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Summary: A rather simple species of planar tilings by rectangular triangles
— all similar to each other and of only two sizes — is described from three
different points of view: As defined by an inflation, as defined using a local
matching rule and as defined by the cut and project method. — In accordance
with the fact that /—7 is a complex PV-number, the Fourier-transform of
the autocorrelation function turns out to be “strictly point” (i.e. consisting of
DirAcC-deltas only). Hence the species is q u a s i periodic.
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1 Introduction

A tiling is said to be aperiodic, if it does not admit any translation (#0). It is
called quasiperiodic, if it is aperiodic and the Fouriertransform of its autocorrelation function
consists of Dirac deltas only, provided their support is dense everywhere. We asked ourselves:
What is the simplest set of prototiles with an inflation that produces planar tilings which
are necessarily not only aperiodic but even q u a s i periodic? For this purpose the inflation
factor 7 has to be a PV-number and must not be a natural number V) (see [10]). Therefore it
cannot be the square-root of a rational number. Thus the inflation matrix cannot be 1 x 1
and we need at least two prototiles. To make the example as simple as possible, we take
exactly two tiles A and X and require X to be the inflation of A. So we have a small and
a large prototile. The inflation matrix with minimal entries then is

M= (2 }) | (1)

Here the first column states infl(A) := X while the second column expresses, that infl(X)
consists of one copy of A and one copy of X . Our realization is shown in Figure 1. The
only other one (except similar copies) we know of, is the pair of “chairs” due to R. AMMANN
(see [2] chapter 10.4, also cf. Section 6.4).

A= 1&

—
: Y T : B UV . 14V5
infl(A) = X = 4 — B(A);  Bla) = < VR )x det(f) = 7 = 11

infl(X) = w = 11 (X) U ta(A)

—rl -3
Uy (2) = < T_% TT_1>x— <71 ); e 1= —thy; det(yy) = -1

Figure 1: Definition of the Inflation
Probably quite a few geometers have found this example too (see e.g. [8] Anhang B.5);

but it seems, nobody has studied it in detail, maybe because the resulting tilings are not
vertex-to-vertex.

1Y in which case the tilings become either periodic or 1im it periodic
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2 Basic definitions and first consequences

Our protoset is §:= {A, X}. By inflation we denote the substitution as described
by Figure 1. Here ( is an expansive map with [3(x)| = /7|z| for all z and the
i(x) = ¢;(x) + 1 are isometries. The translation ¢ has to be replaced by some ti, ty if
the origin is not chosen to be the rightangled vertex of A. The only property of the transla-
tions worth mentioning is, that they are in a special Z-module (cf. Section 6). In contrast
the two reflections ; and ¢y (cf. Fig. 2), more precisely the directions of their lines of
reflection, play an essential role in the background of all our considerations. These direc-
tions are given by the bisectors of the angles whose tangens equals /7 of the two tiles and
especially will be used in Section 7.3.

Figure 2: The reflections ¢; acting on a translate of A and a translate of X

inﬂ3(A) = inﬂ2(X) = = B 5711 (X) U B 87 e (A) U B f71(X)

Figure 3: Tterated Inflation

The inflation infl can be iterated, i.e. the expansion map [, the isometries v; and
1y and the split of 3(X) into 9, (X) U1(A) have to be applied again as shown in Figure 3.

Definition 1: The species S(F,infl) is the set of all global tilings P, where every tile
is congruent either to A or to X and every bounded cluster of P has a congruent
counterpart in some infl"(A) (c¢f. Fig. 17 and Fig. 10 ?). The clusters congruent to
infl"(A) and infl"(X) are called supertiles of nth order (of A or X resp.).

2) The letters B,C,...,Z and the highlighted figures will be explained in section 5.2.
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Obviously the inflation factor n (by which the tiles are expanded in every step) is
just /7.

When the plane is considered as C' instead of E?, the rotation by 90° must be taken
into account and 7 becomes %,/7. Since the only algebraic conjugates are 7 (= —n),
772 and —7 2 (both in absolute value smaller than one), this is a complez PV-number.
Therefore (see [10]) the Fourier-transform of the autocorrelation function of the set of all
vertices has to have sharp spots. They correspond to the BRAGG-Peaks of the diffraction
pattern of a material, whose atoms sit at the vertices. For more details cf. Section 6.5. Until
then we stay in E? with n = /7.

By deflation (defl) we denote an inverse process to a given inflation. It can be applied
only under the assumption, that the given tiling (or cluster resp.) can be considered as a
tiling of supertiles. Then each supertile is considered as o n e tile and the whole tiling
(cluster) is shrunk by the factor 1. An essential question is always, whether the original
tiling can be split into supertiles at all, and if so, whether the splitting is unique or not. It
is well known, that the deflated tiling — if the deflation was unique — again belongs to the
original inflation species and in fact, then

defloinfl = inflodefl = id. (2)

Remark 1: The species S(§,infl) has a locally defined uwnique deflation.

Indeed: Due to the 0 in the inflation matrix M (cf. (1)) every small tile is face-to-face with
a large tile making up a supertile of X . The remaining large tiles must be considered as
supertiles of A.

It is well known that Remark 1 implies

Remark 2: The species S(§,infl) is aperiodic.

Remark 3a: In S(F,infl) there are precisely siz congruence classes of vertex stars (vts),
as shown in Figure 4.

Proof: By definition every vertex star of our species has to occur in some infl"(A). The first
interior vertex occurs in infl°(A), the sixth in infl'°(A4), but infi''(A) does not contain a
new vertex star, and therefore infl'®""(A) cannot contain any new vertex star for n € N.

O

From Figure 4 we can also read off

Remark 3b: For every n<6 the rectangular cluster R":=infl"(X U X) =
infl"(X) Uinfl"(X) 3 is centrally symmetric and contains on its diagonal two vertex
stars congruent to V" .

%) For brevity here and in the sequel we suppress the isometries which actually had to be applied.
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fV uon

Figure 4: The vertex stars V', V2 ... V% (V7 is congruent to V%) and the rectangles
R',R?,...,R®. (This is essentially an excerpt of Fig. 10 not yet colored)

Since X is as well a supertile (infl(A)) as a tile itself, we use from now (3)
on the term supertile of n-th order only as abbreviation for “infl"(X)”.

3 Properties of V',...,V% and clusters enforced by them

We begin with a general definition of what we call a local matching rule (Imr).

Definition 2: Given a finite protoset § and a finite set ¥ lmr of §-clusters, each fitting
into a ball of radius p, we define the species

S(F,Imr)

as the set of all global tilings P , where every cluster of P which fits into a ball of
radius p has a congruent counterpart in lmr.

4) In this context we speak of an atlas.



3Properties of V',...,V°® and clusters enforced by them 6

The reader may note the similarity to Definition 1 and also the differences: In Defini-
tion 1 the clusters were not uniformly bounded and the atlas was not finite.

Definition 3: A cluster C is said to enforce the cluster D (with respect to lmr ), if in every
tiling of 8(§,lmr) every congruent copy of C is contained in a D, and everywhere in
the same way. ®

In the sequel let lmr,; denote the atlas consisting of the six vertex stars (vts)
Vo VE of 8(F,infl).

From Figure 4 we can read off directly

Remark 4: The six vts defined by our inflation can be distinguished by the following facts.

V! is the only vts whose vertex splits the middle edge of a large tile.
V2 is the only vts, whose vertex splits the hypotenuse of a large tile.
VI V? are the only vts with a flat angle. They do not contain any rectangle.

V3 is the only vts containing a parallelogram formed by two small tiles sharing
their shortest edge.

) VL V3 are the only vts with two right angles.

V5. V8 are the only vts without any right angle (i.e.: with eight tiles) and the only
vts containing the cluster shown in Figure 5(a). Caution: V° contains t w o of
them.

V4 is the only vts containing a parallelogram formed by two large tiles sharing
their shortest edge. Consequently the cluster shown in Figure 5(b) does not occur
at all.

