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1Introduction 21 IntroductionA tiling is said to be aperiodic, if it does not admit any translation (6= 0) . It iscalled quasiperiodic, if it is aperiodic and the Fouriertransform of its autocorrelation functionconsists of Dirac deltas only, provided their support is dense everywhere. We asked ourselves:What is the simplest set of prototiles with an in
ation that produces planar tilings whichare necessarily not only aperiodic but even q u a s i periodic? For this purpose the in
ationfactor � has to be a PV-number and must not be a natural number 1) (see [10]). Therefore itcannot be the square-root of a rational number. Thus the in
ation matrix cannot be 1� 1and we need at least two prototiles. To make the example as simple as possible, we takeexactly two tiles A and X and require X to be the in
ation of A . So we have a small anda large prototile. The in
ation matrix with minimal entries then isM := �0 11 1� : (1)Here the �rst column states in
(A) := X while the second column expresses, that in
(X)consists of one copy of A and one copy of X . Our realization is shown in Figure 1. Theonly other one (except similar copies) we know of, is the pair of \chairs" due to R. Ammann(see [2] chapter 10.4, also cf. Section 6.4).A := 1 p�in
(A) := X := p� � = �(A); �(x) := � 0 �p�p� 0 �x; det(�) = � := 1+p52in
(X) := =  1(X) :[  2(A) 1(x) := ����1 � �� 12��� 12 ��1�x� ��� 121 �;  2 := � 1; det( i) = �1Figure 1: De�nition of the In
ationProbably quite a few geometers have found this example too (see e.g. [8] Anhang B.5);but it seems, nobody has studied it in detail, maybe because the resulting tilings are notvertex-to-vertex.1 ) in which case the tilings become either periodic or l i m i t periodic



2Basic de�nitions and �rst consequences 32 Basic de�nitions and �rst consequencesOur protoset is F := fA;Xg . By in
ation we denote the substitution as describedby Figure 1. Here � is an expansive map with j�(x)j = p� jxj for all x and the i(x) = 'i(x) + t are isometries. The translation t has to be replaced by some t1; t2 ifthe origin is not chosen to be the rightangled vertex of A . The only property of the transla-tions worth mentioning is, that they are in a special Z -module (cf. Section 6). In contrastthe two re
ections '1 and '2 (cf. Fig. 2), more precisely the directions of their lines ofre
ection, play an essential rôle in the background of all our considerations. These direc-tions are given by the bisectors of the angles whose tangens equals p� of the two tiles andespecially will be used in Section 7.3.
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Figure 2: The re
ections 'i acting on a translate of A and a translate of X
in
3(A) = in
2(X) = = � 1��1 1(X) :[ � 1��1 2(A) :[ � 2��1(X)Figure 3: Iterated In
ationThe in
ation in
 can be iterated, i.e. the expansion map � , the isometries  1 and 2 and the split of �(X) into  1(X) :[  2(A) have to be applied again as shown in Figure 3.De�nition 1: The species S(F; in
) is the set of all global tilings P , where every tileis congruent either to A or to X and every bounded cluster of P has a congruentcounterpart in some in
n(A) (cf. Fig. 17 and Fig. 10 2)). The clusters congruent toin
n(A) and in
n(X) are called supertiles of n th order (of A or X resp.).2 ) The letters B;C; : : : ; Z and the highlighted �gures will be explained in section 5.2.



2Basic de�nitions and �rst consequences 4Obviously the in
ation factor � (by which the tiles are expanded in every step) isjust p� .When the plane is considered as C 1 instead of E 2 , the rotation by 90� must be takeninto account and � becomes ip� . Since the only algebraic conjugates are �� (= �� ),�� 12 and ��� 12 (both in absolute value smaller than one), this is a complex PV-number.Therefore (see [10]) the Fourier-transform of the autocorrelation function of the set of allvertices has to have sharp spots. They correspond to the Bragg-Peaks of the di�ractionpattern of a material, whose atoms sit at the vertices. For more details cf. Section 6.5. Untilthen we stay in E 2 with � = p� .By de
ation (de
) we denote an inverse process to a given in
ation. It can be appliedonly under the assumption, that the given tiling (or cluster resp.) can be considered as atiling of supertiles. Then each supertile is considered as o n e tile and the whole tiling(cluster) is shrunk by the factor � . An essential question is always, whether the originaltiling can be split into supertiles at all, and if so, whether the splitting is unique or not. Itis well known, that the de
ated tiling { i f the de
ation was unique { again belongs to theoriginal in
ation species and in fact, thende
 � in
 = in
 � de
 = id : (2)Remark 1: The species S(F; in
) has a locally de�ned u n i q u e de
ation.Indeed: Due to the 0 in the in
ation matrix M (cf. (1)) every small tile is face-to-face witha large tile making up a supertile of X . The remaining large tiles must be considered assupertiles of A .It is well known that Remark 1 impliesRemark 2: The species S(F; in
) is aperiodic.Remark 3a: In S(F; in
) there are precisely six congruence classes of vertex stars (vts),as shown in Figure 4.Proof: By de�nition every vertex star of our species has to occur in some in
n(A) . The �rstinterior vertex occurs in in
5(A) , the sixth in in
10(A) , but in
11(A) does not contain anew vertex star, and therefore in
10+n(A) cannot contain any new vertex star for n 2 N .� From Figure 4 we can also read o�Remark 3b: For every n � 6 the rectangular cluster Rn := in
n(X :[X) =in
n(X) :[ in
n(X) 3) is centrally symmetric and contains on its diagonal two vertexstars congruent to Vn .3 ) For brevity here and in the sequel we suppress the isometries which actually had to be applied.



