then applying it to zero. Exponen-
tiation has a rather simple rendering in Church numerals, namely

POW := λb.λe.e b

The predecessor function defined by PRED n = n − 1 for a positive integer n and PRED 0 = 0 is considerably more
difficult. The formula

PRED := λn.λf.λx.n (λg.λh.h (g f)) (λu.x) (λu.u)

can be validated by showing inductively that if T denotes (λg.λh.h (g f)), then T(n)(λu.x) = (λh.h(f(n−1)(x))) for n
> 0. Two other definitions of PRED are given below, one using conditionals and the other using pairs. With the
predecessor function, subtraction is straightforward. Defining

SUB := λm.λn.n PRED m,

SUB m n yields m − n when m > n and 0 otherwise.

5.7.2 Logic and predicates

By convention, the following two definitions (known as Church booleans) are used for the boolean values TRUE and
FALSE:

TRUE := λx.λy.x
FALSE := λx.λy.y
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(Note that FALSE is equivalent to the Church numeral zero defined above)

Then, with these two λ-terms, we can define some logic operators (these are just possible formulations; other expres-
sions are equally correct):

AND := λp.λq.p q p

OR := λp.λq.p p q

NOT := λp.p FALSE TRUE
IFTHENELSE := λp.λa.λb.p a b

We are now able to compute some logic functions, for example:

AND TRUE FALSE
≡ (λp.λq.p q p) TRUE FALSE →ᵦ TRUE FALSE TRUE
≡ (λx.λy.x) FALSE TRUE →ᵦ FALSE

and we see that AND TRUE FALSE is equivalent to FALSE.
A predicate is a function that returns a boolean value. The most fundamental predicate is ISZERO, which returns
TRUE if its argument is the Church numeral 0, and FALSE if its argument is any other Church numeral:

ISZERO := λn.n (λx.FALSE) TRUE

The following predicate tests whether the first argument is less-than-or-equal-to the second:

LEQ := λm.λn.ISZERO (SUB m n),

and since m = n, if LEQ m n and LEQ n m, it is straightforward to build a predicate for numerical equality.
The availability of predicates and the above definition of TRUE and FALSEmake it convenient to write “if-then-else”
expressions in lambda calculus. For example, the predecessor function can be defined as:

PRED := λn.n (λg.λk.ISZERO (g 1) k (PLUS (g k) 1)) (λv.0) 0

which can be verified by showing inductively that n (λg.λk.ISZERO (g 1) k (PLUS (g k) 1)) (λv.0) is the add n − 1
function for n > 0.

5.7.3 Pairs

A pair (2-tuple) can be defined in terms of TRUE and FALSE, by using the Church encoding for pairs. For example,
PAIR encapsulates the pair (x,y), FIRST returns the first element of the pair, and SECOND returns the second.

PAIR := λx.λy.λf.f x y

FIRST := λp.p TRUE
SECOND := λp.p FALSE
NIL := λx.TRUE
NULL := λp.p (λx.λy.FALSE)

A linked list can be defined as either NIL for the empty list, or the PAIR of an element and a smaller list. The predicate
NULL tests for the valueNIL. (Alternatively, withNIL := FALSE, the construct l (λh.λt.λz.deal_with_head_h_and_tail_t)
(deal_with_nil) obviates the need for an explicit NULL test).
As an example of the use of pairs, the shift-and-increment function that maps (m, n) to (n, n + 1) can be defined as

Φ := λx.PAIR (SECOND x) (SUCC (SECOND x))

which allows us to give perhaps the most transparent version of the predecessor function:

PRED := λn.FIRST (n Φ (PAIR 0 0)).

https://en.wikipedia.org/wiki/Church_encoding#Church_pairs
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5.7.4 Recursion and fixed points

Main article: Fixed-point combinator
See also: SKI combinator calculus § Self-application_and_recursion

Recursion is the definition of a function using the function itself. Lambda calculus cannot express this as directly as
some other notations: all functions are anonymous in lambda calculus, so we can't refer to a value which is yet to be
defined, inside the lambda term defining that same value.. However, recursion can still be achieved by arranging for
a lambda expression to receive itself as its argument value, for example in (λx.x x) E.
Consider the factorial function F(n) recursively defined by

F(n) = 1, if n = 0; else n × F(n − 1).

In the lambda expression which is to represent this function, a parameter (typically the first one) will be assumed
to receive the lambda expression itself as its value, so that calling it – applying it to an argument – will amount to
recursion. Thus to achieve recursion, the intended-as-self-referencing argument (called r here) must always be passed
to itself within the function body, at a call point:

G := λr. λn.(1, if n = 0; else n × (r r (n−1)))

with r r x = F x = G r x to hold, so r = G and

F := G G = (λx.x x) G

The self-application achieves replication here, passing the function’s lambda expression on to the next invocation as
an argument value, making it available to be referenced and called there.
This solves it but requires re-writing each recursive call as self-application. We would like to have a generic solution,
without a need for any re-writes:

G := λr. λn.(1, if n = 0; else n × (r (n−1)))

with r x = F x = G r x to hold, so r = G r =: FIX G and

F := FIX G where FIX g := (r where r = g r) = g (FIX g)

so that FIX G = G (FIX G) = (λn.(1, if n = 0; else n × ((FIX G) (n−1))))

Given a lambda term with first argument representing recursive call (e.g. G here), the fixed-point combinator FIX
will return a self-replicating lambda expression representing the recursive function (here, F). The function does not
need to be explicitly passed to itself at any point, for the self-replication is arranged in advance, when it is created, to
be done each time it is called. Thus the original lambda expression (FIX G) is re-created inside itself, at call-point,
achieving self-reference.
In fact, there are many possible definitions for this FIX operator, the simplest of them being:

Y := λg.(λx.g (x x)) (λx.g (x x))

In the lambda calculus, Y g is a fixed-point of g, as it expands to:

Y g

(λh.(λx.h (x x)) (λx.h (x x))) g
(λx.g (x x)) (λx.g (x x))
g ((λx.g (x x)) (λx.g (x x)))
g (Y g)

Now, to perform our recursive call to the factorial function, we would simply call (Y G) n, where n is the number we
are calculating the factorial of. Given n = 4, for example, this gives:
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(Y G) 4
G (Y G) 4
(λr.λn.(1, if n = 0; else n × (r (n−1)))) (Y G) 4
(λn.(1, if n = 0; else n × ((Y G) (n−1)))) 4
1, if 4 = 0; else 4 × ((Y G) (4−1))
4 × (G (Y G) (4−1))
4 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (4−1))
4 × (1, if 3 = 0; else 3 × ((Y G) (3−1)))
4 × (3 × (G (Y G) (3−1)))
4 × (3 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (3−1)))
4 × (3 × (1, if 2 = 0; else 2 × ((Y G) (2−1))))
4 × (3 × (2 × (G (Y G) (2−1))))
4 × (3 × (2 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (2−1))))
4 × (3 × (2 × (1, if 1 = 0; else 1 × ((Y G) (1−1)))))
4 × (3 × (2 × (1 × (G (Y G) (1−1)))))
4 × (3 × (2 × (1 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (1−1)))))
4 × (3 × (2 × (1 × (1, if 0 = 0; else 0 × ((Y G) (0−1))))))
4 × (3 × (2 × (1 × (1))))
24

Every recursively defined function can be seen as a fixed point of some suitably defined function closing over the
recursive call with an extra argument, and therefore, using Y, every recursively defined function can be expressed as a
lambda expression. In particular, we can now cleanly define the subtraction, multiplication and comparison predicate
of natural numbers recursively.

5.7.5 Standard terms

Certain terms have commonly accepted names:

I := λx.x
K := λx.λy.x
S := λx.λy.λz.x z (y z)
B := λx.λy.λz.x (y z)
C := λx.λy.λz.x z y

W := λx.λy.x y y

U := λx.λy.y (x x y)
ω := λx.x x

Ω := ω ω
Y := λg.(λx.g (x x)) (λx.g (x x))

5.8 Typed lambda calculus

Main article: Typed lambda calculus

A typed lambda calculus is a typed formalism that uses the lambda-symbol ( λ ) to denote anonymous function
abstraction. In this context, types are usually objects of a syntactic nature that are assigned to lambda terms; the exact
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nature of a type depends on the calculus considered (see kinds below). From a certain point of view, typed lambda
calculi can be seen as refinements of the untyped lambda calculus but from another point of view, they can also be
considered the more fundamental theory and untyped lambda calculus a special case with only one type.[21]

Typed lambda calculi are foundational programming languages and are the base of typed functional programming
languages such as ML and Haskell and, more indirectly, typed imperative programming languages. Typed lambda
calculi play an important role in the design of type systems for programming languages; here typability usually captures
desirable properties of the program, e.g. the program will not cause a memory access violation.
Typed lambda calculi are closely related to mathematical logic and proof theory via the Curry–Howard isomorphism
and they can be considered as the internal language of classes of categories, e.g. the simply typed lambda calculus is
the language of Cartesian closed categories (CCCs).

5.9 Computable functions and lambda calculus

A function F: N → N of natural numbers is a computable function if and only if there exists a lambda expression
f such that for every pair of x, y in N, F(x)=y if and only if f x =ᵦ y, where x and y are the Church numerals
corresponding to x and y, respectively and =ᵦ meaning equivalence with beta reduction. This is one of the many ways
to define computability; see the Church-Turing thesis for a discussion of other approaches and their equivalence.

5.10 Undecidability of equivalence

There is no algorithm that takes as input two lambda expressions and outputs TRUE or FALSE depending on whether
or not the two expressions are equivalent. This was historically the first problem for which undecidability could be
proven. As is common for a proof of undecidability, the proof shows that no computable function can decide the
equivalence. Church’s thesis is then invoked to show that no algorithm can do so.
Church’s proof first reduces the problem to determining whether a given lambda expression has a normal form. A
normal form is an equivalent expression that cannot be reduced any further under the rules imposed by the form. Then
he assumes that this predicate is computable, and can hence be expressed in lambda calculus. Building on earlier
work by Kleene and constructing a Gödel numbering for lambda expressions, he constructs a lambda expression e
that closely follows the proof of Gödel’s first incompleteness theorem. If e is applied to its own Gödel number, a
contradiction results.

5.11 Lambda calculus and programming languages

As pointed out by Peter Landin's 1965 paper A Correspondence between ALGOL 60 and Church’s Lambda-notation,
sequential procedural programming languages can be understood in terms of the lambda calculus, which provides the
basic mechanisms for procedural abstraction and procedure (subprogram) application.
Lambda calculus reifies “functions” and makes them first-class objects, which raises implementation complexity when
it is implemented.

5.11.1 Anonymous functions

Main article: Anonymous function

For example, in Lisp the 'square' function can be expressed as a lambda expression as follows:
(lambda (x) (* x x))

The above example is an expression that evaluates to a first-class function. The symbol lambda creates an anonymous
function, given a list of parameter names, (x)— just a single argument in this case, and an expression that is evaluated
as the body of the function, (* x x). The Haskell example is identical. Anonymous functions are sometimes called
lambda expressions.
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For example, Pascal and many other imperative languages have long supported passing subprograms as arguments
to other subprograms through the mechanism of function pointers. However, function pointers are not a sufficient
condition for functions to be first class datatypes, because a function is a first class datatype if and only if new
instances of the function can be created at run-time. And this run-time creation of functions is supported in Smalltalk,
Javascript, and more recently in Scala, Eiffel (“agents”), C# (“delegates”) and C++11, among others.

5.11.2 Reduction strategies

For more details on this topic, see Evaluation strategy.

Whether a term is normalising or not, and how much work needs to be done in normalising it if it is, depends to a
large extent on the reduction strategy used. The distinction between reduction strategies relates to the distinction in
functional programming languages between eager evaluation and lazy evaluation.