V® is the only vts containing a rectangle formed by two small tiles.
The cluster shown in Figure 5(c) occurs in V® only and there only once.

The configuration shown in Figure 5(d) does not occur in any vts.

TN <

(a) (b) () (d)

Figure 5: Some characteristic configurations

Remark 5: In S(F,Imr,;) we can state:

V' enforces R’ (1<i<5) (4.9)
Ve enforces  C° (cf. Fig. 6). (5)

%) The largest such cluster D usually is called the empire of C (w.r.t. Imr).
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b¥ (e
5 Y 7 4
a*
K C* a ) a(V ) K.
b b

Proof: (4.1) follows from Remark 4(a).
b)

d)

a) — applied at the vertex b — and Remark 4(g).

h), Remark 4(a) applied at b, Remark 4(b) applied at ¢

(4.2) follows from Remark 4
(4.3) follows from Remark 4
(4.4)

follows from Remark 4

(4.5) follows from Remark 4
and finally (4.1) and (4.2).

Ad (5): In the same manner as above the vertices b and ¢ lead to two copies of R!,
d and e to two copies of R?; and finally C® is completed due to Remark 4(e) — applied
at f —and (4.3). O

Remark 6: If C® is given as shown in Figure 6, then there are precisely the following three
possibilities:
V(i) 2V and C° is contained in a copy of RS centered at (i + a). (6.1)
In this case V(h) 2V and V(k)£)V?. '
V(i) 2Vt and C5 is contained in infl(C®) as shown in Figure 6 (in- (6.2)
cluding the dotted lines). In this case V(h) 2 V' and V(k)2V?. '

V(i) 2 V3. In this case the full cluster of Figure 7 is enforced, and (6.3)
again V(k) 2 V3. '
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Figure 7: The case where at i there is a }?

Proof: Obviously V(i) £ V', V2. If V(i) were of type V° , we should have - due to Remark 5
(4,5) —an R® with V(k)2V'. 7

Ad (6.1): By Remark 5 (5) we have two overlapping clusters of type C®. Their union
is RY.

Ad (6.2): By Remark 5 (4,4) V(i) enforces the R* centered at 1(j+1i). It follows
V(k)2V? (cf. Remark 4(e)) and consequently we have the R? centered at (I + k).

Ad (6.3): In this case V(i) enforces the R? centered at $(h + 7). Since in the triangle
Aail this cluster coincides with the R*, we still have the R? centered at (I + k).

Next consider the vertex denoted by a* in Figure 7. Due to Remark 4(i) V(a*) 2 V®
and consequently we have another C®. Because V(i*) was 2 V3 already before, we have
now symmetry with respect to %(a* + a), and everything we shall prove in the “South”, will
automatically apply for the “North” as well.

At j both, a V3 ora V* seem possible. But a V? would require a V* at m including

the dotted A there. Hence V(j)2V* and we have got the R* centered at $(m + j).

Now at n we have the same situation as before at &k , whence V(n)<2V? and we get
an R? centered at %(o—l—n). As before at j a V3 at p would create a contradiction at ¢
(cf. the dotted A there). Therefore V(p) 2V* and we have the R* centered at (g + p).
Finally we can conclude V(r)2V(s)2V?. O
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The cluster of Figure 7 is not the complete empire of V(a) U V(i) ; but at least locally
at t, u, t* and u* as well V?s as V*s are possible.

4 The species S8(3F,infl) cannot be defined by a local matching rule

The following theorem and its proof are typical for many inflation species. Its state-
ment, that our original species cannot be described by any Imr, will be the motivation to
introduce colours in the next section.

Theorem 1: S(F,infl) cannot be defined by any local matching rule (lmr ). More precisely:
There is no Imr with 8(§,lmr) = S(F,infl) (¢f. Def. 2).

Proof: Assume on the contrary the existence of a radius p and an atlas A of p-clusters of
As and X's defining the species 8(§,Imr4), and assume

S(F,Imry) = S(F,infl). (7)

This implies that both species contain precisely the same six congruence classes of vts.

N
-
-
-

Figure 8: A periodic tiling of the plane using vertex star V3 only

Now consider the crystallographic ® tiling P shown in Figure 8. All vts of P are

congruent to V3. Furthermore P is invariant under the glidereflection symbolized by the
short arrow lying on the axis of the reflection. Its direction is that of the reflection line of
9 mentioned in Section 2.

6)i.e. doubly periodic.
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It is easily checked that in every tiling which has no other than our six vts,

for every ball with radius at most 177! there is at least one vertex star, } (8)

2
which covers the ball completely 7.

In particular every ball of radius .3 is covered by some vertex star of P .

Finally consider the tiling Q := infl®(P), where " -.3 =7> -.3 > p. Thusin Q every
ball of radius p is covered by a copy of infl"(V?), and from (7) and the definition of lmr4 we
conclude Q € 8(§,Ilmry4). But since Q is periodic, while our inflation species is aperiodic
(cf. Remark 2) this contradicts (7). O

5 Colouring does help
5.1 A coloured inflation species

After the papers [7] by Ch. RADIN and [12] by Ch. GOODMAN-STRAUSS the next to
do is, to find a colouring of S(F,infl) that does permit a local matching rule. In principle
it would be “enough” to colour every member of our species and then find a radius p such
that the atlas A of all coloured p-clusters (used as an lmr) does not permit any new
tiling, without caring about an inflation of the coloured tilings. This would correspond to
the very general result by GOODMAN-STRAUSS, which doubtless was a break-through. In
our particular case we are going to prove a somewhat stronger result ®. We want to replace
A and X by finitely many congruent copies with different colours, k e e p the old inflation
geometrically and then colour the supertiles of first order in such a way, that the
— now coloured — vertex stars (vts) can serve as an atlas Imr,;,. for the coloured inflation
species. So it will become an inflation species with local matching rules, which — after erasing
the colours — will coincide with our original species. This can be done as follows.

We define a coloured protoset
§.:={A,B,C,D,E;V,W,X,Y, Z}, (9)

where A is our old A while B,C, D, E are congruent to A, and likewise X is our old X
and the others are congruent to X . Next we define a coloured inflation by

infl.(4) = V; infl,(V) = BUW; )

infl.(B) = W; infl, (W) = AUY;

infl,(C) = X; infl.(X) = EUV; (10)
infl.(D) = Y; infl.(Y) = DUX;

infl,(E) = Z; infl(Z) = CUZ?Y. )

") Tt can be shown, that for inflation species satisfying some rather general conditions there is always
such a radius.

8) It may well be, that a closer inspection of [12] will show, that his techniques give this “inflation
extending colouring” in general.
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This implies (in the sequel we omit the symbol “U” )

infl2(V) = WAY; infl}(V) := AYVDX;
infl2(W) := VDX; infl}(W) := BWYEV;
infl2(X) := ZBW; fl}(X) := CZWAY; (11)
infl2(Y) := YEV; infl}(Y) := DXZBW:;
infl(Z) = XCZz; iinfl}(Z) = EVXCZ,

and

infl}(V) := VDXBWYEV,
infl(V) :== BWYEVWAY DX ZBW; (12)
infl(V) ;== WAYDXZBWAYVDXYEVCZW AY.

Obvously the small prototiles A, ..., E as well as the large prototiles V,...,Z are
cyclically permuted by

m:=(ABCDE)(VYWZX). (13)
This permutation has the following remarkable property: For every prototile T
7(infl,(T)) = infl (7 (T)). (14)
By induction we conclude

7 (infl,(T)) = infl (73 (T)) (for k € N) and (15)
7(infl(T)) = infl.(7*" (T)) (for n € N). (16)

3

Since 3" Z0 (mod 5) for all n this implies:

The species 8(F.,infl.) is invariant under the group Aut. generated by . (17)

Hence we need not give (12) for W,...,Z instead of V. To understand what
neighbourhoods occur in our coloured inflation species we show in Figure 9 infl (Y) for
1 <n <10 and highlight successively the new neighbourhoods. Only these can be germs
for new neighbourhoods in the next inflation. Therefore for n > 5 only the higher inflations
of the rectangle RY(Z, X) are given.