3Properties of V1; : : : ;V6 and clusters enforced by them 5
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Figure 4: The vertex stars V1 , V2 , : : :V6 (V7 is congruent to V6 ) and the rectanglesR1;R2; : : : ;R6 . (This is essentially an excerpt of Fig. 10 not yet colored)Since X is as well a supertile ( in
(A) ) as a tile itself, we use from nowon the term supertile of n -th order only as abbreviation for \ in
n(X) ". � (3)3 Properties of V1; : : : ;V6 and clusters enforced by themWe begin with a general de�nition of what we call a local matching rule (lmr).De�nition 2: Given a �nite protoset F and a �nite set 4) lmr of F -clusters, each �ttinginto a ball of radius � , we de�ne the speciesS(F; lmr)as the set of all global tilings P , where every cluster of P which �ts into a ball ofradius � has a congruent counterpart in lmr .4 ) In this context we speak of an atlas.



3Properties of V1; : : : ;V6 and clusters enforced by them 6The reader may note the similarity to De�nition 1 and also the di�erences: In De�ni-tion 1 the clusters were not uniformly bounded and the atlas was not �nite.De�nition 3: A cluster C is said to enforce the cluster D (with respect to lmr ), if in everytiling of S(F; lmr) every congruent copy of C is contained in a D , and everywhere inthe same way. 5)In the sequel let lmrvi denote the atlas consisting of the six vertex stars (vts)V1; : : : ;V6 of S(F; in
) .From Figure 4 we can read o� directlyRemark 4: The six vts de�ned by our in
ation can be distinguished by the following facts.(a) V1 is the only vts whose vertex splits the middle edge of a large tile.(b) V2 is the only vts, whose vertex splits the hypotenuse of a large tile.(c) V1;V2 are the only vts with a 
at angle. They do not contain any rectangle.(d) V3 is the only vts containing a parallelogram formed by two small tiles sharingtheir shortest edge.(e) V1;V3 are the only vts with two right angles.(f) V5;V6 are the only vts without any right angle (i.e.: with eight tiles) and the onlyvts containing the cluster shown in Figure 5(a). Caution: V6 contains t w o ofthem.(g) V4 is the only vts containing a parallelogram formed by two large tiles sharingtheir shortest edge. Consequently the cluster shown in Figure 5(b) does not occurat all.(h) V5 is the only vts containing a rectangle formed by two small tiles.(i) The cluster shown in Figure 5(c) occurs in V6 only and there only once.(j) The con�guration shown in Figure 5(d) does not occur in any vts.
X

X

X(a) XXX (b) X

A
X(c) A

A(d)Figure 5: Some characteristic con�gurationsRemark 5: In S(F; lmrvi) we can state:V i enforces Ri (1 � i � 5) (4.i)V6 enforces C6 (cf. Fig. 6): (5)5 ) The largest such cluster D usually is called the empire of C (w.r.t. lmr ).