Full beta reductions Any redex can be reduced at any time. This means essentially the lack of any particular
reduction strategy—with regard to reducibility, “all bets are off”.

Applicative order The rightmost, innermost redex is always reduced first. Intuitively this means a function’s argu-
ments are always reduced before the function itself. Applicative order always attempts to apply functions to
normal forms, even when this is not possible.

Most programming languages (including Lisp, ML and imperative languages like C and Java) are described as
“strict”, meaning that functions applied to non-normalising arguments are non-normalising. This is done es-
sentially using applicative order, call by value reduction (see below), but usually called “eager evaluation”.

Normal order The leftmost, outermost redex is always reduced first. That is, whenever possible the arguments are
substituted into the body of an abstraction before the arguments are reduced.

Call by name As normal order, but no reductions are performed inside abstractions. For example, λx.(λx.x)x is in
normal form according to this strategy, although it contains the redex (λx.x)x.

Call by value Only the outermost redexes are reduced: a redex is reduced only when its right hand side has reduced
to a value (variable or lambda abstraction).

Call by need As normal order, but function applications that would duplicate terms instead name the argument,
which is then reduced only “when it is needed”. Called in practical contexts “lazy evaluation”. In implemen-
tations this “name” takes the form of a pointer, with the redex represented by a thunk.

Applicative order is not a normalising strategy. The usual counterexample is as follows: define Ω = ωω where ω =
λx.xx. This entire expression contains only one redex, namely the whole expression; its reduct is again Ω. Since this
is the only available reduction, Ω has no normal form (under any evaluation strategy). Using applicative order, the
expression KIΩ = (λx.λy.x) (λx.x)Ω is reduced by first reducing Ω to normal form (since it is the rightmost redex),
but since Ω has no normal form, applicative order fails to find a normal form for KIΩ.
In contrast, normal order is so called because it always finds a normalising reduction, if one exists. In the above
example, KIΩ reduces under normal order to I, a normal form. A drawback is that redexes in the arguments may be
copied, resulting in duplicated computation (for example, (λx.xx) ((λx.x)y) reduces to ((λx.x)y) ((λx.x)y) using this
strategy; now there are two redexes, so full evaluation needs two more steps, but if the argument had been reduced
first, there would now be none).
The positive tradeoff of using applicative order is that it does not cause unnecessary computation, if all arguments are
used, because it never substitutes arguments containing redexes and hence never needs to copy them (which would
duplicate work). In the above example, in applicative order (λx.xx) ((λx.x)y) reduces first to (λx.xx)y and then to the
normal order yy, taking two steps instead of three.
Most purely functional programming languages (notably Miranda and its descendents, including Haskell), and the
proof languages of theorem provers, use lazy evaluation, which is essentially the same as call by need. This is like
normal order reduction, but call by need manages to avoid the duplication of work inherent in normal order reduction
using sharing. In the example given above, (λx.xx) ((λx.x)y) reduces to ((λx.x)y) ((λx.x)y), which has two redexes,
but in call by need they are represented using the same object rather than copied, so when one is reduced the other is
too.
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5.11.3 A note about complexity

While the idea of beta reduction seems simple enough, it is not an atomic step, in that it must have a non-trivial
cost when estimating computational complexity.[22] To be precise, one must somehow find the location of all of the
occurrences of the bound variable V in the expression E, implying a time cost, or one must keep track of these
locations in some way, implying a space cost. A naïve search for the locations of V in E is O(n) in the length n of E.
This has led to the study of systems that use explicit substitution. Sinot’s director strings[23] offer a way of tracking
the locations of free variables in expressions.

5.11.4 Parallelism and concurrency

The Church–Rosser property of the lambda calculus means that evaluation (β-reduction) can be carried out in any
order, even in parallel. This means that various nondeterministic evaluation strategies are relevant. However, the
lambda calculus does not offer any explicit constructs for parallelism. One can add constructs such as Futures to the
lambda calculus. Other process calculi have been developed for describing communication and concurrency.

5.12 Semantics

The fact that lambda calculus terms act as functions on other lambda calculus terms, and even on themselves, led
to questions about the semantics of the lambda calculus. Could a sensible meaning be assigned to lambda calculus
terms? The natural semantics was to find a set D isomorphic to the function space D → D, of functions on itself.
However, no nontrivial such D can exist, by cardinality constraints because the set of all functions from D to D has
greater cardinality than D, unless D is a singleton set.
In the 1970s, Dana Scott showed that, if only continuous functions were considered, a set or domain D with the
required property could be found, thus providing a model for the lambda calculus.
This work also formed the basis for the denotational semantics of programming languages.

5.13 See also
• Applicative computing systems – Treatment of objects in the style of the lambda calculus

• Binary lambda calculus – A version of lambda calculus with binary I/O, a binary encoding of terms, and a
designated universal machine.

• Calculus of constructions – A typed lambda calculus with types as first-class values

• Cartesian closed category – A setting for lambda calculus in category theory

• Categorical abstract machine – A model of computation applicable to lambda calculus

• Combinatory logic – A notation for mathematical logic without variables

• Curry-Howard isomorphism – The formal correspondence between programs and proofs

• Deductive lambda calculus – The consideration of the problems associated with considering lambda calculus
as a Deductive system.

• Domain theory – Study of certain posets giving denotational semantics for lambda calculus

• Evaluation strategy – Rules for the evaluation of expressions in programming languages

• Explicit substitution – The theory of substitution, as used in β-reduction

• Functional programming

• Harrop formula – A kind of constructive logical formula such that proofs are lambda terms

• Kappa calculus – A first-order analogue of lambda calculus
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• Kleene-Rosser paradox – A demonstration that some form of lambda calculus is inconsistent

• Knights of the Lambda Calculus – A semi-fictional organization of LISP and Scheme hackers

• Lambda calculus definition - Formal definition of the lambda calculus.

• Lambda cube – A framework for some extensions of typed lambda calculus

• Lambda-mu calculus – An extension of the lambda calculus for treating classical logic

• Let expression – An expression close related to a lambda abstraction.

• Minimalism (computing)

• Rewriting – Transformation of formulæ in formal systems

• SECD machine – A virtual machine designed for the lambda calculus

• Simply typed lambda calculus - Version(s) with a single type constructor

• SKI combinator calculus – A computational system based on the S, K and I combinators

• System F – A typed lambda calculus with type-variables

• Typed lambda calculus – Lambda calculus with typed variables (and functions)

• Universal Turing machine – A formal computing machine that is equivalent to lambda calculus

• Unlambda – An esoteric functional programming language based on combinatory logic

5.14 Further reading

• Abelson, Harold & Gerald Jay Sussman. Structure and Interpretation of Computer Programs. The MIT Press.
ISBN 0-262-51087-1.

• Hendrik Pieter Barendregt Introduction to Lambda Calculus.

• Henk Barendregt, The Impact of the Lambda Calculus in Logic and Computer Science. The Bulletin of
Symbolic Logic, Volume 3, Number 2, June 1997.

• Barendregt, Hendrik Pieter, The Type Free Lambda Calculus pp1091–1132 of Handbook of Mathematical
Logic, North-Holland (1977) ISBN 0-7204-2285-X

• Cardone and Hindley, 2006. History of Lambda-calculus and Combinatory Logic. In Gabbay and Woods
(eds.), Handbook of the History of Logic, vol. 5. Elsevier.

• Church, Alonzo, An unsolvable problem of elementary number theory, American Journal of Mathematics, 58
(1936), pp. 345–363. This paper contains the proof that the equivalence of lambda expressions is in general
not decidable.

• Alonzo Church, The Calculi of Lambda-Conversion (ISBN 978-0-691-08394-0)[24]

• Kleene, Stephen, A theory of positive integers in formal logic, American Journal of Mathematics, 57 (1935),
pp. 153–173 and 219–244. Contains the lambda calculus definitions of several familiar functions.

• Landin, Peter, A Correspondence Between ALGOL 60 and Church’s Lambda-Notation, Communications of the
ACM, vol. 8, no. 2 (1965), pages 89–101. Available from the ACM site. A classic paper highlighting the
importance of lambda calculus as a basis for programming languages.

• Larson, Jim, An Introduction to Lambda Calculus and Scheme. A gentle introduction for programmers.

• Schalk, A. and Simmons, H. (2005) An introduction to λ-calculi and arithmetic with a decent selection of
exercises. Notes for a course in the Mathematical Logic MSc at Manchester University.
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• de Queiroz, Ruy J.G.B. (2008) On Reduction Rules, Meaning-as-Use and Proof-Theoretic Semantics. Studia
Logica, 90(2):211-247. A paper giving a formal underpinning to the idea of 'meaning-is-use' which, even if
based on proofs, it is different from proof-theoretic semantics as in the Dummett–Prawitz tradition since it
takes reduction as the rules giving meaning.

Monographs/textbooks for graduate students:

• Morten Heine Sørensen, Paweł Urzyczyn, Lectures on the Curry-Howard isomorphism, Elsevier, 2006, ISBN
0-444-52077-5 is a recent monograph that covers the main topics of lambda calculus from the type-free variety,
to most typed lambda calculi, including more recent developments like pure type systems and the lambda cube.
It does not cover subtyping extensions.

• Pierce, Benjamin (2002), Types and Programming Languages, MIT Press, ISBN 0-262-16209-1 covers lambda
calculi from a practical type system perspective; some topics like dependent types are only mentioned, but
subtyping is an important topic.

Some parts of this article are based on material from FOLDOC, used with permission.

5.15 External links

• Hazewinkel, Michiel, ed. (2001), “Lambda-calculus”, Encyclopedia of Mathematics, Springer, ISBN 978-1-
55608-010-4

• Achim Jung, A Short Introduction to the Lambda Calculus-(PDF)

• Dana Scott, A timeline of lambda calculus-(PDF)

• David C. Keenan, To Dissect a Mockingbird: A Graphical Notation for the Lambda Calculus with Animated
Reduction

• Raúl Rojas, A Tutorial Introduction to the Lambda Calculus-(PDF)

• Peter Selinger, Lecture Notes on the Lambda Calculus-(PDF)

• L. Allison, Some executable λ-calculus examples

• Georg P. Loczewski, The Lambda Calculus and A++

• Bret Victor, Alligator Eggs: A Puzzle Game Based on Lambda Calculus

• Lambda Calculus on Safalra’s Website

• Lambda Calculus at PlanetMath.org.

• LCI Lambda Interpreter a simple yet powerful pure calculus interpreter

• Lambda Calculus links on Lambda-the-Ultimate

• Mike Thyer, Lambda Animator, a graphical Java applet demonstrating alternative reduction strategies.

• Implementing the Lambda calculus using C++ Templates

• Marius Buliga, Graphic lambda calculus

• Lambda Calculus as a Workflow Model by Peter Kelly, Paul Coddington, and Andrew Wendelborn; mentions
graph reduction as a commonmeans of evaluating lambda expressions and discusses the applicability of lambda
calculus for distributed computing (due to the Church–Rosser property, which enables parallel graph reduction
for lambda expressions).