From Figure 9 we conclude (cf. the Appendix):

In the entire coloured inflation species every rectangle congruent to R"” } (18)

belongs to the type ' R™(Z,X) (modulo Aut,).

%) An explanation for this strange looking rule will be given in the Appendix. Instead of using ten
characters, we could of course use five colours; the same for X as for A.
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W Z VX Y
Bl /s C2 v E
3 'Vcl(Z,x)
) D
A A Y/ 4
1. Y
BNZ/zZ C
v vexzf V@) v
c " Z —
W,
NE "\ | /w
2 5
7 8.
w z v Y
E B x| |C€ E
v f z
V(X2)
D v (X, B
] X
C v AW | E
vizx W
:, D A Y . v
| x|/ z z X
!' [ J > Vo =

Figure 9: infl?(Y) for 1 <n <10, the new neighbourhoods (
supertiles (==e==) contained therein.

) and the pseudo-

We also observe — and the following statements are of course subject to Aut, — :

in infl}(Y) there is a tile Y at either end homothetic to the carrier of (19.1)
infl!(Y), ‘

and

the two vts V*(X, 7 ) and V?(Z, X) are not of the same type (though of (19.2)
course congruent). '

In particular for n >3 R™(X,Z) contains infl”~'(Y) in the corner near )

V™(X,Z), which is not “naturally” a c-supertile, but only due to the
special character of the inflation rule (10). In contrast, in the other corner

it contains a cluster congruent to the supertiles of order n —1 , but n o t (19.3)
of the type of any coloured supertile (cf. Fig. 9.6 - 9.10). Clusters of such
a type we shall call pseudo- supertiles in the sequel. J

10 Tn this section we use the term type as an abbrevation for “congruence class of ..., all coloured in the

same way”. We call two clusters equal, if they are of the same type. Obviously there are congruent
clusters, which are n ot equal.
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Every rectangle R"(.,.) is the union of two c-supertiles of order n. For
n > 3 it contains three c-supertiles and one pseudo-supertile of order (19.4)
n—1 (cf. (3)).
These pseudo-supertiles will play an essential role in the proof of Theorem 2.
Next we consider the vts of the coloured inflation species defined by (10). Quite

a few are contained in Figure 10. ~ We see (and can deduce also from Fig. 9.10), that

X \%

X

\

clE

W

G

\%

X
v C

A
Y 4

Z X
A
B W Y b

vHXV)

q/z(x)g
vl C E
W v3w.

C
'ch(é B y X Z B

va3xvi Z
Elz A A

z z v A0S X

A B B

1

Y x|/ 2%

vez/gl e\ x x v ol v [ v X

A A DuB D C
AV A

v(W,2)

o E
B
V.6
v&zX)

C X
4

E
Z58 54 W Y
3 v&(V.X) 3
v Y 23 v
Y Vv AW e Y
W
v Y % v
c B c A B c B
Z X Z X Z Z X Z

Figure 10: infll’(Z U X) ( infi'®(Z) upper left, infl'°(X) lower right part)

< |m

w
B

VIW, Z) C infl.(V$(W, Z) is a new type, while V7(Z, W) = V5(V, X). It is easily checked,
that V3(W, Z) = V8(Z, X). So we have with respect to infl, the following “family trees”:

1223242520627
14223324235 —=260.

Type 1: (20)
Type 2:
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Here type 1 is represented modulo Aut. by V.(Z, X) whose vertex is always on the bound-
ary of a pseudo-supertile, while type 2 is represented by V.(X,Z). The vertices with vts of
type 1 are highlighted by bold dots in Figures 9 and 10.

We need a complete list of all vts 2 V5. Since (12) is subject to Aut, there are 15 of
them. For abbreviation we denote e.g. V5(X,Z) by

ZAYZIWAXZ  (cf. Fig. 10). (21)

The first place in this code corresponds to the large tile, whose middle edge is split by a V!,
the second place to the small tile, which belongs to this V!, etc.. We give the complete list:

V8(Z,X) = WEVW|ZBVX VSX,Z) = ZAY Z|WAX Z )
VIX,V) = YDXY|WAXZ VSV,X) = WEVW|YEZW
VS(V,Y) = VCZVI|YEZW  V(Y,V) = YDXY|VDWY
VE(Y,W) = XBWX|VDWY VW,Y) = VCZVI|XCYV
VSW,Z) = ZAY Z|XCYV VYZ,W) = XBWX|ZBV X

VI(Z,X) = WEY Z|WAZW
VI(X,V) = VCXY|VDYV
VIVY) = ZAWX|ZBX Z
VI(Y,W) = YDVWI|YEWY
VIW,Z) = XBZV|XCV X )

We close this section by

Remark 7: If in a c-supertile of any order the colour of any one tile is given, the colouring
of the whole c -supertile is determined.

This is an immediate consequence of (17): There are only five c-supertiles of every
order and at every place every colour occurs just once. O

5.2 The corresponding coloured Imr-species

We define the coloured local matching rule lmr,,. by the atlas made up by the 65
coloured vertex stars (vts) of the coloured inflation species considered in Subsection 5.1 .
We want to prove

Theorem 2: S(Fe, Imry;) = S(F., infl,) .
Obviously this implies the

Corollary : S(§,infl) can be defined as F(S(F.,1mr,;.)), where F is the “forget functor”
with respect to the colours.
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Before we start with the proof of the theorem itself we premise five remarks and a crucial
lemma. In all these statements the silent prerequisite is, that we are in S(F., lmr,;.) and
not yet in the desired inflation species and that our structures occur in a global tiling.

Remark 5.: For 1 <n <5 V!.,.) enforces the corresponding coloured rectangle
R2(.,.). In the same sense for 6 <n <7 V(.,.) enforces C2(.,.) (cf. Def. 3).

The proof is quite analogous to the proof of Remark 5. At every step the colour of two
tiles, one tile at either side of the principal diagonal, is known already. Hence only one
of the ten congruent coloured vts will fit. O

Remark 8: Let D be a cluster congruent to a supertile of first order (cf. (3)) in a tiling of
S(§e, Imry;.) ; then D is a c-supertile. In other words: There are no pseudo-supertiles
of first order.

Proof: Consider the vertex z, where the two right angles are. Due to Remark 4(e) V(z) 2 V!
or V3. In both cases D lies completely on one side of the principal diagonal of the corre-
sponding rectangle, and therefore is a c-supertile. 0

Remark 9: (a) Let D be a cluster congruent to a supertile of order two and let x be
its rightangled vertex. Further assume V.(x) to be of order n different from 6
(n <7). Then D is a c-supertile.

(b) The same holds, in case V.(x) = VS(.,.), if D contains the tiles in place 5 and
place 6 in our list (L).

(c) The cluster D is a pseud o -supertile, if and only if V.(x) =V(.,.) and D
contains the tiles numbered 2 and 3 in (L).

Proof: In all cases of part (a) and (b) D is a natural subsupertile of one of the two c-
supertiles of order n, which constitute the rectangle in which V,(z) is contained. The only
case not covered by (a) and (b) is (c¢) (cf. Fig. 10). The “if-part” of (c) is true, since it is
true for V5(X,Z) and for V5(Z, X). O

Remark 10: Whenever a vts V/(.,.) occurs in S(F.,1mr,;.) the tile in place 5 of our code
is part of a c-supertile of first order (cf. the small shadowed tiles in Figs 9.10 and
10).