3Properties of V1; : : : ;V6 and clusters enforced by them 7

V
1

V
2

V
3

V
4

V
5

V
1

V
3

V
3

V
4

V
4

V
6

R
1

R
2

R
3

R
4

R
5

C
6

a

a

a
a

a*

c

ba

ki

a*dc

e
f

g

j l

h

q

t

a*

a*

b*

b

b*

b
c*

a*
a

Figure 6: Clusters enforced by the vertex starsProof: (4.1) follows from Remark 4(a).(4.2) follows from Remark 4(b).(4.3) follows from Remark 4(d).(4.4) follows from Remark 4(a) { applied at the vertex b { and Remark 4(g).(4.5) follows from Remark 4(h), Remark 4(a) applied at b , Remark 4(b) applied at cand �nally (4.1) and (4.2).Ad (5): In the same manner as above the vertices b and c lead to two copies of R1 ,d and e to two copies of R2 ; and �nally C6 is completed due to Remark 4(e) { appliedat f { and (4.3). �Remark 6: If C6 is given as shown in Figure 6, then there are precisely the following threepossibilities:V(i)v=V6 and C6 is contained in a copy of R6 centered at 12(i+ a) .In this case V(h)v=V1 and V(k)v=V2 . � (6.1)V(i)v=V4 and C6 is contained in in
(C6) as shown in Figure 6 (in-cluding the dotted lines). In this case V(h)v=V1 and V(k)v=V3 . � (6.2)V(i)v=V3 . In this case the full cluster of Figure 7 is enforced, andagain V(k)v=V3 . � (6.3)
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Figure 7: The case where at i there is a V3Proof: Obviously V(i) 6v=V1;V2 . If V(i) were of type V5 , we should have - due to Remark 5(4,5) { an R5 with V(k)v=V1 .Ad (6.1): By Remark 5 (5) we have two overlapping clusters of type C6 . Their unionis R6 .Ad (6.2): By Remark 5 (4,4) V(i) enforces the R4 centered at 12(j + i) . It followsV(k)v=V3 (cf. Remark 4(e)) and consequently we have the R3 centered at 12(l + k) .Ad (6.3): In this case V(i) enforces the R3 centered at 12(h + i) . Since in the triangle4ail this cluster coincides with the R4 , we still have the R3 centered at 12(l + k) .Next consider the vertex denoted by a� in Figure 7. Due to Remark 4(i) V(a�)v=V6and consequently we have another C6 . Because V(i�) was v=V3 already before, we havenow symmetry with respect to 12(a� + a) , and everything we shall prove in the \South", willautomatically apply for the \North" as well.At j both, a V3 or a V4 seem possible. But a V3 would require a V4 at m includingthe dotted A there. Hence V(j)v=V4 and we have got the R4 centered at 12(m + j) .Now at n we have the same situation as before at k , whence V(n)v=V3 and we getan R3 centered at 12(o+ n) . As before at j a V3 at p would create a contradiction at q(cf. the dotted A there). Therefore V(p)v=V4 and we have the R4 centered at 12(q + p) .Finally we can conclude V(r)v=V(s)v=V3 . �



4The species S(F; in
) cannot be de�ned by a local matching rule (Theorem 1) 9The cluster of Figure 7 is not the complete empire of V(a) [ V(i) ; but at least locallyat t , u , t� and u� as well V3 s as V4 s are possible.4 The species S(F; in
) cannot be de�ned by a local matching ruleThe following theorem and its proof are typical for many in
ation species. Its state-ment, that our original species cannot be described by any lmr, will be the motivation tointroduce colours in the next section.Theorem 1: S(F; in
) cannot be de�ned by any local matching rule ( lmr ). More precisely:There is no lmr with S(F; lmr) = S(F; in
) (cf. Def. 2).Proof: Assume on the contrary the existence of a radius � and an atlas A of � -clusters ofA s and X s de�ning the species S(F; lmrA) , and assumeS(F; lmrA) = S(F; in
): (7)This implies that both species contain precisely the same six congruence classes of vts.
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Figure 8: A periodic tiling of the plane using vertex star V3 onlyNow consider the crystallographic 6) tiling P shown in Figure 8. All vts of P arecongruent to V3 . Furthermore P is invariant under the glidere
ection symbolized by theshort arrow lying on the axis of the re
ection. Its direction is that of the re
ection line of'2 mentioned in Section 2.6 ) i. e. d o u b l y periodic.