• Shane Steinert-Threlkeld, “Lambda Calculi”, Internet Encyclopedia of Philosophy

https://en.wikipedia.org/wiki/Ruy_de_Queiroz
http://www.springerlink.com/content/27nk266126k817gq/
https://en.wikipedia.org/wiki/Studia_Logica
https://en.wikipedia.org/wiki/Studia_Logica
https://en.wikipedia.org/wiki/Special:BookSources/0444520775
https://en.wikipedia.org/wiki/Special:BookSources/0444520775
https://en.wikipedia.org/wiki/Typed_lambda_calculi
https://en.wikipedia.org/wiki/Pure_type_system
https://en.wikipedia.org/wiki/Lambda_cube
https://en.wikipedia.org/wiki/Subtyping
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-262-16209-1
https://en.wikipedia.org/wiki/Free_On-line_Dictionary_of_Computing
https://en.wikipedia.org/wiki/Wikipedia:Foldoc_license
http://www.encyclopediaofmath.org/index.php?title=p/l057000
https://en.wikipedia.org/wiki/Encyclopedia_of_Mathematics
https://en.wikipedia.org/wiki/Springer_Science+Business_Media
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-55608-010-4
https://en.wikipedia.org/wiki/Special:BookSources/978-1-55608-010-4
http://www.cs.bham.ac.uk/~axj/pub/papers/lambda-calculus.pdf
https://en.wikipedia.org/wiki/Portable_Document_Format
http://turing100.acm.org/lambda_calculus_timeline.pdf
https://en.wikipedia.org/wiki/Portable_Document_Format
http://dkeenan.com/Lambda/
http://dkeenan.com/Lambda/
http://www.inf.fu-berlin.de/inst/ag-ki/rojas_home/documents/tutorials/lambda.pdf
https://en.wikipedia.org/wiki/Portable_Document_Format
http://www.mscs.dal.ca/~selinger/papers/#lambdanotes
https://en.wikipedia.org/wiki/Portable_Document_Format
http://www.allisons.org/ll/FP/Lambda/Examples/
http://www.lambda-bound.com/book/lambdacalc/lcalconl.html
http://worrydream.com/AlligatorEggs/
http://www.safalra.com/science/lambda-calculus/
http://www.safalra.com/
http://planetmath.org/?op=getobj&from=objects&id=2788
https://en.wikipedia.org/wiki/PlanetMath
http://lci.sourceforge.net/
http://lambda-the-ultimate.org/classic/lc.html
http://thyer.name/lambda-animator/
http://matt.might.net/articles/c++-template-meta-programming-with-lambda-calculus/
https://en.wikipedia.org/wiki/C++_Templates
http://imar.ro/~mbuliga/graphic_revised.pdf
http://cs.adelaide.edu.au/~pmk/publications/wage2008.pdf
https://en.wikipedia.org/wiki/Graph_reduction
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Church%E2%80%93Rosser_theorem
https://en.wikipedia.org/wiki/Parallel_computing
http://www.iep.utm.edu/lambda-calculi/
https://en.wikipedia.org/wiki/Internet_Encyclopedia_of_Philosophy


62 CHAPTER 5. LAMBDA CALCULUS

5.16 References
[1] Turing, A. M. (December 1937). “Computability and λ-Definability”. The Journal of Symbolic Logic 2 (4): 153–163.

doi:10.2307/2268280. JSTOR 2268280.

[2] Coquand, Thierry, “Type Theory”, The Stanford Encyclopedia of Philosophy (Summer 2013 Edition), Edward N. Zalta
(ed.).

[3] Categorial Investigations: Logical and Linguistic Aspects of the Lambek Calculus - Michael Moortgat - Google Books,
Books.google.co.uk, 1988-01-01, ISBN 9789067653879, retrieved 2013-09-15

[4] Computing Meaning - Google Books, Books.google.co.uk, 2008-07-02, ISBN 9781402059575, retrieved 2013-09-15

[5] Mitchell, John C. (2003), Concepts in Programming Languages, Cambridge University Press, p. 57, ISBN 9780521780988.

[6] Basic Category Theory for Computer Scientists, p. 53, Benjamin C. Pierce

[7] A. Church, “A set of postulates for the foundation of logic”, Annals of Mathematics, Series 2, 33:346–366 (1932).

[8] For a full history, see Cardone and Hindley’s “History of Lambda-calculus and Combinatory Logic” (2006).

[9] A. Church, “An unsolvable problem of elementary number theory”, American Journal of Mathematics, Volume 58, No. 2.
(April 1936), pp. 345-363.

[10] Church, A. “A Formulation of the Simple Theory of Types”. Journal of Symbolic Logic 5: 1940. doi:10.2307/2266170.

[11] Alama, Jesse “The Lambda Calculus”, The Stanford Encyclopedia of Philosophy (Summer 2013 Edition), Edward N. Zalta
(ed.).

[12] Barendregt, Hendrik Pieter (1984), The Lambda Calculus: Its Syntax and Semantics, Studies in Logic and the Founda-
tions of Mathematics 103 (Revised ed.), North Holland, Amsterdam. Corrections, ISBN 0-444-87508-5 External link in
|publisher= (help)

[13] “Example for Rules of Associativity”. Lambda-bound.com. Retrieved 2012-06-18.

[14] Selinger, Peter (2008), Lecture Notes on the Lambda Calculus (PDF) 0804 (class: cs.LO), Department of Mathematics and
Statistics, University of Ottawa, p. 9, arXiv:0804.3434, Bibcode:2008arXiv0804.3434S

[15] “Example for Rule of Associativity”. Lambda-bound.com. Retrieved 2012-06-18.

[16] Barendregt, Henk; Barendsen, Erik (March 2000), Introduction to Lambda Calculus (PDF)

[17] de Queiroz, Ruy J.G.B. "A Proof-Theoretic Account of Programming and the Role of Reduction Rules." Dialectica 42(4),
pages 265-282, 1988.

[18] Turbak, Franklyn; Gifford, David (2008), Design concepts in programming languages, MIT press, p. 251, ISBN 978-0-
262-20175-9

[19] Felleisen, Matthias; Flatt, Matthew (2006), Programming Languages and Lambda Calculi (PDF), p. 26

[20] Selinger, Peter (2008), Lecture Notes on the Lambda Calculus (PDF) 0804 (class: cs.LO), Department of Mathematics and
Statistics, University of Ottawa, p. 16, arXiv:0804.3434, Bibcode:2008arXiv0804.3434S

[21] Types and Programming Languages, p. 273, Benjamin C. Pierce

[22] R. Statman, "The typed λ-calculus is not elementary recursive." Theoretical Computer Science, (1979) 9 pp73-81.

[23] F.-R. Sinot. "Director Strings Revisited: A Generic Approach to the Efficient Representation of Free Variables in Higher-
order Rewriting." Journal of Logic and Computation 15(2), pages 201-218, 2005.

[24] Frink Jr., Orrin (1944). “Review: The Calculi of Lambda-Conversion by Alonzo Church” (PDF). Bull. Amer. Math. Soc.
50 (3): 169–172. doi:10.1090/s0002-9904-1944-08090-7.

https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.2307%252F2268280
https://en.wikipedia.org/wiki/JSTOR
https://www.jstor.org/stable/2268280
http://plato.stanford.edu/archives/sum2013/entries/type-theory/
https://books.google.com/books?id=9CdFE9X_FCoC
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9789067653879
https://books.google.com/books?id=nyFa5ngYThMC
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9781402059575
https://books.google.com/books?id=7Uh8XGfJbEIC&pg=PA57
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9780521780988
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.2307%252F2266170
http://plato.stanford.edu/entries/lambda-calculus/
http://www.elsevier.com/wps/find/bookdescription.cws_home/501727/description
ftp://ftp.cs.ru.nl/pub/CompMath.Found/ErrataLCalculus.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-444-87508-5
https://en.wikipedia.org/wiki/Help:CS1_errors#param_has_ext_link
http://www.lambda-bound.com/book/lambdacalc/node27.html
http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/0804.3434
https://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/2008arXiv0804.3434S
http://www.lambda-bound.com/book/lambdacalc/node25.html
ftp://ftp.cs.ru.nl/pub/CompMath.Found/lambda.pdf
https://en.wikipedia.org/wiki/Ruy_de_Queiroz
http://dx.doi.org/10.1111/j.1746-8361.1988.tb00919.x
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-262-20175-9
https://en.wikipedia.org/wiki/Special:BookSources/978-0-262-20175-9
http://www.cs.utah.edu/plt/publications/pllc.pdf
http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/0804.3434
https://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/2008arXiv0804.3434S
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4567929
http://www.lsv.ens-cachan.fr/~sinot/publis.php?onlykey=sinot-jlc05
http://www.lsv.ens-cachan.fr/~sinot/publis.php?onlykey=sinot-jlc05
https://en.wikipedia.org/wiki/Orrin_Frink
http://www.ams.org/bull/1944-50-03/S0002-9904-1944-08090-7/S0002-9904-1944-08090-7.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1090%252Fs0002-9904-1944-08090-7


Chapter 6

Gödel’s incompleteness theorems

Gödel’s incompleteness theorems are two theorems of mathematical logic that demonstrate the inherent limitations
of every formal axiomatic system containing basic arithmetic.[1] These results, published by Kurt Gödel in 1931,
are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not
universally, interpreted as showing that Hilbert’s program to find a complete and consistent set of axioms for all
mathematics is impossible.
The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an
effective procedure (i.e., an algorithm) is capable of proving all truths about the arithmetic of the natural numbers.
For any such formal system, there will always be statements about the natural numbers that are true, but that are
unprovable within the system. The second incompleteness theorem, an extension of the first, shows that the system
can not demonstrate its own consistency.
Gödel’s incompleteness theorems were the first of several closely related theorems on the limitations of formal sys-
tems. They were followed by Tarski’s undefinability theorem on the formal undefinability of truth, Church’s proof
that Hilbert’s Entscheidungsproblem is unsolvable, and Turing’s theorem that there is no algorithm to solve the halting
problem.

6.1 Formal systems: completeness, consistency, and effective axiomatiza-
tion

The incompleteness theorems apply to formal systems that are of sufficient complexity to express the basic arithmetic
of the natural numbers and which are complete, consistent, and effectively axiomatized, these concepts being detailed
below. Particularly in the context of first-order logic, formal systems are also called formal theories. In general, a
formal system is a deductive apparatus that consists of a particular set of axioms along with rules of symbolic manip-
ulation (or rules of inference) that allow for the derivation of new theorems from the axioms. One example of such a
system is first-order Peano arithmetic, a system in which all variables are intended to denote natural numbers. In other
systems, such as set theory, only some sentences of the formal system express statements about the natural numbers.
The incompleteness theorems are about formal provability within these systems, rather than about “provability” in an
informal sense.
There are several properties that a formal system may have, including completeness, consistency, and the existence
of an effective axiomatization. The incompleteness theorems show that systems which contain a sufficient amount of
arithmetic cannot possess all three of these properties.

6.1.1 Effective axiomatization

A formal system is said to be effectively axiomatized (also called effectively generated) if its set of theorems is a
recursively enumerable set (Franzén 2004, p. 112).
This means that there is a computer program that, in principle, could enumerate all the theorems of the systemwithout
listing any statements that are not theorems. Examples of effectively generated theories include Peano arithmetic and
Zermelo–Fraenkel set theory.
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The theory known as true arithmetic consists of all true statements about the standard integers in the language of
Peano arithmetic. This theory is consistent, and complete, and contains a sufficient amount of arithmetic. However it
does not have a recursively enumerable set of axioms, and thus does not satisfy the hypotheses of the incompleteness
theorems.

6.1.2 Completeness

A set of axioms is complete if, for any statement in the axioms’ language, that statement or its negation is provable
from the axioms (Smith 2007, p. 24).
A formal system might be incomplete simply because not all the necessary axioms have been discovered or included.
For example, Euclidean geometry without the parallel postulate is incomplete, because it is not possible to prove or
disprove the parallel postulate from the remaining axioms. Similarly, the theory of dense linear orders is not complete,
but becomes complete with an extra axiom stating that there are no endpoints in the order. The continuum hypothesis
is a statement in the language of ZFC that is not provable within ZFC, so ZFC is not complete. In this case, there is
no obvious candidate for a new axiom that resolves the issue.
The theory of first-order Peano arithmetic is consistent, has an infinite but recursively enumerable set of axioms, and
can encode enough arithmetic for the hypotheses of the incompleteness theorem. Thus, by the first incompleteness
theorem, Peano Arithmetic is not complete. The theorem gives an explicit example of a statement of arithmetic that
is true (in the usual model) but not provable in Peano arithmetic. Moreover, no effectively axiomatized, consistent
extension of Peano arithmetic can be complete.