Proof: W.l.o.g. we consider only V7(Z, X), the one of Figure 9.10. Due to Remark 5, it
enforces C7(Z, X) (cf. Fig. 11). If Remark 10 were false, due to Remark 8 we should have

V(k) £ V2. (22)

Applying Remark 6 we conclude V(k)2V? and V(i) £V%. Since the code of V(i) has to
be ... WI|ZB .., weget V(i) =V5Z, X). It follows V(q) 2V® or V® (cf. Remark 4(f)).
If V(q) were a V°, the triangle Aiguv had to be a c-supertile. Since it is not, we conclude

V(q) 2V°¢ with code YC .. |.. WY . But such a code does not exist in the list (L) and
hence (22) must be false. O
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Figure 11: Proof of Remark 10

Lemma : Let R? be a rectangle of order three in a tiling of S(F.,lmry,.). Then the two
corners of R® which lie on its principal diagonal have vts congruent to V5. (They

may by of type V7(.,.).)
Proof: W.l.o.g. we may assume
Re=R(V,X) (P.0)

as shown in Figure 12. The little ciphers in the tiles correspond to the order of the arguments
in the following considerations. When only the location of a tile is known, but its colour yet
unknown, the cipher is in one of its corners. Otherwise it appears as a lower index of the
name of the tile.

Since Aace is a pseudo-supertile
V.(a) =V(.,2) (cf. Remark 9(c) and (L)), (P.1)

and we get Figure 12 up to index 1.

Now, due to Remark 4(f), V(d) has to be either a V° or a V°. In the latter case —
since the code .. WW/|Z ... does not exist —, Z; must be in place 7 and W; in place 1.
In either case

we can add the tiles with index 2 in Figure 12 (but yet cannot determine (P.2)
their colours). '

This shows V(b) £ V" for n < 3.

Let us assume V(b) £ V0. (23)
Consequently
V(b)2V* or V° (P.3)



5Colouring does help (Theorem 2) 17

//\
5 N\
RS
/ 5 53 P
5 3K
h’ s b N c
N
N0 Vs 2 Xo / fVo X
D7 D. G G
5 VA i S
Z;

Figure 12: The case V(d) 2 V"

and we get the two shadowed tiles at the vertex b. This enforces
V(f)2V! (P.4)

because, due to Remark 4(c) and 4(f), the only other possibility would be a V? | leading at
¢ to the configuration of Figure 5(d), which we had excluded.

The new tile at f rules out the case V(b) 2V’ which would require the dotted tile
there. So we can state

V(b) 2 V* and consequently V,(b) = V(. , X). (P.5)
Case 1 : V(d)2V°.
Then, due to (P.5), the code of V(d) is W ...|. AZW and
V.(d) = V!(Z,X) (cf. (L)), and we may apply Remark 10. (P.6)

This (the highlighted tile Bg) implies

Ve(g) = VI, V). (P.7)

Now — since X5D;X; is a pseudo-supertile — we can apply Remark 9(c) once more
and see, V.(h) has to be a V¢ with the tile D; in place 2. But this contradicts the
configuration at h determined by (P.5). %

Case 2 : V(d)2V>. Then
V.(d) = V2(W, Z) (cf. Fig. 13, which is up to index 5 a copy of Fig. 12). (P.8)
Now the highlighted tile Eg does not allow V(g) 2 V? (cf. Remark 4(j)). Therefore

Velg) =V, (Y.V). (P.9)
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Figure 13: The case V(d) 2 V5

Next V(i) cannot be a V7 since then the large triangle A oio had to be a c-supertile,
but is not. Hence V(i) 2 V® with code either .. XY|V ... or X ...|.. VY. The latter
type is not in our list (L) and we conclude

V(i) = VY, V) or VI(X, V). (P.10)

Since these two vts coincide in Dyg, we get
Ve(j) = V. (W.Y). (P.11)

Now the cluster Wy BgWj is a pseudo-supertile, and again we end up with

V(h)2V° (cf. Remark 9(c)). (P.12)
The code had to be ....|WBX ., which does not appear in (L). ¥
This proves (23) to be false. O

Now let 7 be an arbitrary Imr,;.-tiling. Due to Remark 8 we can define DEFL.(T)
as follows (cf. the proof of Remark 1) 'V:

Every supertile of first order is considered as o n e tile with the appropriate name
given by (10) ( BW becomes V etc.). The remaining large tiles are also renamed according
to (10) (V becomes A etc.). Finally the whole tiling is shrunk by the factor /7 and
clockwise rotated by 90° (i.e. we apply ! ; cf. Fig. 1).

1) DEFL. is n ot defined in terms of infl. and it must not be considered as left inverse of infl, ; not
yet. It is rather an operation deduced from lmr,;. (which of course once was derived from infl,, which is
in geometric accordance with infl. The authors regret the somewhat confusing situation.)
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Of course the definition is designed to guarantee

infl.(DEFL.(T)) = T. (24)
The crucial role of our Lemma becomes evident in the proof of
Remark 11: If T is a member of 8(F., lmry;.), then so is DEFL.(T) .

Proof: Tt is sufficient to show:

Let a be a vertex of 7, V:=V"(a) its vertex-star (2 <n < 7) and W the vts of
the corresponding vertex b in DEFL.(7); then W is a member of lmr,; .

Case 1 : All the supertiles of order 1 with vertex a are contained in the corresponding
rectangle R2(.,.) (for n <5)orin C!(.,.) (for n =6, 7).

Then W is contained in R?7'(.,.) (orin C® or C! respectively) and therefore it is in
lmry;. .

Case 2 : There is a supertile of order 1 with vertex a whose smaller part is outside
of R? (C%, C7 resp.). Then — independent of n — we have the situation of Figure 14.
W.l.o.g. we may assume the critical supertile to be of type infl.(Y) = DX .

a

D |X

Figure 14: The critical configuration for DEFL,

From Remark 4(e) we deduce V(z)=2V?, and our Lemma shows
V(a) 2V (25)

Due to the assumption of case 2 X must be in position 5 in the list (L), and we have
either

Ve(a) = VI(W, Z) or VI(W.Y') or V(W, Z). (26)
It is easily checked, that this leads to
W =V.(b) =V (Z,X) or V}(X, Z) or V&(W, Z). (27)

All three vts are in (L). O

Proof of Theorem 2: We have to show: A tiling 7 is an infl.-tiling if and only if it is an
Imr,;. -tiling.

If 7 is a member of the inflation species, then by definition all its vts are in Imr,;,. .
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If on the other hand 7 satisfies Imr,;. and £ is any cluster of 7, we have to prove:

There exists a prototile T" and an exponent n , such that infl” (T") contains
a cluster which equals £ (cf. '°) on page 12).

Indeed: We only need to apply Remark 11 m times, such that /7~ "L is contained
in a circular disc D of radius .3. Then, due to (8) D is contained in some vts V.(x) of
DEFLT(T), which by Remark 11 is a member of lmr,,. .

By Definition 1 there is a prototile 7" and an exponent k such that a copy of V,.(r)
is contained in infl*(7) 2. Thus there is an isometry ¢ with

o(L) C (D) C inﬂ](fJ’m(T).

6 Projecting the tilings of the species

As one of our aims is to calculate the FOURIER transform of the autocorrelation func-
tion of the vertex set of a y/—7 -tiling, we do not actually present a projection scheme for
such a tiling but for the vertex set of such an tiling. From this vertex set, the tiling can be
generated by the following method: The minimal distance of two vertices is 7~!, and this
solely occurs between a pair of vertex stars V'. So in this first step we can decorate all
areas of rectangles R! with the proper tiles. For the second step we have a closer look at
the next larger possible distance, which is \/7_'_1. If none of both involved vertex stars is
a V!, then both have to be V?, and with that we get all tiles lying in some R?. In the
third step we use, that a similar fact is true for distance 1 of two vertex points: If none
of both is known to be V! or V%, then both are V? and therefore all tiles in rectangulars
R? are known. As all small triangles have their rectangular vertex in a vertex V! or V3
we already reconstructed all small triangles. These uniquely define supertiles of first order
respectively all large triangles in such supertiles. Now the remaining unknown areas could
only be single large triangles and pairs of large triangles. The dissection of these pairs into
two large triangles is unique, because the splitting diagonal is restricted to one of the four
orientations of edges in the tiling.