6.1.3 Consistency

A set of axioms is (simply) consistent if there is no statement such that both the statement and its negation are provable
from the axioms, and inconsistent otherwise.
Peano arithmetic is provably consistent fromZFC, but not fromwithin itself. Similarly, ZFC is not provably consistent
from within itself, but ZFC + “there exists an inaccessible cardinal" proves ZFC is consistent because if κ is the least
such cardinal, then Vκ sitting inside the von Neumann universe is a model of ZFC, and a theory is consistent if and
only if it has a model.
If one takes all statements in the language of Peano arithmetic as axioms, then this theory is complete, has a recursively
enumerable set of axioms, and can describe addition and multiplication. However, it is not consistent.
Additional examples of inconsistent theories arise from the paradoxes that result when the axiom schema of unre-
stricted comprehension is assumed in set theory.

6.1.4 Systems which contain arithmetic

The incompleteness theorems apply only to formal systems which are able to prove a sufficient collection of facts
about the natural numbers. One sufficient collection is the set of theorems of Robinson arithmetic Q. Some systems,
such as Peano arithmetic, can directly express statements about natural numbers. Others, such as ZFC set theory, are
able to interpret statements about natural numbers into their language. Either of these options is appropriate for the
incompleteness theorems.
The theory of algebraically closed fields of a given characteristic is complete, consistent, and has an infinite but
recursively enumerable set of axioms. However it is not possible to encode the integers into this theory, and the
theory cannot describe arithmetic of integers. A similar example is the theory of real closed fields, which is essentially
equivalent to Tarski’s axioms for Euclidean geometry. So Euclidean geometry itself (in Tarski’s formulation) is an
example of a complete, consistent, effectively axiomatized theory.
The system of Presburger arithmetic consists of a set of axioms for the natural numbers with just the addition operation
(multiplication is omitted). Presburger arithmetic is complete, consistent, and recursively enumerable and can encode
addition but not multiplication of natural numbers, showing that for Gödel’s theorems one needs the theory to encode
not just addition but also multiplication.
DanWillard (2001) has studied some weak families of arithmetic systems which allow enough arithmetic as relations
to formalise Gödel numbering, but which are not strong enough to have multiplication as a function, and so fail to
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prove the second incompleteness theorem; these systems are consistent and capable of proving their own consistency
(see self-verifying theories).

6.1.5 Conflicting goals

In choosing a set of axioms, one goal is to be able to prove as many correct results as possible, without proving any
incorrect results. For example, we could imagine a set of true axioms which allow us to prove every true arithmetical
claim about the natural numbers (Smith 2007, p 2). In the standard system of first-order logic, an inconsistent set
of axioms will prove every statement in its language (this is sometimes called the principle of explosion), and is thus
automatically complete. A set of axioms that is both complete and consistent, however, proves a maximal set of
non-contradictory theorems (Hinman 2005, p. 143).
The pattern illustrated in the previous sections with Peano arithmetic, ZFC, and ZFC + “there exists an inaccessible
cardinal” cannot generally be broken. Here ZFC + “there exists an inaccessible cardinal” cannot from itself, be
proved consistent. It is also not complete, as illustrated by the in ZFC + “there exists an inaccessible cardinal” theory
unresolved continuum hypothesis.
The first incompleteness theorem shows that, in formal systems that can express basic arithmetic, a complete and
consistent finite list of axioms can never be created: each time an additional, consistent statement is added as an
axiom, there are other true statements that still cannot be proved, even with the new axiom. If an axiom is ever added
that makes the system complete, it does so at the cost of making the system inconsistent. It is not even possible for
an infinite list of axioms to be complete, consistent, and effectively axiomatized.

6.2 First incompleteness theorem

Gödel’s first incompleteness theorem first appeared as “Theorem VI” in Gödel’s 1931 paper On Formally Undecid-
able Propositions of Principia Mathematica and Related Systems I.[2] The hypotheses of the theorem were improved
shortly thereafter by J. Barkley Rosser (1936) using Rosser’s trick.
The resulting theorem (incorporating Rosser’s improvement) may be paraphrased in English as follows, where “formal
system” includes the assumption that the system is effectively generated.

First Incompleteness Theorem: “Any consistent formal system F within which a certain amount
of elementary arithmetic can be carried out is incomplete; i.e., there are statements of the language of
F which can neither be proved nor disproved in F.” (Raatikainen 2015)

The unprovable statement GF referred to by the theorem is often referred to as “the Gödel sentence” for the system
F. The proof constructs a particular Gödel sentence for the system F, but there are infinitely many statements in the
language of the system that share the same properties, such as the conjunction of the Gödel sentence and any logically
valid sentence.
Each effectively generated system has its own Gödel sentence. It is possible to define a larger system F’ that contains
the whole of F plus GF as an additional axiom. This will not result in a complete system, because Gödel’s theorem
will also apply to F’, and thus F’ also cannot be complete. In this case, GF is indeed a theorem in F’, because it is an
axiom. Because GF states only that it is not provable in F, no contradiction is presented by its provability within F’.
However, because the incompleteness theorem applies to F’, there will be a new Gödel statement GF′ for F’, showing
that F’ is also incomplete. GF′ ' will differ from GF in that GF′ will refer to F’, rather than F.

6.2.1 Syntactic form of the Gödel sentence

The Gödel sentence is designed to refer, indirectly, to itself. The sentence states that, when a particular sequence of
steps is used to construct another sentence, that constructed sentence will not be provable in F. However, the sequence
of steps is such that the constructed sentence turns out to be GF itself. In this way, the Gödel sentence GF indirectly
states its own unprovability within F (Smith 2007, p. 135).
To prove the first incompleteness theorem, Gödel demonstrated that the notion of provability within a system could
be expressed purely in terms of arithmetical functions that operate on Gödel numbers of sentences of the system.
Therefore, the system, which can prove certain facts about numbers, can also indirectly prove facts about its own
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statements, provided that it is effectively generated. Questions about the provability of statements within the system
are represented as questions about the arithmetical properties of numbers themselves, which would be decidable by
the system if it were complete.
Thus, although the Gödel sentence refers indirectly to sentences of the system F, the Gödel sentence is actually written
as a statement about natural numbers solely. It asserts that no natural number has a particular property, where that
property is given by a primitive recursive relation (Smith 2007, p. 141). As such, the Gödel sentence can be written
in the language of arithmetic with a simple syntactic form. In particular, it can be expressed as formula consisting
of a number of leading universal quantifiers followed by a quantifier-free body (these formulas are at level Π0

1 of the
arithmetical hierarchy). Via the MRDP theorem, the Gödel sentence can be re-written as a statement that a particular
polynomial in many variables with integer coefficients never takes the value zero when integers are substituted for its
variables (Franzén 2005, p. 71).

6.2.2 Truth of the Gödel sentence

The first incompleteness theorem shows that the Gödel sentence GF of an appropriate formal theory F is unprovable
in F. Because this unprovability is exactly what the sentence (indirectly) asserts, the Gödel sentence is, in fact, true
(Smoryński 1977 p. 825; also see Franzén 2004 pp. 28–33). For this reason, the sentence GF is often said to be
“true but unprovable.” (Raatikainen 2015). The truth of the sentence GF may only be arrived at via a meta-analysis
from outside the system. In general, this meta-analysis can be carried out within the weak formal system known
as primitive recursive arithmetic, which proves the implication Con(F)→GF, where Con(F) is a canonical sentence
asserting the consistency of F (Smoryński 1977 p. 840, Kikuchi and Tanaka 1994 p. 403).
Although the Gödel sentence of a consistent theory is true as a statement about the intended interpretation of arith-
metic, the Gödel sentence will be false in some nonstandard models of arithmetic, as a consequence of Gödel’s
completeness theorem (Franzén 2005, p. 135). That theorem shows that, when a sentence is independent of a the-
ory, the theory will have models in which the sentence is true and models in which the sentence is false. As described
earlier, the Gödel sentence of a system F is an arithmetical statement which claims that no number exists with a
particular property. The incompleteness theorem shows that this claim will be independent of the system F, and
the truth of the Gödel sentence follows from the fact that no standard natural number has the property in question.
Any model of in which the Gödel sentence is false must contain some element which satisfies the property within
that model. Such a model must be “nonstandard” – it must contain elements that do not correspond to any standard
natural number (Raatikainen 2015, Franzén 2005, p. 135).

6.2.3 Relationship with the liar paradox

Gödel specifically cites Richard’s paradox and the liar paradox as semantical analogues to his syntactical incom-
pleteness result in the introductory section of On Formally Undecidable Propositions in Principia Mathematica and
Related Systems I. The liar paradox is the sentence “This sentence is false.” An analysis of the liar sentence shows
that it cannot be true (for then, as it asserts, it is false), nor can it be false (for then, it is true). A Gödel sentence G
for a system F makes a similar assertion to the liar sentence, but with truth replaced by provability: G says "G is not
provable in the system F.” The analysis of the truth and provability of G is a formalized version of the analysis of the
truth of the liar sentence.
It is not possible to replace “not provable” with “false” in a Gödel sentence because the predicate “Q is the Gödel num-
ber of a false formula” cannot be represented as a formula of arithmetic. This result, known as Tarski’s undefinability
theorem, was discovered independently by both Gödel, when he was working on the proof of the incompleteness
theorem, and by the theorem’s namesake, Alfred Tarski.

6.2.4 Extensions of Gödel’s original result

Compared to the theorems stated in Gödel’s 1931 paper, many contemporary statements of the incompleteness theo-
rems are more general in two ways. These generalized statements are phrased to apply to a broader class of systems,
and they are phrased to incorporate weaker consistency assumptions.
Gödel demonstrated the incompleteness of the system of Principia Mathematica, a particular system of arithmetic,
but a parallel demonstration could be given for any effective system of a certain expressiveness. Gödel commented
on this fact in the introduction to his paper, but restricted the proof to one system for concreteness. In modern
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statements of the theorem, it is common to state the effectiveness and expressiveness conditions as hypotheses for the
incompleteness theorem, so that it is not limited to any particular formal system. The terminology used to state these
conditions was not yet developed in 1931 when Gödel published his results.
Gödel’s original statement and proof of the incompleteness theorem requires the assumption that the system is not
just consistent but ω-consistent. A system is ω-consistent if it is not ω-inconsistent, and is ω-inconsistent if there is
a predicate P such that for every specific natural number m the system proves ~P(m), and yet the system also proves
that there exists a natural number n such that P(n). That is, the system says that a number with property P exists while
denying that it has any specific value. The ω-consistency of a system implies its consistency, but consistency does
not imply ω-consistency. J. Barkley Rosser (1936) strengthened the incompleteness theorem by finding a variation
of the proof (Rosser’s trick) that only requires the system to be consistent, rather than ω-consistent. This is mostly
of technical interest, because all true formal theories of arithmetic (theories whose axioms are all true statements
about natural numbers) are ω-consistent, and thus Gödel’s theorem as originally stated applies to them. The stronger
version of the incompleteness theorem that only assumes consistency, rather than ω-consistency, is now commonly
known as Gödel’s incompleteness theorem and as the Gödel–Rosser theorem.

6.3 Second incompleteness theorem

For each formal system F containing basic arithmetic, it is possible to canonically define a formula Cons(F) expressing
the consistency of F. This formula expresses the property that “there does not exist a natural number coding a formal
derivation within the system F whose conclusion is a syntactic contradiction.” The syntactic contradiction is often
taken to be “0=1”, in which case Cons(F) states “there is no natural number that codes a derivation of '0=1' from the
axioms of F.”
Gödel’s second incompleteness theorem shows that, under general assumptions, this canonical consistency state-
ment Cons(F) will not be provable in F. The theorem first appeared as “Theorem XI” in Gödel’s 1931 paper On
Formally Undecidable Propositions in Principia Mathematica and Related Systems I. In the following statement, the
term “formalized system” also includes an assumption that F is effectively axiomatized.