12) In fact we see from Figure 9: Every VI(X,Z), and every VI(Z, X) as well, occurs in inflZ*3(V).
Hence k£ =10 will do.
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6.1 A setting for defining the species by a strip projection method

A general scheme for a strip projection method can be seen in the following diagram ',

V.c Z cC Ep

Tne e

m* ™ A C ]ES :EPXE[ (28)
im
W c E = E
where
e V is a discrete point set, here the vertex set of one of our tilings,

Z is a Z-module containing all vertices,

Ep is the so-called physical space, the space the tiling lives in, the Euclidean plane in
our case,

E; is the so-called internal space, its dimension is chosen as small as possible allowing
a lattice A in the direct product Eg = Ep x E; (the so-called superspace) such that
the projection 7p from Eg to Ep, when restiricted to A, becomes a bijection from
A to Z,

7y is the other projection from the Eg to E; and we require 7;(A) to be dense in
EI )

7 :=mromp is defined on Z and

the window W is chosen such that V = {z € Z | n*(z) € W}. We require W to be
compact, the closure of its interior and that there are no projections of lattice points
on the boundary of the window, oW N (A) =0.

For a fixed lattice A and shape W C E; one usually considers all windows W + ¢ (¢ € E;),
such that (W +¢) N7 (A) =10.

Definition 5: Given Ep, E;, a lattice A € Ep x E; and a window W we call c € Ey

regular if (W + ¢) N7 (A) =0 and denote with C the set of all reqular ¢. For each
reqular ¢ we define the projection set V(c):={z € Z | n*(z) € W + ¢} and the set of
all projection sets P(A,W):={V(c) |c€ C}.

13)

To be honest, this is not the most general scheme, as the physical and internal spaces need not to

be Euclidean ones, they only have to be topological Abelian groups; the lattice A then becomes a discrete
subgroup of the direct product (compare [13]).
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We will find the correct terms for the vertex sets of our tilings in two steps: first we
derive the Z-module Z and choose a matching internal space and lattice. In a second step
we choose a proper window. In this subsection we will describe how we get to these different
sets by smart guessing and choosing without bothering about proofs. In the next subsection
we will proof the whole setting at once.

A closer look at the tilings of the species suggests, that all vertices lie in the rank four
Z-module Z := (\/7(1,7)) x (1,7) (at least if one vertex is at the origin). So it suggests
itself to take as superspace Ef = E% x E2. Let 7p be the projection on the first two com-
ponents and 77 the projection on the last two components of a vector x € EL. To find
a possible basis {l1,la,13,14} of the matching lattice A C E¢ we split the inflation infl as
presented in Section 1 into two parts: the scaling (and rotation) given by the linear map (3
and the subdivision or (as we only look at the vertex set in this section) the addition of new
vertices o . Like the module Z is invariant under the action of (3, the lattice A should be
invariant under the lifted version (g of . That is, Bs has to be an uni-modular trans-
formation of A. Bg, the lift of 3 on A, is defined as B¢ = 3 x 3* =3 x (7* o Bom*™!).

3 3
As p(19)="37). sy =10), B(15) = M) and B(VT)) =) = 1), with
mp(h) =19, 7p(le) == 17Y7), wp(ls) == 1°), 7p(l) = “/U#) Bs becomes the uni-
modular transformation which maps l; — Iy +— I3 — 4 — [y — 3. Taking (s as a linear
map on R! the eigenvalues are +v/—7 and +,/7 ' and E2 is the real part of the sum
of the eigenspaces to 4+/—7. As this is characteristic for the lift of the expansion map
(3, the linear inflation factor is indeed rather /—7 than /7. To make the projection fit
to the inflation, the last components of the lattice basis have to be chosen in such a way,
that E? contains the eigenspaces to the other two eigenvalues. Because it makes later cal-

-1
culations more convenient we choose 3* to be represented by the matrix | 0 vr ) and

vihoo
() = |_‘1ﬁ3) . With this choice the lattice A reads
0 —\/T 0 VT
1 0 — 0
A= <l17 127 l37 l4> - < _\/7—_3 3 \/7—_—1 3 _\;7__ ’ \/7—_—3 > : (29)

1 —T 7! -1

To get an idea of how the window W may look like, we take some points of A
and project them into Fz , distinguishing between points which belong to a certain tiling
and points which do not. In Figure 15 every filled circle corresponds to a vertex of the
tiling indicated in Figure 10 (if the origin is settled at the vertex denoted with V¢(X, 7)),
whereas every unfilled circle represents a lattice point not being projected on a vertex of
that tiling. Looking at this figure, we claim, that the window W + ¢ is a rectangular
box with edge length 2\/7_'3 and 27 which is translated by some vector c¢. So we define

W= ‘1/7;3)’ ‘\/:—3)) , denoting by (11'17), ‘Z;)) the closed rectangular set with lower left
) lyl)) = [x1,y1] X [x2,y2]. For a,b€Z

|71 i |91 |z
corner m) and upper right corner yQ), ] > e
every line | E

T2

3
a+b7) and |“‘/FE{I"/F ) in E? contains a dense set of lattice points projected by
77, but every other horizontal or vertical line contains no points of m;(A). Hence the set
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Figure 15: Determining the WlndOW experimentally

C' of all regular points ¢ is given by

=B\ | (L5)U ), @0

a,be’Z

because ¢ € J | % ) if and only if ¢+ I ‘/_ ‘/_ NcUu | +,,) and similar for the vertical
lines. Using thls terms we state

Theorem 3: For every reqular c, the above projection set V(c) ={z € Z | n*(z) € W + ¢}
is the vertex set V(P) of a tiling P € 8(F,infl), the inflation species of Definition 1.

6.2 Proof of Theorem 3

The tiles A and X occur in a tiling P € §(F,lmr,;) in (at most) four orientations
given by the four linear maps ¢y = id, the reflections ¢; and ¢, defined in Section 2 and
the composition of both reflections, the 180° rotation 3. The maps ¢ corresponding to
¢; in E? (the linear extension of m* o ;0 7*~" on m;(A) to E?) are ¢} =id, ¢! and ¢}
are the reflections at the vertical respectively horizontal line and ¢3 is of course again the
180° rotation.

We now split the window W into 24 parts W;; (i=1,...,6, j=0,...,3)

1 T 7 T 7! T

given by WI,UZEH\O[)a I\C )); WQ,OZDH?): l{)); W3,0:|:|H\f0 ); ‘{))a
1 -3 —1 -3
Wio=01'10), V7)) Wap=03IVL7), ML) Wep=0310), M) and
Wi = ¢;(Wio). (The Wi, are the black boxes in the last column of Table 1.) c€ C
ensures, that the boundary 0W;; of each W;; contains no points of 7*(Z). So we uniquely
can assign to every point z € V(c) a vertex star V' and an orientation ¢; according to
m* (SU) € Wi,j .

Table 1 then shows (explicitly for j = 0, but for the other orientations the situation is
of course congruent), that if vertex star V' and orientation ¢; is assigned to = € V/(c), then
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Image of the possible
Vertex stars V' vertex points positions in W

under 7* (B=Wi)

Table 1: Internal images of the vertex stars

24
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V(c) contains all vertex points of the tiles in the vertex star ¢;(V') + z: For the vertex
stars in column 2, column 3 shows the position of the internal images of the vertices of all
tiles relative to the point where the vertex star is settled. The last column then proofs, that
if € W;;, all these internal images are in the window W.

Furthermore, by investigating the possible positions of the points a,... in the window
W , one easily sees, that to each of those points such a vertex star and orientation is assigned,
that its correctly oriented vertex star fits together with the central one, i.e. the intersection

consists of non overlapping tiles.

So starting from one point x € V(c¢) it is possible to find tiles surrounding x, such
that every vertex of these tiles is a point of V'(¢), and then to find tiles surrounding all these
vertices with the same property and so on. Finally one gets a tiling P., € S(§,lmr,;),
whose vertex set V(P.,) is contained in V'(c).