Second Incompleteness Theorem: “Assume F is a consistent formalized system which contains
elementary arithmetic. Then F ̸⊢ Cons(F ) .” (Raatikainen 2015)

This theorem is stronger than the first incompleteness theorem because the statement constructed in the first incom-
pleteness theorem does not directly express the consistency of the system. The proof of the second incompleteness
theorem is obtained by formalizing the proof of the first incompleteness theorem within the system F itself.

6.3.1 Expressing consistency

There is a technical subtlety in the second incompleteness theorem regarding the method of expressing the consistency
of F as a formula in the language of F. There are many ways to express the consistency of a system, and not all of
them lead to the same result. The formula Cons(F) from the second incompleteness theorem is a particular expression
of consistency.
Other formalizations of the claim that F is consistent may be inequivalent in F, and some may even be provable. For
example, first-order Peano arithmetic (PA) can prove that “the largest consistent subset of PA” is consistent. But,
because PA is consistent, the largest consistent subset of PA is just PA, so in this sense PA “proves that it is consistent”.
What PA does not prove is that the largest consistent subset of PA is, in fact, the whole of PA. (The term “largest
consistent subset of PA” is meant here to be the largest consistent initial segment of the axioms of PA under some
particular effective enumeration).

6.3.2 The Hilbert–Bernays conditions

The standard proof of the second incompleteness theorem assumes that the provability predicate ProvA(P) satisfies
the Hilbert–Bernays provability conditions. Letting #(P) represent the Gödel number of a formula P, the derivability
conditions say:

1. If F proves P, then F proves ProvA(#(P)).
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2. F proves 1.; that is, F proves that if F proves P, then F proves ProvA(#(P)). In other words, F proves that
ProvA(#(P)) implies ProvA(#(ProvA(#(P)))).

3. F proves that if F proves that (P→Q) and F proves P then F provesQ. In other words, F proves that ProvA(#(P
→ Q)) and ProvA(#(P)) imply ProvA(#(Q)).

There are systems, such as Robinson arithmetic, which are strong enough to meet the assumptions of the first in-
completeness theorem, but which do not prove the Hilbert–Bernays conditions. Peano arithmetic, however, is strong
enough to verify these conditions, as are all theories stronger than Peano arithmetic.

6.3.3 Implications for consistency proofs

Gödel’s second incompleteness theorem also implies that a system F1 satisfying the technical conditions outlined
above cannot prove the consistency of any system F2 that proves the consistency of F1. This is because such a system
T1 can prove that if F2 proves the consistency of F1, then F1 is in fact consistent. For the claim that F1 is consistent
has form “for all numbers n, n has the decidable property of not being a code for a proof of contradiction in F1". If
F1 were in fact inconsistent, then F2 would prove for some n that n is the code of a contradiction in F1. But if F2 also
proved that F1 is consistent (that is, that there is no such n), then it would itself be inconsistent. This reasoning can
be formalized in F1 to show that if F2 is consistent, then F1 is consistent. Since, by second incompleteness theorem,
F1 does not prove its consistency, it cannot prove the consistency of F2 either.
This corollary of the second incompleteness theorem shows that there is no hope of proving, for example, the con-
sistency of Peano arithmetic using any finitistic means that can be formalized in a system the consistency of which
is provable in Peano arithmetic. For example, the system of primitive recursive arithmetic (PRA), which is widely
accepted as an accurate formalization of finitistic mathematics, is provably consistent in PA. Thus PRA cannot prove
the consistency of PA. This fact is generally seen to imply that Hilbert’s program, which aimed to justify the use of
“ideal” (infinitistic) mathematical principles in the proofs of “real” (finitistic) mathematical statements by giving a
finitistic proof that the ideal principles are consistent, cannot be carried out (Franzén 2004, p. 106).
The corollary also indicates the epistemological relevance of the second incompleteness theorem. It would actually
provide no interesting information if a system F proved its consistency. This is because inconsistent theories prove
everything, including their consistency. Thus a consistency proof of F in F would give us no clue as to whether F
really is consistent; no doubts about the consistency of F would be resolved by such a consistency proof. The interest
in consistency proofs lies in the possibility of proving the consistency of a system F in some system F’ that is in some
sense less doubtful than F itself, for example weaker than F. For many naturally occurring theories F and F’, such as
F = Zermelo–Fraenkel set theory and F’ = primitive recursive arithmetic, the consistency of F’ is provable in F, and
thus F’ cannot prove the consistency of F by the above corollary of the second incompleteness theorem.
The second incompleteness theorem does not rule out consistency proofs altogether, only consistency proofs that can
be formalized in the system that is proved consistent. For example, Gerhard Gentzen proved the consistency of Peano
arithmetic (PA) in a different system that includes an axiom asserting that the ordinal called ε0 is wellfounded; see
Gentzen’s consistency proof. Gentzen’s theorem spurred the development of ordinal analysis in proof theory.

6.4 Examples of undecidable statements

See also: List of statements independent of ZFC

There are two distinct senses of the word “undecidable” in mathematics and computer science. The first of these is the
proof-theoretic sense used in relation to Gödel’s theorems, that of a statement being neither provable nor refutable in
a specified deductive system. The second sense, which will not be discussed here, is used in relation to computability
theory and applies not to statements but to decision problems, which are countably infinite sets of questions each
requiring a yes or no answer. Such a problem is said to be undecidable if there is no computable function that
correctly answers every question in the problem set (see undecidable problem).
Because of the twomeanings of the word undecidable, the term independent is sometimes used instead of undecidable
for the “neither provable nor refutable” sense.
Undecidability of a statement in a particular deductive system does not, in and of itself, address the question of whether
the truth value of the statement is well-defined, or whether it can be determined by other means. Undecidability only
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implies that the particular deductive system being considered does not prove the truth or falsity of the statement.
Whether there exist so-called “absolutely undecidable” statements, whose truth value can never be known or is ill-
specified, is a controversial point in the philosophy of mathematics.
The combined work of Gödel and Paul Cohen has given two concrete examples of undecidable statements (in the first
sense of the term): The continuum hypothesis can neither be proved nor refuted in ZFC (the standard axiomatization
of set theory), and the axiom of choice can neither be proved nor refuted in ZF (which is all the ZFC axioms except
the axiom of choice). These results do not require the incompleteness theorem. Gödel proved in 1940 that neither
of these statements could be disproved in ZF or ZFC set theory. In the 1960s, Cohen proved that neither is provable
from ZF, and the continuum hypothesis cannot be proved from ZFC.
In 1973, Saharon Shelah showed that the Whitehead problem in group theory is undecidable, in the first sense of the
term, in standard set theory.
Gregory Chaitin produced undecidable statements in algorithmic information theory and proved another incomplete-
ness theorem in that setting. Chaitin’s incompleteness theorem states that for any system that can represent enough
arithmetic, there is an upper bound c such that no specific number can be proved in that system to have Kolmogorov
complexity greater than c. While Gödel’s theorem is related to the liar paradox, Chaitin’s result is related to Berry’s
paradox.

6.4.1 Undecidable statements provable in larger systems

These are natural mathematical equivalents of the Gödel “true but undecidable” sentence. They can be proved in a
larger system which is generally accepted as a valid form of reasoning, but are undecidable in a more limited system
such as Peano Arithmetic.
In 1977, Paris and Harrington proved that the Paris–Harrington principle, a version of the infinite Ramsey theorem,
is undecidable in (first-order) Peano arithmetic, but can be proved in the stronger system of second-order arithmetic.
Kirby and Paris later showed that Goodstein’s theorem, a statement about sequences of natural numbers somewhat
simpler than the Paris–Harrington principle, is also undecidable in Peano arithmetic.
Kruskal’s tree theorem, which has applications in computer science, is also undecidable from Peano arithmetic but
provable in set theory. In fact Kruskal’s tree theorem (or its finite form) is undecidable in a much stronger system
codifying the principles acceptable based on a philosophy of mathematics called predicativism. The related but more
general graph minor theorem (2003) has consequences for computational complexity theory.

6.5 Relationship with computability

See also: Halting problem § Relationship with Gödel’s incompleteness theorems

The incompleteness theorem is closely related to several results about undecidable sets in recursion theory.
Stephen Cole Kleene (1943) presented a proof of Gödel’s incompleteness theorem using basic results of computability
theory. One such result shows that the halting problem is undecidable: there is no computer program that can correctly
determine, given any program P as input, whether P eventually halts when run with a particular given input. Kleene
showed that the existence of a complete effective system of arithmetic with certain consistency properties would force
the halting problem to be decidable, a contradiction. This method of proof has also been presented by Shoenfield
(1967, p. 132); Charlesworth (1980); and Hopcroft and Ullman (1979).
Franzén (2004, p. 73) explains how Matiyasevich’s solution to Hilbert’s 10th problem can be used to obtain a proof
to Gödel’s first incompleteness theorem. Matiyasevich proved that there is no algorithm that, given a multivariate
polynomial p(x1, x2,...,x⛹) with integer coefficients, determines whether there is an integer solution to the equation p
= 0. Because polynomials with integer coefficients, and integers themselves, are directly expressible in the language of
arithmetic, if a multivariate integer polynomial equation p = 0 does have a solution in the integers then any sufficiently
strong system of arithmetic T will prove this. Moreover, if the system T is ω-consistent, then it will never prove that a
particular polynomial equation has a solution when in fact there is no solution in the integers. Thus, if T were complete
and ω-consistent, it would be possible to determine algorithmically whether a polynomial equation has a solution by
merely enumerating proofs of T until either "p has a solution” or "p has no solution” is found, in contradiction to
Matiyasevich’s theorem. Moreover, for each consistent effectively generated system T, it is possible to effectively
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generate a multivariate polynomial p over the integers such that the equation p = 0 has no solutions over the integers,
but the lack of solutions cannot be proved in T (Davis 2006:416, Jones 1980).
Smorynski (1977, p. 842) shows how the existence of recursively inseparable sets can be used to prove the first
incompleteness theorem. This proof is often extended to show that systems such as Peano arithmetic are essentially
undecidable (see Kleene 1967, p. 274).
Chaitin’s incompleteness theorem gives a different method of producing independent sentences, based onKolmogorov
complexity. Like the proof presented by Kleene that was mentioned above, Chaitin’s theorem only applies to theories
with the additional property that all their axioms are true in the standard model of the natural numbers. Gödel’s
incompleteness theorem is distinguished by its applicability to consistent theories that nonetheless include statements
that are false in the standard model; these theories are known as ω-inconsistent.

6.6 Proof sketch for the first theorem

Main article: Proof sketch for Gödel’s first incompleteness theorem

The proof by contradiction has three essential parts. To begin, choose a formal system that meets the proposed
criteria:

1. Statements in the system can be represented by natural numbers (known as Gödel numbers). The significance
of this is that properties of statements—such as their truth and falsehood—will be equivalent to determining
whether their Gödel numbers have certain properties, and that properties of the statements can therefore be
demonstrated by examining their Gödel numbers. This part culminates in the construction of a formula ex-
pressing the idea that “statement S is provable in the system” (which can be applied to any statement “S” in the
system).

2. In the formal system it is possible to construct a number whose matching statement, when interpreted, is self-
referential and essentially says that it (i.e. the statement itself) is unprovable. This is done using a technique
called "diagonalization" (so-called because of its origins as Cantor’s diagonal argument).

3. Within the formal system this statement permits a demonstration that it is neither provable nor disprovable in
the system, and therefore the system cannot in fact be ω-consistent. Hence the original assumption that the
proposed system met the criteria is false.

6.6.1 Arithmetization of syntax

The main problem in fleshing out the proof described above is that it seems at first that to construct a statement p that
is equivalent to "p cannot be proved”, p would somehow have to contain a reference to p, which could easily give rise
to an infinite regress. Gödel’s ingenious technique is to show that statements can be matched with numbers (often
called the arithmetization of syntax) in such a way that “proving a statement” can be replaced with “testing whether a
number has a given property”. This allows a self-referential formula to be constructed in a way that avoids any infinite
regress of definitions. The same technique was later used by Alan Turing in his work on the Entscheidungsproblem.
In simple terms, a method can be devised so that every formula or statement that can be formulated in the system
gets a unique number, called its Gödel number, in such a way that it is possible to mechanically convert back and
forth between formulas and Gödel numbers. The numbers involved might be very long indeed (in terms of number
of digits), but this is not a barrier; all that matters is that such numbers can be constructed. A simple example is the
way in which English is stored as a sequence of numbers in computers using ASCII or Unicode:

• The word HELLO is represented by 72-69-76-76-79 using decimal ASCII, i.e. the number
7269767679.

• The logical statement x=y => y=x is represented by 120-061-121-032-061-062-032-121-061-
120 using octal ASCII, i.e. the number 120061121032061062032121061120.

In principle, proving a statement true or false can be shown to be equivalent to proving that the number matching the
statement does or doesn't have a given property. Because the formal system is strong enough to support reasoning
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about numbers in general, it can support reasoning about numbers that represent formulae and statements as well. Cru-
cially, because the system can support reasoning about properties of numbers, the results are equivalent to reasoning
about provability of their equivalent statements.

6.6.2 Construction of a statement about “provability”

Having shown that in principle the system can indirectly make statements about provability, by analyzing properties
of those numbers representing statements it is now possible to show how to create a statement that actually does this.
A formula F(x) that contains exactly one free variable x is called a statement form or class-sign. As soon as x is
replaced by a specific number, the statement form turns into a bona fide statement, and it is then either provable in
the system, or not. For certain formulas one can show that for every natural number n, F(n) is true if and only if it
can be proved (the precise requirement in the original proof is weaker, but for the proof sketch this will suffice). In
particular, this is true for every specific arithmetic operation between a finite number of natural numbers, such as
“2×3=6”.
Statement forms themselves are not statements and therefore cannot be proved or disproved. But every statement
form F(x) can be assigned a Gödel number denoted by G(F). The choice of the free variable used in the form F(x)
is not relevant to the assignment of the Gödel number G(F).
The notion of provability itself can also be encoded by Gödel numbers, in the following way: since a proof is a list
of statements which obey certain rules, the Gödel number of a proof can be defined. Now, for every statement p,
one may ask whether a number x is the Gödel number of its proof. The relation between the Gödel number of p and
x, the potential Gödel number of its proof, is an arithmetical relation between two numbers. Therefore, there is a
statement form Bew(y) that uses this arithmetical relation to state that a Gödel number of a proof of y exists:

Bew(y) = ∃ x ( y is the Gödel number of a formula and x is the Gödel number of a proof of the formula
encoded by y).

The name Bew is short for beweisbar, the German word for “provable"; this name was originally used by Gödel
to denote the provability formula just described. Note that “Bew(y)" is merely an abbreviation that represents a
particular, very long, formula in the original language of T ; the string “Bew” itself is not claimed to be part of this
language.
An important feature of the formula Bew(y) is that if a statement p is provable in the system then Bew(G(p)) is also
provable. This is because any proof of p would have a corresponding Gödel number, the existence of which causes
Bew(G(p)) to be satisfied.

6.6.3 Diagonalization

The next step in the proof is to obtain a statement that says it is unprovable. Although Gödel constructed this state-
ment directly, the existence of at least one such statement follows from the diagonal lemma, which says that for any
sufficiently strong formal system and any statement form F there is a statement p such that the system proves

p↔ F(G(p)).

By letting F be the negation of Bew(x), we obtain the theorem

p↔ ~Bew(G(p))

and the p defined by this roughly states that its own Gödel number is the Gödel number of an unprovable formula.
The statement p is not literally equal to ~Bew(G(p)); rather, p states that if a certain calculation is performed, the
resulting Gödel number will be that of an unprovable statement. But when this calculation is performed, the resulting
Gödel number turns out to be the Gödel number of p itself. This is similar to the following sentence in English:

", when preceded by itself in quotes, is unprovable.”, when preceded by itself in quotes, is unprovable.
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This sentence does not directly refer to itself, but when the stated transformation is made the original sentence is
obtained as a result, and thus this sentence asserts its own unprovability. The proof of the diagonal lemma employs
a similar method.
Now, assume that the axiomatic system is ω-consistent, and let p be the statement obtained in the previous section.
If p were provable, then Bew(G(p)) would be provable, as argued above. But p asserts the negation of Bew(G(p)).
Thus the system would be inconsistent, proving both a statement and its negation. This contradiction shows that p
cannot be provable.
If the negation of p were provable, then Bew(G(p)) would be provable (because p was constructed to be equivalent to
the negation of Bew(G(p))). However, for each specific number x, x cannot be the Gödel number of the proof of p,
because p is not provable (from the previous paragraph). Thus on one hand the system proves there is a number with
a certain property (that it is the Gödel number of the proof of p), but on the other hand, for every specific number x,
we can prove that it does not have this property. This is impossible in an ω-consistent system. Thus the negation of
p is not provable.
Thus the statement p is undecidable in our axiomatic system: it can neither be proved nor disproved within the system.
In fact, to show that p is not provable only requires the assumption that the system is consistent. The stronger as-
sumption of ω-consistency is required to show that the negation of p is not provable. Thus, if p is constructed for a
particular system:

• If the system is ω-consistent, it can prove neither p nor its negation, and so p is undecidable.

• If the system is consistent, it may have the same situation, or it may prove the negation of p. In the later case,
we have a statement (“not p") which is false but provable, and the system is not ω-consistent.

If one tries to “add the missing axioms” to avoid the incompleteness of the system, then one has to add either p or
“not p" as axioms. But then the definition of “being a Gödel number of a proof” of a statement changes. which means
that the formula Bew(x) is now different. Thus when we apply the diagonal lemma to this new Bew, we obtain a new
statement p, different from the previous one, which will be undecidable in the new system if it is ω-consistent.

6.6.4 Proof via Berry’s paradox

George Boolos (1989) sketches an alternative proof of the first incompleteness theorem that uses Berry’s paradox
rather than the liar paradox to construct a true but unprovable formula. A similar proof method was independently
discovered by Saul Kripke (Boolos 1998, p. 383). Boolos’s proof proceeds by constructing, for any computably
enumerable set S of true sentences of arithmetic, another sentence which is true but not contained in S. This gives
the first incompleteness theorem as a corollary. According to Boolos, this proof is interesting because it provides a
“different sort of reason” for the incompleteness of effective, consistent theories of arithmetic (Boolos 1998, p. 388).

6.6.5 Computer verified proofs

See also: Automated theorem proving

The incompleteness theorems are among a relatively small number of nontrivial theorems that have been transformed
into formalized theorems that can be completely verified by proof assistant software. Gödel’s original proofs of
the incompleteness theorems, like most mathematical proofs, were written in natural language intended for human
readers.
Computer-verified proofs of versions of the first incompleteness theorem were announced by Natarajan Shankar in
1986 using Nqthm (Shankar 1994), by Russell O'Connor in 2003 using Coq (O'Connor 2005) and by John Harrison in
2009 using HOL Light (Harrison 2009). A computer-verified proof of both incompleteness theorems was announced
by Lawrence Paulson in 2013 using Isabelle (Paulson 2014).
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6.7 Proof sketch for the second theorem

The main difficulty in proving the second incompleteness theorem is to show that various facts about provability used
in the proof of the first incompleteness theorem can be formalized within the system using a formal predicate for
provability. Once this is done, the second incompleteness theorem follows by formalizing the entire proof of the first
incompleteness theorem within the system itself.
Let p stand for the undecidable sentence constructed above, and assume that the consistency of the system can be
proved from within the system itself. The demonstration above shows that if the system is consistent, then p is not
provable. The proof of this implication can be formalized within the system, and therefore the statement "p is not
provable”, or “not P(p)" can be proved in the system.
But this last statement is equivalent to p itself (and this equivalence can be proved in the system), so p can be proved
in the system. This contradiction shows that the system must be inconsistent.

6.8 Discussion and implications

The incompleteness results affect the philosophy of mathematics, particularly versions of formalism, which use a
single system of formal logic to define their principles.

6.8.1 Consequences for logicism and Hilbert’s second problem

The incompleteness theorem is sometimes thought to have severe consequences for the program of logicism proposed
by Gottlob Frege and Bertrand Russell, which aimed to define the natural numbers in terms of logic (Hellman 1981,
p. 451–468). Bob Hale and Crispin Wright argue that it is not a problem for logicism because the incompleteness
theorems apply equally to first order logic as they do to arithmetic. They argue that only those who believe that the
natural numbers are to be defined in terms of first order logic have this problem.
Many logicians believe that Gödel’s incompleteness theorems struck a fatal blow to David Hilbert's second problem,
which asked for a finitary consistency proof for mathematics. The second incompleteness theorem, in particular, is
often viewed as making the problem impossible. Not all mathematicians agree with this analysis, however, and the
status of Hilbert’s second problem is not yet decided (see "Modern viewpoints on the status of the problem").

6.8.2 Minds and machines

Main article: Mechanism (philosophy) § Gödelian arguments

Authors including the philosopher J. R. Lucas and physicist Roger Penrose have debated what, if anything, Gödel’s
incompleteness theorems imply about human intelligence. Much of the debate centers on whether the human mind is
equivalent to a Turing machine, or by the Church–Turing thesis, any finite machine at all. If it is, and if the machine
is consistent, then Gödel’s incompleteness theorems would apply to it.
Hilary Putnam (1960) suggested that while Gödel’s theorems cannot be applied to humans, since they make mistakes
and are therefore inconsistent, it may be applied to the human faculty of science or mathematics in general. Assuming
that it is consistent, either its consistency cannot be proved or it cannot be represented by a Turing machine.
AviWigderson (2010) has proposed that the concept ofmathematical “knowability” should be based on computational
complexity rather than logical decidability. He writes that “when knowability is interpreted by modern standards,
namely via computational complexity, the Gödel phenomena are very much with us.”

6.8.3 Paraconsistent logic

Although Gödel’s theorems are usually studied in the context of classical logic, they also have a role in the study of
paraconsistent logic and of inherently contradictory statements (dialetheia). Graham Priest (1984, 2006) argues that
replacing the notion of formal proof in Gödel’s theorem with the usual notion of informal proof can be used to show
that naive mathematics is inconsistent, and uses this as evidence for dialetheism. The cause of this inconsistency is
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the inclusion of a truth predicate for a system within the language of the system (Priest 2006:47). Stewart Shapiro
(2002) gives a more mixed appraisal of the applications of Gödel’s theorems to dialetheism.

6.8.4 Appeals to the incompleteness theorems in other fields

Appeals and analogies are sometimes made to the incompleteness theorems in support of arguments that go beyond
mathematics and logic. Several authors have commented negatively on such extensions and interpretations, including
Torkel Franzén (2004); Alan Sokal and Jean Bricmont (1999); and Ophelia Benson and Jeremy Stangroom (2006).
Bricmont and Stangroom (2006, p. 10), for example, quote from Rebecca Goldstein's comments on the disparity
between Gödel’s avowed Platonism and the anti-realist uses to which his ideas are sometimes put. Sokal and Bricmont
(1999, p. 187) criticize Régis Debray's invocation of the theorem in the context of sociology; Debray has defended
this use as metaphorical (ibid.).