The same can be done for another y € V(¢) leading to P., € S(§F,Imr,;) . The deter-
mination of the vertex star and the orientation assigned to a point y € V/(¢) is unique. Hence
it is V(P.z) = V(P.,) for y € V(P.,) and V(P.,) NV (P.,) =0 for y € V(c)\ V(Pea) -
Therefore

Vie)= . [JV(Pea) (31)

for some X C V(c) and P, € S(F,lmr,;).
The global density

dens(V'(c)) := lim #(V(c) U (1B’ + 2))

r—00 Vol (rB4) (32)

x € E%) exists for the projection set V(c) (independent of z € E4 and c € C) and is
P P
given by

Vol(W)
= _ 33
dens(V (c)) det(\) (33)
(For a rather general proof of this existence and formula see [13].) Hence
4372
dens(V (c)) 107 5\/F 82327 (34)
The global density of a set V(P), P € 8(F,lmr,;) can be estimated by
e HVPYUEB + ) 1 1 3
£l f > —. = ~ .48587 35
o Rt Vol(rB) 23 ) — VT (35)
and
B _
sup lim sup #(V(P)U (B + v)) =27 P~ 97174 (36)

TER, T—00 Vol(rB¢) - ‘Vol(X)
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as % . #(X) is the density of vertex points in a triangle X with no vertices on edges and

therefore the smallest possible local density in a tile, and 1 - \101#()() is the density of vertex
points in a triangle X with vertices on both possible edges and therefore the largest possible

local density in a tile. (The vertex density in a triangle A is always % . Voll(A) = \/F71 ~ .786

in-between.)

A comparison of (35) and (36) with (34) shows that the union in (31) is a union over
just one tiling, that is to say

for every V(c) € P(A,W) there is a (uniquely defined) P. € S(§, lmr,;) , } (37)

such that V(c) = V(P,).

For each ¢ € C' let in the remainder P, be that uniquely defined tiling in S(§, lmr,;)
with V(P.) = V(c). In order to show that every P, is in fact a tiling in S(F,infl), we
define an inflation on P(A, W) by infl(V(c)) := V(infl(P.)) and describe this map in terms
of the internal space. This is done separately for both parts of the inflation infl =00 3 (cf.
Section 6.1). We already have the internal counterpart §* to ( for which

V(B(Pe)) = B(V(P.)) = B(V(e)) = {B(z) € Z | m"(x) € W + ¢}

={zeZ|r"x) € (W+e) (38)

holds. The definition of the inflation infl (cf. Fig. 1) shows, that the subdivision o only
produces new vertex points in a tiling 5(P.) on the long edge of a tile §(X). And even
that only occurs if two such edges meet edge to edge, that means only in a scaled rectangle
“0” (cf. Fig. 4). Furthermore, from the vertex stars V!,... V% it can be revealed, that
four vertex points in such a rectangular position uniquely determine a scaled rectangle “0”.
So for the scaled vertex set (V(c)) = B(V(P.)) all new vertices can be described in the
form (A(V(c)) + t1) N (B(V(€)) + ta) N (BV(€)) + ta) N (BV()) + tay) . where £, are
the translations, which move the four points of a scaled rectangle “0” in orientation ¢
into one of the two new vertices inside and ¢;; = ¢;(;) . Fixing the orientation of a scaled

1
rectangle “07 as that of vertex star V' we get t,4 = “ﬁ), tao = ‘T‘_ﬁl), t30 = ‘_‘ﬁ ),

tip = |*‘€_1) the other ¢, ; by t;; = ¢;(tio). Hence the inflation of V'(c) as a pure point

M
operation reads

infl(V(c)) = o (5(V(c))) (39)

=s(V(enu M BV() +ty) |- (40)

j€{0,..,3} \i€{lL,....4}

Using the notation #;; = 7*(t; ;) (which is well defined as all #;; € Z') we define for W' C E;

swh=w'u N W' +t,)]. (41)

510,83} \ie{1,...4}
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With this ¢* we have the equivalence

zeo(f(V(c)) & ' (z) € " (F"(W +¢)) (42)
respectively

infl(V(e)) ={z€ Z|7%(2) € infl*(W + ¢)} (43)
where infl* := o* o 3*.

Deriving ¢;,= V1), t5,= V"), t5,= “/7:1) and t}, = |‘/1;3) and using

BEW +c¢) =B (W) +B*(c) =3 ™7), V7)) + 5*(c) the “py” component in the union
of o* applied to *(W + ¢) reads

() BV +c)+15)

= (212), B) oY), ) nal ), ) naa V), M) + 87
=l V), wf’)) + 6%(c) (44)

(compare Fig. 16). This is exactly Wi + ¢, which is not to surprising, as V' arises during
inflation only as result of two tiles X sharing the long edge. Because of the symmetry of the

\>
/é

<0

we gt | \

W+c

Figure 16: “Inflation” of the window W + ¢

t;j, the other components of (41) have to be ¢;(Wi) + ¢ =W, ; + ¢ and the “inflation”
of a window W + ¢ simplifies to

infl"(W +¢) =" ("W +¢)) = (W)U Wi oUW UWi 5 UWi3) + 3%(c) =W + 5%(c).
(45)
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So finally we have a very simple description of the inflation of a projection set
infl(V(¢)) = infl(V(P,)) = V(infl(P,)) in terms of the internal space

infl(V(c)) = V(5*(c))- (46)

As p*(E;\C)=E; \ C and (* is bijective we have, that this inflation infl is a bijection
of P(A,W) into itself. Hence defl =infl™" exists and reads defl(V(c) = V(5*'(c)).

As the deflation of a tiling is uniquely defined depending locally only on neighbouring
tiles (compare Remark 1), for P € 8(§,lmr,;) defl(P) is well defined, even though it might
be, that defl(P) is no longer a member of S(§,lmr,;). But for a P, € §(F,Imr,;) we can
state

V(defl(P.)) = defi(V(c)) = V(B (¢)) = V(Pg--1()) (47)

and as the vertex set V(Pg.-1(,) uniquely defines the tiling Pg.-1(,) € S(§,Imr,;) with
infl(Pg. 1)) = Pe, we find defl(P.) = Pg.-1(,) € S(§,Imr,;) . Therefore the deflation can
be iterated on the the set {P.|ce C}.

For a tiling P, (c € C') a cluster C C P, is covered by a ball of some radius p. If n
is chosen such that %7'_1 -/T"™ > p we can conclude that C is part of the nth inflation of
a vertex star of defl”(P,) (compare (8)). Each vertex star is contained in the tenth inflation
of some tile A (compare proof of Remark 3a respectively Fig. 10), hence C is congruent to
some part of infl""'%(A). As this is true for each cluster of P,, according to Definition 1

P. is a member of S(F,infl). O

6.3 On the converse of Theorem 3

While Theorem 3 states
PAW) C{V(P)| P e S(F,infl)} (48)

the converse is obviously not true. Despite of all V(¢) C Z, the vertices of P € 8(F,infl)
can be in arbitrary positions, and while each triangle reconstructed from a V(c) is in one
of the orientations ¢y,..., s, with one tiling P € S§(F,infl), all congruent copies of P
are also members of S(F,infl). But besides these trivial cases there are some singular
tilings P € 8(F,infl) with V(P) C Z and all triangles nicely oriented, whose vertex set
is not a projection set in P(W,A). To construct an example, we take a tiling P. with
ce CN(—=Wsp). Then 0€V(P.) and V(0) =V° in orientation ¢,. Now we define
P :=liminfl"(Py) for n — oo (cf. Fig. 17). P is well-defined as V° C infl(V°). Obviously
P is a member of 8(F,infl), but V(P) & P(A, W), because V(infl"(P,)) = V(5*"(c)) and
lim 5*"(¢) = 0 ¢ C'. Nevertheless

PeS8S(F, infl), V(P)C Z andall T € P are (49)
in orientation g, @1, Yy Or V3

PAW) = {V(P)

with one of the usual topologies in the space of all discrete subsets of E? defined by identity
around the origin (cf. for example [6]).
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Figure 17: An inflation invariant tiling

6.4 Non equivalence to the AMMANN tiling 8

Obviously the tiling P of the last subsection is invariant under inflation. Together
with the rotational part of the expansion map [ this causes an infinite spirale in the center
of the tiling, see Figure 17. Now the repetitivity of the species enforces every local part of
every tiling to contain finite spirals. Similar spirals can be observed in another species of
tilings. The connection to this species will be investigated in this subsection.