6.9 History

After Gödel published his proof of the completeness theorem as his doctoral thesis in 1929, he turned to a second
problem for his habilitation. His original goal was to obtain a positive solution to Hilbert’s second problem (Dawson
1997, p. 63). At the time, theories of the natural numbers and real numbers similar to second-order arithmetic were
known as “analysis”, while theories of the natural numbers alone were known as “arithmetic”.
Gödel was not the only person working on the consistency problem. Ackermann had published a flawed consistency
proof for analysis in 1925, in which he attempted to use the method of ε-substitution originally developed by Hilbert.
Later that year, vonNeumann was able to correct the proof for a system of arithmetic without any axioms of induction.
By 1928, Ackermann had communicated a modified proof to Bernays; this modified proof led Hilbert to announce
his belief in 1929 that the consistency of arithmetic had been demonstrated and that a consistency proof of analysis
would likely soon follow. After the publication of the incompleteness theorems showed that Ackermann’s modified
proof must be erroneous, von Neumann produced a concrete example showing that its main technique was unsound
(Zach 2006, p. 418, Zach 2003, p. 33).
In the course of his research, Gödel discovered that although a sentence which asserts its own falsehood leads to
paradox, a sentence that asserts its own non-provability does not. In particular, Gödel was aware of the result now
called Tarski’s indefinability theorem, although he never published it. Gödel announced his first incompleteness
theorem to Carnap, Feigel and Waismann on August 26, 1930; all four would attend a key conference in Königsberg
the following week.

6.9.1 Announcement

The 1930 Königsberg conference was a joint meeting of three academic societies, with many of the key logicians
of the time in attendance. Carnap, Heyting, and von Neumann delivered one-hour addresses on the mathematical
philosophies of logicism, intuitionism, and formalism, respectively (Dawson 1996, p. 69). The conference also
included Hilbert’s retirement address, as he was leaving his position at the University of Göttingen. Hilbert used the
speech to argue his belief that all mathematical problems can be solved. He ended his address by saying,

For the mathematician there is no Ignorabimus, and, in my opinion, not at all for natural science either.
... The true reason why [no one] has succeeded in finding an unsolvable problem is, in my opinion, that
there is no unsolvable problem. In contrast to the foolish Ignoramibus, our credo avers: We must know.
We shall know!

This speech quickly became known as a summary of Hilbert’s beliefs on mathematics (its final six words, "Wir müssen
wissen. Wir werden wissen!", were used as Hilbert’s epitaph in 1943). Although Gödel was likely in attendance for
Hilbert’s address, the two never met face to face (Dawson 1996, p. 72).
Gödel announced his first incompleteness theorem at a roundtable discussion session on the third day of the confer-
ence. The announcement drew little attention apart from that of von Neumann, who pulled Gödel aside for conver-
sation. Later that year, working independently with knowledge of the first incompleteness theorem, von Neumann
obtained a proof of the second incompleteness theorem, which he announced to Gödel in a letter dated November
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20, 1930 (Dawson 1996, p. 70). Gödel had independently obtained the second incompleteness theorem and included
it in his submitted manuscript, which was received by Monatshefte für Mathematik on November 17, 1930.
Gödel’s paper was published in theMonatshefte in 1931 under the titleÜber formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme I (On Formally Undecidable Propositions in PrincipiaMathematica and Related
Systems I). As the title implies, Gödel originally planned to publish a second part of the paper; it was never written.

6.9.2 Generalization and acceptance

Gödel gave a series of lectures on his theorems at Princeton in 1933–1934 to an audience that included Church,
Kleene, and Rosser. By this time, Gödel had grasped that the key property his theorems required is that the system
must be effective (at the time, the term “general recursive” was used). Rosser proved in 1936 that the hypothesis
of ω-consistency, which was an integral part of Gödel’s original proof, could be replaced by simple consistency, if
the Gödel sentence was changed in an appropriate way. These developments left the incompleteness theorems in
essentially their modern form.
Gentzen published his consistency proof for first-order arithmetic in 1936. Hilbert accepted this proof as “finitary”
although (as Gödel’s theorem had already shown) it cannot be formalized within the system of arithmetic that is being
proved consistent.
The impact of the incompleteness theorems on Hilbert’s program was quickly realized. Bernays included a full proof
of the incompleteness theorems in the second volume of Grundlagen der Mathematik (1939), along with additional
results of Ackermann on the ε-substitution method and Gentzen’s consistency proof of arithmetic. This was the first
full published proof of the second incompleteness theorem.

6.9.3 Criticisms

Finsler

Paul Finsler (1926) used a version of Richard’s paradox to construct an expression that was false but unprovable in
a particular, informal framework he had developed. Gödel was unaware of this paper when he proved the incom-
pleteness theorems (Collected Works Vol. IV., p. 9). Finsler wrote to Gödel in 1931 to inform him about this paper,
which Finsler felt had priority for an incompleteness theorem. Finsler’s methods did not rely on formalized provabil-
ity, and had only a superficial resemblance to Gödel’s work (van Heijenoort 1967:328). Gödel read the paper but
found it deeply flawed, and his response to Finsler laid out concerns about the lack of formalization (Dawson:89).
Finsler continued to argue for his philosophy of mathematics, which eschewed formalization, for the remainder of
his career.

Zermelo

In September 1931, Ernst Zermelo wrote Gödel to announce what he described as an “essential gap” in Gödel’s
argument (Dawson:76). In October, Gödel replied with a 10-page letter (Dawson:76, Grattan-Guinness:512-513),
where he pointed out that Zermelo mistakenly assumed that the notion of truth in a system is definable in that system
(which is not true in general by Tarski’s undefinability theorem). But Zermelo did not relent and published his
criticisms in print with “a rather scathing paragraph on his young competitor” (Grattan-Guinness:513). Gödel decided
that to pursue the matter further was pointless, and Carnap agreed (Dawson:77). Much of Zermelo’s subsequent work
was related to logics stronger than first-order logic, with which he hoped to show both the consistency and categoricity
of mathematical theories.

Wittgenstein

Ludwig Wittgenstein wrote several passages about the incompleteness theorems that were published posthumously
in his 1953 Remarks on the Foundations of Mathematics, in particular one section sometimes called the “notorious
paragraph” where he seems to confuse the notions of “true” and “provable” in Russell’s system. Gödel was a mem-
ber of the Vienna Circle during the period in which Wittgenstein’s early ideal language philosophy and Tractatus
Logico-Philosophicus dominated the circle’s thinking. There has been some controversy about whether Wittgen-
stein misunderstood the incompletelness theorem or just expressed himself unclearly. Writings in Gödel’s Nachlass
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express the belief that Wittgenstein misread his ideas.
Multiple commentators have read Wittgenstein as misunderstanding Gödel (Rodych 2003), although Juliet Floyd
and Hilary Putnam (2000), as well as Graham Priest (2004) have provided textual readings arguing that most com-
mentary misunderstands Wittgenstein. On their release, Bernays, Dummett, and Kreisel wrote separate reviews on
Wittgenstein’s remarks, all of which were extremely negative (Berto 2009:208). The unanimity of this criticism
caused Wittgenstein’s remarks on the incompleteness theorems to have little impact on the logic community. In
1972, Gödel stated: “Has Wittgenstein lost his mind? Does he mean it seriously? He intentionally utters trivially
nonsensical statements” (Wang 1996:179), and wrote to Karl Menger that Wittgenstein’s comments demonstrate a
misunderstanding of the incompleteness theorems writing:

“It is clear from the passages you cite that Wittgenstein did not understand [the first incompleteness
theorem] (or pretended not to understand it). He interpreted it as a kind of logical paradox, while in
fact is just the opposite, namely a mathematical theorem within an absolutely uncontroversial part of
mathematics (finitary number theory or combinatorics).” (Wang 1996:179)

Since the publication of Wittgenstein’s Nachlass in 2000, a series of papers in philosophy have sought to evaluate
whether the original criticism of Wittgenstein’s remarks was justified. Floyd and Putnam (2000) argue that Wittgen-
stein had a more complete understanding of the incompleteness theorem than was previously assumed. They are
particularly concerned with the interpretation of a Gödel sentence for an ω-inconsistent system as actually saying “I
am not provable”, since the system has no models in which the provability predicate corresponds to actual provability.
Rodych (2003) argues that their interpretation of Wittgenstein is not historically justified, while Bays (2004) argues
against Floyd and Putnam’s philosophical analysis of the provability predicate. Berto (2009) explores the relationship
between Wittgenstein’s writing and theories of paraconsistent logic.

6.10 See also
• Gödel’s completeness theorem

• Gödel’s speed-up theorem

• Gödel, Escher, Bach

• Löb’s Theorem

• Minds, Machines and Gödel

• Münchhausen trilemma

• Non-standard model of arithmetic

• Proof theory

• Provability logic

• Quining

• Tarski’s undefinability theorem

• Theory of everything#Gödel’s incompleteness theorem

• Third Man Argument

6.11 Notes
[1] Gödel’s words are: ". . . my proof is applicable to every formal system containing arithmetic”, appearing in Letter 3.

Gödel to [Ernest] Nagel dated March 14, 1957; page 147 in Kurt Gödel, 2003 and 2014, “Collected Works Volume V:
Correspondence H-V”, Clarendon Press, Oxford UK, ISBN 9780191003776. Also cf introductory comments written by
Charles Parsons and Wilfried Seig page 136.

[2] The Roman numeral “I” indicates that Gödel intended to publish a sequel but “The prompt acceptance of his results was
one of the reasons that made him change his plan”, cf the text and its footnote 68a in van Heijenoort 1967:616
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Chapter 7

Proof sketch for Gödel’s first
incompleteness theorem

This article gives a sketch of a proof of Gödel’s first incompleteness theorem. This theorem applies to any formal
theory that satisfies certain technical hypotheses, which are discussed as needed during the sketch. We will assume
for the remainder of the article that a fixed theory satisfying these hypotheses has been selected.
Throughout this article the word “number” refers to a natural number. The key property these numbers possess is
that any natural number can be obtained by starting with the number 0 and adding 1 a finite number of times.

7.1 Hypotheses of the theory

Gödel’s theorem applies to any formal theory that satisfies certain properties. Each formal theory has a signature that
specifies the nonlogical symbols in the language of the theory. For simplicity, we will assume that the language of
the theory consists of:

• A constant symbol 0.

• A unary function symbol S for the successor operation and binary function symbols + and × for addition and
multiplication.

• Symbols for logical conjunction, ∧, disjunction, ∨, and negation, ¬.

• Universal, ∀, and existential, ∃, quantifiers.

• Binary relations, = and <, for equality and order (less than).

• Left and right parentheses for establishing precedence of quantifiers.

• A single variable symbol x and a symbol * that can be used to construct additional variables of the form x*,
x**, …

This is the language of Peano arithmetic. A well-formed formula is a sequence of these symbols that is formed so
as to have a well-defined reading as a mathematical formula. Thus x = SS0 is well formed while x = ∀+ is not well
formed. A theory is a set of well-formed formulas with no free variables.
A theory is consistent if there is no formulaF such that bothF and its negation are provable. ω-consistency is a stronger
property than consistency. Suppose that F(x) is a formula with one free variable x. In order to be ω-consistent, the
theory cannot prove both ∃m F(m) while also proving ¬F(n) for each natural number n.
The theory is assumed to be effective, which means that the set of axioms must be recursively enumerable. This
means that it is theoretically possible to write a computer program that, if allowed to run forever, would output the
axioms of the theory one at a time and not output anything else. This requirement is necessary; there are theories
that are complete, consistent, and include elementary arithmetic, but no such theory can be effective.
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7.2 Outline of the proof

For a simplified outline of the proof, see Gödel’s incompleteness theorems

The sketch here is broken into three parts. In the first part, each formula of the theory is assigned a number, known
as a Gödel number, in a manner that allows the formula to be effectively recovered from the number. This numbering
is extended to cover finite sequences of formulas. In the second part, a specific formula PF(x, y) is constructed such
that for any two numbers n and m, PF(n,m) holds if and only if n represents a sequence of formulas that constitutes
a proof of the formula that m represents. In the third part of the proof, we construct a self-referential formula that,
informally, says “I am not provable”, and prove that this sentence is neither provable nor disprovable within the theory.
Importantly, all the formulas in the proof can be defined by primitive recursive functions, which themselves can be
defined in first-order Peano arithmetic.