In [2] chapter 10.4 GRUNBAUM and SHEPHARD describe a class A2 of species with
so-called chair tiles designed by Robert AMMANN. One of these species (choosing the free
parameter to be 7) has an inflation with the real inflation factor /7, and a closer look
shows that a precise description of the inflation again uses the expansion map (3 defined in
Section 2. Let us denote with Sa, this special species of the whole class in the remainder.

The fact that S(F,infl) has no local matching rule whereas Sa, has one, shows
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that the two species are not mutually locally derivable (MLD). (For a introduction into the
equivalence concept MLD for LI-classes of tilings see [9].) We will give here another argument
for this non equivalence, based on the projection of both species. In [5] was proven, that two
projection sets projected from the same lattice are MLD, if and only if the window(s) of one

projection set can be reassembled by a finite collection of the operations AU B, (AN B)°,
A\ B applied to translates of the window(s) of the other projection set and vice versa.

In order to get a tiling Sa» by a projection of the lattice A (see (29)), we choose the
edge lengths of S to be %\/7_'73, %T‘l, %\/7_'71, %, %\/7_', %T and that of L to be
%7*1, %\/7_'_1, %, %\/F, %7‘ and %\/Fg, respectively.

The orientation of the two prototiles is fixed such that all edges are parallel to the re-
flection lines of ¢; and s defined in Section 2 (cf. Fig 18). Then there are four orientations
of the two tiles given by S; = ¢;(S) and L; = ¢;(L) with ¢; as in Section 6.2.

gg% i lesz i

Figure 18: Inflation of the AMMANN chairs and control points

In contrast to Section 6 we will not project the vertices of a tiling of Sa, because the
Z -module defined by the vertices is — in contrast to the triangle tiling — not the limit
translation module determining the projection. Therefore we choose certain control points,
one class for each prototile in each orientation. As position of the control points we choose
the center of a spiral built by consecutive supertiles. Given a tiling P € Sa, the sets Pr.(P)
(T'=S,L and i =0,1,2,3) of all control points can be derived by putting a control point
in each tile. Given all control point sets Pp one gets a tiling by surrounding each control
point with the assigned tile.

The inflation of a system of control point sets of a tiling is of course defined as the
system of control point sets of the inflated tiling. From Figure 18 we can read off

Ps, (infls,, (P)) = B(PL,(P)) + o Pr,(infls,, (P)) = 5(Ps,) U B(PL,)
Ps, (infls,,(P)) = B(PLo(P)) +t P, (infls,,(P)) = B(Ps,) U B(Pr,) (50)
Ps,(infls,, (P)) = B(PL,(P)) + 2 Pp,(infls,,(P)) = 6(Ps,) U B(PL,)
Ps,(infls,, (P)) = B(PL,(P)) + s Pry(infls,,(P)) = 5(Ps;) U B(PL,)
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(cf. Fig 19)
Wso = A1), ) V) Wy = AIR), V), 197))
We = AITVD) 1=V 1=V W, = ALY VP V7
S1 \7 ) \[;1 )\[5 -7 )) Ly 8)’ —; )’ —72)) (51)
WSQZAllT;—)J‘ ;)7|:)) WLQZA‘lo)ﬂl\/f)’l\’r/z))
3 5 3
Ws = A107). V), 1Y) Wiy = AT, 7). 74)

is invariant under the internal inflation inﬂji;A2 )

Figure 19: Windows for AMMANN tiling Sa,

The size of the windows is again verified by the calculation of the density and for-
mula (34). The density of the set of all control points of one tiling, is given by

1 2 3
dens(P) = 772 Vol(S) + 7! Vol(L) - 5\/7_— (52)

because |:j) gives as a right eigenvector of the inflation matrix (91) the relative frequen-
cies of the tiles S and L (and in each tile there is exactly one control point). This matches
Vol(U Wr,)/ det(A) = %ﬁg, completing this outline for a proof of this projection setting
for Say tilings.

Notice that the density of control points of any Sa, tiling is the same as the density
of the vertex sets of the tilings in S(§,infl) (with the above sizes of the prototiles) (cf. (34).

All edges of the window W for the vertex sets of S(§,infl) tilings are horizontal
or vertical, whereas edges of the windows Wy; for the control points of Sa, tilings are
neither horizontal nor vertical. By the allowed reassembling operations (translations, AU B,
(AN B)® and A\ B) no edges in new orientations can arise. Hence S(§,infl) and Sa,
are in different MLD-classes.

But there is another connection between the species Sa, and S(F,infl): The inflation
infla, of Sa, is the Galois dual of the /—7 -inflation infl, see [8] Anhang B.5.
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6.5 Fourier transform

For a fixed projection set define A =V (c)—V(c) and for z € A let v(z) be the
density of points y € V(¢) such that also z +y € V(¢). Then the so-called autocorrelation
distribution of V(c) reads

Wi = Y v()d (53)

where 4, is the DIRAC-delta distribution settled at = € E% . The amplitudes of the Fourier
transform of this autocorrelation distribution are proportional to the intensity of the BRAGG-
Peaks observed in a diffraction experiment.

Figure 20: Calculation of the dlfﬁ“aCtIOH image of the vertex set of one tiling

As all projection sets V(c) are in the same local isomorphism class, the Fourier trans-
forms of their autocorrelation distributions are identically and given by

aw = Y. A0 (54)
Y enp(A)

where A’ € E{ is the dual of the lattice A and the amplitudes A(z') are

1 : )
A n —2mi(m* (2"),y)
)= G /_ o dy

11 sin(2my/72) sin(2r72') (55)

2 1% 1%
107 = 2" Z'5

where the 27 are the two coefficients of 7*(2') (cf. [14], [11] and references in the latter).
Figure 20 shows this Fourier transform. The radii of the printed circles are proportional to
the absolute values of the amplitudes, that is to say the area is proportional to the intensity
of the BRAGG peaks in a diffraction image. Only those spots are drawn, whose intensity is
greater that 0.1% of the central one. Notice the both reflection symmetries, which are of
course @1 and @y defined in Section 2 and the almost self-similarity with expansion

map (.
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7 Concluding remarks, open questions

1. We think, it would be worth-while to search for species with similar properties for other
complez PV - numbers instead of /—7 (e.g. n = \/—(1 + 2 cos(%)) ~ 1.498993 7).

2. The atlas of the local matching rule Imr, of Section 5.1 cannot be reduced to the
atlas of couples of tiles, which share an edge or part of an edge. Therefore it is also
impossible, to replace lmr, by small alterations of the shapes (in five — resp. ten —
different ways).

(b) Fourier transform

Figure 21: Scaled /—7 -tilings

3. If a tiling in S(§,infl) is scaled by 1/v/5 in the direction of the line of reflection of
©1 (see Section 2), but not scaled in the perp direction (that of the line of reflection
of 9), then the two tiles deform into two new tiles, the two ROBINSON triangles,
which are the two isosceles triangles whose angles are multiples of 36°; that is to say
the two isosceles triangles, the edge lengths of which are 1 and 7 (see Figure 21(a)).
The Fourier transform shows an almost tenfold symmetry and it is near by hand
to compare it with the Fourier transform of one of the decagonal species with the
ROBINSON triangles. This is done in Figure 22 for the species Sttt of so-called
Tiibingen Triangle Tilings (c.f. [4]).

The standard projection for Sttt from a root lattice A; embedded in a five-
dimensional space can easily be transfered to our projection setting, where we scale the
physical space in ; -direction and also the internal space in the affiliated (horizontal)
direction by 1/\‘75 Both the resulting windows are shown in Figure 23.