7.3 Gödel numbering

The first step of the proof is to represent (well-formed) formulas of the theory, and finite lists of these formulas, as
natural numbers. These numbers are called the Gödel numbers of the formulas.
Begin by assigning a natural number to each symbol of the language of arithmetic, similar to the manner in which
the ASCII code assigns a unique binary number to each letter and certain other characters. This article will employ
the following assignment, very similar to the one Douglas Hofstadter used in his Gödel, Escher, Bach:
The Gödel number of a formula is obtained by concatenating the Gödel numbers of each symbol making up the
formula. The Gödel numbers for each symbol are separated by a zero because by design, no Gödel number of a
symbol includes a 0. Hence any formula may be correctly recovered from its Gödel number. Let G(F) denote the
Gödel number of the formula F.
Given the above Gödel numbering, the sentence asserting that addition commutes, ∀x ∀x* (x + x* = x* + x) translates
as the number:

626 0 262 0 626 0 262 0 163 0 362 0 262 0 112 0 262 0 163 0 111 0 262 0 163 0 112 0 262 0 323

(Spaces have been inserted on each side of every 0 only for readability; Gödel numbers are strict concatenations of
decimal digits.) Not all natural numbers represent a formula. For example, the number

111 0 626 0 112 0 262

translates to "= ∀ + x", which is not well-formed.
Because each natural number can be obtained by applying the successor operation S to 0 a finite number of times,
every natural number has its own Gödel number. For example, the Gödel number corresponding to 4, SSSS0, is:

123 0 123 0 123 0 123 0 666.

The assignment of Gödel numbers can be extended to finite lists of formulas. To obtain the Gödel number of a list
of formulas, write the Gödel numbers of the formulas in order, separating them by two consecutive zeros. Since the
Gödel number of formula never contains two consecutive zeros, each formula in a list of formulas can be effectively
recovered from the Gödel number for the list.
It is crucial that the formal arithmetic be capable of proving a minimum set of facts. In particular, it must be able to
prove that every number has a Gödel number. A second fact that the theory must prove is that given any Gödel number
of a formula F(x) with one free variable x and any number m, there is a Gödel number of the formula F(m) obtained
by replacing all occurrences of G(x) in G(F(x)) with G(m), and that this second Gödel number can be effectively
obtained from the Gödel number of F as a function ofm. To see that this is in fact possible, note that given the Gödel
number for F, one can recreate the original formula, make the substitution, and then find the Gödel number of the
resulting formula. This is a uniform procedure.
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7.4 The provability relation

Deduction rules can then be represented by binary relations on Gödel numbers of lists of formulas. In other words,
suppose that there is a deduction rule D1, by which one can move from the formulas S1,S2 to a new formula S. Then
the relation R1 corresponding to this deduction rule says that n is related tom (in other words, n R1m holds) if n is the
Gödel number of a list of formulas containing S1 and S2 and m is the Gödel number of the list of formulas consisting
of those in the list coded by n together with S. Because each deduction rule is concrete, it is possible to effectively
determine for any natural numbers n and m whether they are related by the relation.
The second stage in the proof is to use the Gödel numbering, described above, to show that the notion of provability
can be expressed within the formal language of the theory. Suppose the theory has deduction rules: D1, D2, D3, …
. Let R1, R2, R3, … be their corresponding relations, as described above.
Every provable statement is either an axiom itself, or it can be deduced from the axioms by a finite number of
applications of the deduction rules. We wish to define a set of numbers P that represents all these provable statements.
We define P as the minimal set consisting of all numbers inAX (representing axioms) and closed under all the relations
R1, R2, … . This means that whenever n is in the set P and n Rᵢ m for some numbers m and i, the number m is also
in the set P. It is not hard to see that P represents the set of provable statements. That is, the members of P are the
Gödel numbers of the provable statements.
A proof of a formula S is itself a string of mathematical statements related by particular relations (each is either an
axiom or related to former statements by deduction rules), where the last statement is S. Thus one can define the
Gödel number of a proof. Moreover, one may define a statement form PF(x,y), which for every two numbers x and
y is provable if and only if x is the Gödel number of a proof of the statement S and y = G(S).
PF(x,y) is in fact an arithmetical relation, just as "x + y = 6” is, though a (much) more complicated one. Given such
a relation R(x,y), for any two specific numbers n and m, either the formula R(m,n), or its negation ¬R(m,n), but not
both, is provable. This is because the relation between these two numbers can be simply “checked”. Formally this
can be proven by induction, where all these possible relations (which are of infinite number) are constructed one by
one. The detailed construction of the formula PF makes essential use of the assumption that the theory is effective;
it would not be possible to construct this formula without such an assumption.

7.5 Self-referential formula

For every number n and every formula F(y), where y is a free variable, we define q(n, G(F)), a relation between two
numbers n and G(F), such that it corresponds to the statement "n is not the Gödel number of a proof of F(G(F))".
Here, F(G(F)) can be understood as F with its own Gödel number as its argument.
Note that q takes as an argument G(F), the Gödel number of F. In order to prove either q(n, G(F)), or ¬q(n, G(F)),
it is necessary to perform number-theoretic operations on G(F) that mirror the following steps: decode the number
G(F) into the formula F, replace all occurrences of y in F with the numberG(F), and then compute the Gödel number
of the resulting formula F(G(F)).
Note that for every specific number n and formula F(y), q(n, G(F)) is a straightforward (though complicated) arith-
metical relation between two numbers n and G(F), building on the relation PF defined earlier. Further, q(n, G(F)) is
provable if the finite list of formulas encoded by n is not a proof of F(G(F)), and ¬q(n, G(F)) is provable if the finite
list of formulas encoded by n is a proof of F(G(F)). Given any numbers n and G(F), either q(n, G(F)) or ¬q(n,G(F))
(but not both) is provable.
Any proof of F(G(F)) can be encoded by a Gödel number n, such that q(n, G(F)) does not hold. If q(n, G(F)) holds
for all natural numbers n, then there is no proof of F(G(F)). In other words, ∀y q(y, G(F)), a formula about natural
numbers, corresponds to “there is no proof of F(G(F))".
We now define the formula P(x) = ∀y q(y, x), where x is a free variable. The formula P itself has a Gödel number
G(P) as does every formula.
This formula has a free variable x. Suppose we replace it with G(F), the Gödel number of a formula F(z), where z is
a free variable. Then, P(G(F)) = ∀y q(y, G(F)) corresponds to “there is no proof of F(G(F))", as we have seen.
Consider the formula P(G(P)) = ∀y, q(y, G(P)). This formula concerning the number G(P) corresponds to “there is
no proof of P(G(P))". We have here the self-referential feature that is crucial to the proof: A formula of the formal
theory that somehow relates to its own provability within that formal theory. Very informally, P(G(P)) says: “I am
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not provable”.
We will now show that neither the formula P(G(P)), nor its negation ¬P(G(P)), is provable.
Suppose P(G(P)) = ∀y, q(y, G(P)) is provable. Let n be the Gödel number of a proof of P(G(P)). Then, as seen
earlier, the formula ¬q(n, G(P)) is provable. Proving both ¬q(n, G(P)) and ∀y q(y, G(P)) violates the consistency of
the formal theory. We therefore conclude that P(G(P)) is not provable.
Consider any number n. Suppose ¬q(n, G(P)) is provable. Then, nmust be the Gödel number of a proof of P(G(P)).
But we have just proved that P(G(P)) is not provable. Since either q(n, G(P)) or ¬q(n, G(P)) must be provable, we
conclude that, for all natural numbers n, q(n, G(P)) is provable.
Suppose the negation of P(G(P)), ¬P(G(P)) = ∃x ¬ q(x, G(P)), is provable. Proving both ∃x ¬q(x, G(P)), and q(n,
G(P)), for all natural numbers n, violates ω-consistency of the formal theory. Thus if the theory is ω-consistent,
¬P(G(P)) is not provable.
We have sketched a proof showing that:
For any formal, recursively enumerable (i.e. effectively generated) theory of Peano Arithmetic,

if it is consistent, then there exists an unprovable formula (in the language of that theory).

if it is ω-consistent, then there exists a formula such that both it and its negation are unprovable.

7.5.1 The truth of the Gödel sentence

The proof of Gödel’s incompleteness theorem just sketched is proof-theoretic (also called syntactic) in that it shows
that if certain proofs exist (a proof of P(G(P)) or its negation) then they can be manipulated to produce a proof
of a contradiction. This makes no appeal to whether P(G(P)) is “true”, only to whether it is provable. Truth is a
model-theoretic, or semantic, concept, and is not equivalent to provability except in special cases.
By analyzing the situation of the above proof in more detail, it is possible to obtain a conclusion about the truth of
P(G(P)) in the standard model ℕ of natural numbers. As just seen, q(n, G(P)) is provable for each natural number
n, and is thus true in the model ℕ. Therefore, within this model,

P (G(P )) = ∀y q(y,G(P ))

holds. This is what the statement "P(G(P)) is true” usually refers to—the sentence is true in the intended model. It is
not true in every model, however: If it were, then by Gödel’s completeness theorem it would be provable, which we
have just seen is not the case.

7.6 Boolos’s short proof

George Boolos (1998) vastly simplified the proof of the First Theorem, if one agrees that the theorem is equivalent
to:

“There is no algorithmM whose output contains all true sentences of arithmetic and no false ones.”

“Arithmetic” refers to Peano or Robinson arithmetic, but the proof invokes no specifics of either, tacitly assuming
that these systems allow '<' and '×' to have their usual meanings. Boolos proves the theorem in about two pages. His
proof employs the language of first-order logic, but invokes no facts about the connectives or quantifiers. The domain
of discourse is the natural numbers. The Gödel sentence builds on Berry’s paradox.
Let [n] abbreviate n successive applications of the successor function, starting from 0. Boolos then asserts (the details
are only sketched) that there exists a defined predicate Cxz that comes out true iff an arithmetic formula containing
z symbols names the number x. This proof sketch contains the only mention of Gödel numbering; Boolos merely
assumes that every formula can be so numbered. Here, a formula F names the number n iff the following is provable:

∀x(F (x) ↔ x = n)
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Boolos then defines the related predicates:

• Bxy↔ ∃z(z < y ∧ Cxz). (English: Bxy comes out true if x can be defined in fewer than y symbols):

• Axy↔¬Bxy ∧ ∀a(a < x→Bay). (English: Axy comes out true if x is the smallest number not definable in fewer
than y symbols. More awkwardly, Axy holds if x cannot be defined in fewer than y symbols, and all numbers
less than x can be defined using fewer than y symbols);

• Fx ↔ ∃y((y = [10] × [k]) ∧ Axy). k = the number of symbols appearing in Axy.

Fx formalizes Berry’s paradox. The balance of the proof, requiring but 12 lines of text, shows that the sentence
∀x(Fx↔(x = [n])) is true for some number n, but no algorithm M will identify it as true. Hence in arithmetic, truth
outruns proof. QED.
The above predicates contain the only existential quantifiers appearing in the entire proof. The '<' and '×' appearing in
these predicates are the only defined arithmetical notions the proof requires. The proof nowhere mentions recursive
functions or any facts from number theory, and Boolos claims that his proof dispenses with diagonalization. For more
on this proof, see Berry’s paradox.
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