4. In addition to Sttt there are other well-known examples of species with these two
ROBINSON triangles, namely the PENROSE-tilings in ROBINSONs triangulation
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(a) Tiling (b) Fourier transform

Figure 22: “Tibingen Triangle Tiling”

Figure 23: Windows (ee*e scaled /—7 species, TTT)

(Spr cf. [1]) and the chiral tilings ( Scpiral cf. [3]). Table 2 shows the different inflation
rules to the inflation factor 7. Notice that for the scaled \/—7 species Sseq inflation
with a linear factor /7 is no longer possible, because the tiles change their shape when
[ is applied. But the squared inflation is again a pure tile inflation. Here we may
ignore the 180°-rotation of 32, because this rotation occurs already as orientation of
the single tiles in the tiling.

5. In general there are essentially two types of inflation rules for the ROBINSON triangles
with factor n =7 (cf. Table 3). The orientation of the isosceles prototiles A and B
can be described by arrows along their bases. W.l.o.g. they can be chosen as shown in
Table 3.

But in the supertiles one has 23 x 22 = 32 possibilities for either type. Precisely in 8
cases of either type the pseudo-supertile, which is contained in infl(A) coincides with
infl(B), as it is the case for all four species mentioned in Table 2.
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Species

Inflation of

p

Remarks

Sscaled

7

The tiles occur in only four differ-
ent orientations, not 20 as in the
other cases.

StrT

The tilings are vertex-to-vertex.
No tiling with global Dj; symme-
try.

Schiral

P

No reflection in the inflation,
therefore at most ten different ori-
entations of each tile.

Sprr

&

d'd
il

The tilings are vertex-to-vertex.
There are two tilings with global
D5 symmetry.

Table 2: Well-known inflations for Robinson triangles

A

ANEE:

v

Type 1

Type 2

AN
AN

Table 3: Inflation rules for the Robinson triangles
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Are there among these 64 cases some for which the resulting species are MLD to each
other. How many different MLLD classes are defined this way?

In which (how many) of the 64 cases is the resulting species vertex-to-vertex?

In which (how many) of those is it possible, to colour the vertices black and white in

such a way, that white meets white and black meets black, as it is possible for Sp.r?

Are there among these 64 species some without a unique deflation?

Are there others than the four species mentioned in Table 2, which deserve special

interest?
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6. The properties (A), (B), (C), (D) of the Appendix are possibly sufficient but
probably not necessary for Theorem 2 to hold.

7. Under the assumption of (56), (57), (58), (61), and (69) we conjecture: If (C) is
violated, then there are rectangles R.(r,r) in & and hence (D) is also not true.

8. We conjecture, that five is the minimal number of colours in order to get a local
matching rule for our original species.

Acknowledgement: We have to thank Dirk FRETTLOH for a very careful reading of the
manuscript and quite a few valuable comments.

8 Appendix

In this Appendix the algebraic background for the coloured inflation rule of Section
5.1 is presented. We do not want to give full proofs here, but restrict ourselves to a sketch
of the ideas and the more important formulae.

We assume, we have k colours and describe the protoset by §.:={1,2,...,k;1,2,...,k},
where the first k prototiles are congruent to A and the others congruent to X . Therefore
all the following calculations are mod k.

For simplicity
we assume k to be an odd prime. (56)

Also for simplicity we consider only inflation rules given by linear maps. W.l.o.g. such
a rule can be written as

infl.(n) := n, infl.(n) := (bn + y,an + x) (1<n<k). (57)

We are looking for inflation rules with the following properties, which simplified the
proof of Theorem 2 (essentially of the Lemma) considerably.

F. shall be minimal with respect to infl, . (A)

A necessary (but not sufficient) condition for (A) is
ged(b, k) = 1; under (56) this means: b# 0 (mod k) (a may vanish). (58)

The species 8§ := 8(F., infl.) shall be invariant under a permutation group
Aut,., which is transitive on the colours.

All rectangles R.(r,s) occuring in 8 shall be equivalent under Aut.. In
other words: s — r shall take — up to signature — only one value.

In every rectangle R2(r,s) of S there is at least one pseudo-supertile of
second order.

—— —— ——
a

14) Le.: There is no exponent ¢ and no proper subset . of J., such that infl!(F.) = F..
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In order to find necessary (and partly sufficient) conditions on the coefficients a, b, z,y
we first deduce some formulae from (57).

infl2(n) = (bn + y, abn + bz + y,a’n + (a + 1)), (59)

infli’(n) = (0®n+ (b+ 1)y, abn + ay + x, abn + bz + y, (60)
a’bn + (a + 1)bz + y,a*n + (a* + a + 1)z).

(59) shows, that (B) will hold if and only if
b=a’>#0 (mod k) (cf. (58)), (61)

and then Aut, is generated by 7 := (1,2,...,k)(m,2m, ..., km), where m =a~' (mod k).

From now on we assume (56), (57) and (61) and get

infi’(n) = (a*n+ (a® + 1)y, a®n + ay + 2, a°n + o’z + 9, (60*)
a‘n+ (a®* +a*)x +y,a’n+ (a* + a + 1)),

infli(n) = (a'n+(@®+1)y, ., ., ., .,a'n+(a®+a>)z+y, ., (62)
a'n + (a® +a® +a + 1)x),

and

infl(n) = (... ,a°n+ (a® + a")x + (a®> + 1)y, ...). (63)

position 14

The first rectangles R.(r,s) occur in infl’(n) and can be read off from (60*). This
gives

r=adn+ay+z, s=ada’n+ad’z+y (mod k) and (64)
d:=s—r=(a—1)((a+1)x —y) (mod k) independent on n. (65)

If y= (a+ 1)z, then § vanishes and in both corners of R?(0,0) we find the supertile
infi?(x) , whence (D) is violated. Therefore

we assume y=(a+1l)x—c, c¢#0 (modk) and -consequently (66)
d=(a—1)c (modk).

Assume R.(t,t+¢) occursin 8§ . Then we consider next the rectangles in the corners
of R(t,t+¢). Due to (B) it suffices to study the case t = 0 and we find (cf. (62) and (66))

Re((a*> + 1)((a+ 1Dz —¢),a’c + (a® + a* + a + 1)z)
and
Re((a® 4+ a® +a+ 1)z, a*c + (a®> + 1)((a+ 1)z — ). (67)
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The differences turn out to be

a‘e + (a® + 1)c and a‘e — (a* + 1e. (68)

Since we want to realize (C), we require the two differences to be — up to signature —
the same and we are lead to the following two cases.

Case 1: (a>+1)c=0 (mod k).
Then, applying (61), we arrive at

b=a*= -1 (modk). (69)

This implies that both rectangles in the corners of R!(0,2) are equivalent to R.(0,¢); and
if (C) is valid, ¢ has to equal +(a —1)((a + 1)z — y).

Finally (cf. Fig. 9 and (63)) there occur new rectangles R.(r,s) only in the center of
RE(t,t +¢). Due to (B) we may assume t =0 and find (cf. (69))

R.((a® + a®z + (a® + 1)y, a®e + (a® + a*)x + (a* + 1)y) =
=R ((a®...)+..,—+((a®...)+...)), (70)

so there is no new difference.

Case 2: a*e =0 and a®># —1 (mod k).

Consequently e =0 (mod k) (cf. (61)). Then the new difference is (a®+ 1)c
and with & = (a® + 1)c we get the difference 2(a*+ 1)c and so on. But if every residue

class mod k is attained, then among the rectangles R3(r,s) there is an equivalence class
mod Aut, violating (D).

The considerations of page 12 (cf. again Fig. 9) show: Under the assumption of (56),
(57), (58) not only (61) is equivalent to (B), but (61), (66) and (69) also imply (C). It is not
hard to prove, that these six assumptions also imply (A) and (D). Finally from (69) we can
conclude

k=-1 (mod 4) (in case k£ =5 this implies a = +2). (71)

For Section 5 we have chosen k=5 and a =2, b=—-1, z=y=1 (mod?5).
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