5Colouring does help (Theorem 2) 10It is easily checked that in every tiling which has no other than our six vts,for every ball with radius at most 12��1 there is at least one vertex star,which covers the ball completely 7). � (8)In particular every ball of radius :3 is covered by some vertex star of P .Finally consider the tiling Q := in
n(P) , where �n � :3 = � n2 � :3 > � . Thus in Q everyball of radius � is covered by a copy of in
n(V3) , and from (7) and the de�nition of lmrA weconclude Q 2 S(F; lmrA) . But since Q is periodic, while our in
ation species is aperiodic(cf. Remark 2) this contradicts (7). �5 Colouring does help5.1 A coloured in
ation speciesAfter the papers [7] by Ch. Radin and [12] by Ch. Goodman-Strauss the next todo is, to �nd a colouring of S(F; in
) that does permit a local matching rule. In principleit would be \enough" to colour every member of our species and then �nd a radius � suchthat the atlas A of all coloured � -clusters (used as an lmr ) does not permit any newtiling, without caring about an in
ation of the coloured tilings. This would correspond tothe very general result by Goodman-Strauss, which doubtless was a break-through. Inour particular case we are going to prove a somewhat stronger result 8). We want to replaceA and X by �nitely many congruent copies with di�erent colours, k e e p the old in
ationg e o m e t r i c a l l y and then colour the supertiles of �rst order in such a way, that the{ now coloured { vertex stars (vts) can serve as an atlas lmrvic for the coloured in
ationspecies. So it will become an in
ation species with local matching rules, which { after erasingthe colours { will coincide with our original species. This can be done as follows.We de�ne a coloured protosetFc := fA;B;C;D;E;V;W;X; Y; Zg; (9)where A is our old A while B;C;D;E are congruent to A , and likewise X is our old Xand the others are congruent to X . Next we de�ne a coloured in
ation byin
c(A) := V ; in
c(V ) := B :[W ;in
c(B) := W ; in
c(W ) := A :[ Y ;in
c(C) := X; in
c(X) := E :[ V ;in
c(D) := Y ; in
c(Y ) := D :[X;in
c(E) := Z; in
c(Z) := C :[ Z 9):
9>>>>>=>>>>>; (10)7 ) It can be shown, that for in
ation species satisfying some rather general conditions there is alwayssuch a radius.8 ) It may well be, that a closer inspection of [12] will show, that his techniques give this \in
ationextending colouring" in general.



5Colouring does help (Theorem 2) 11This implies (in the sequel we omit the symbol \ :[ " )in
2c(V ) := WAY ; in
3c(V ) := AY V DX;in
2c(W ) := V DX; in
3c(W ) := BWYEV ;in
2c(X) := ZBW ; in
3c(X) := CZWAY ;in
2c(Y ) := Y EV ; in
3c(Y ) := DXZBW ;in
2c(Z) := XCZ; in
3c(Z) := EVXCZ;
9>>>>=>>>>; (11)and in
4c(V ) := V DXBWYEV ;in
5c(V ) := BWYEVWAYDXZBW ;in
6c(V ) := WAYDXZBWAY V DXYEV CZWAY: 9>=>; (12)Obvously the small prototiles A; : : : ; E as well as the large prototiles V; : : : ; Z arecyclically permuted by � := (ABCDE)(V YWZX): (13)This permutation has the following remarkable property: For e v e r y prototile T�(in
c(T )) = in
c(�3(T )): (14)By induction we conclude�k(in
c(T )) = in
c(�3k(T )) (for k 2 N ) and (15)�(in
nc (T )) = in
c(�3n(T )) (for n 2 N ): (16)Since 3n 6� 0 (mod 5) for all n this implies:The species S(Fc; in
c) is invariant under the group Autc generated by � . (17)Hence we need not give (12) for W; : : : ; Z instead of V . To understand whatneighbourhoods occur in our coloured in
ation species we show in Figure 9 in
nc (Y ) for1 � n � 10 and highlight successively the new neighbourhoods. Only these can be germsfor new neighbourhoods in the next in
ation. Therefore for n � 5 only the higher in
ationsof the rectangle R0c(Z;X) are given.From Figure 9 we conclude (cf. the Appendix):In the entire coloured in
ation species every rectangle congruent to Rnbelongs to the type 10) Rnc (Z;X) (modulo Autc) . � (18)9 ) An explanation for this strange looking rule will be given in the Appendix. Instead of using tencharacters, we could of course use f i v e colours; the same for X as for A .
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Figure 9: in
nc (Y ) for 1 � n � 10 , the new neighbourhoods ( ) and the pseudo-supertiles ( ) contained therein.We also observe | and the following statements are of course subject to Autc | :in in
4c(Y ) there is a tile Y at either end homothetic to the carrier ofin
4c(Y ) , � (19.1)and the two vts Vnc (X;Z ) and Vnc (Z;X) are not of the same type (though ofcourse congruent). � (19.2)In particular for n � 3 Rnc (X;Z) contains in
n�1c (Y ) in the corner nearVnc (X;Z) , which is not \naturally" a c -supertile, but only due to thespecial character of the in
ation rule (10). In contrast, in the other cornerit contains a cluster congruent to the supertiles of order n� 1 , but n o tof the type of any coloured supertile (cf. Fig. 9.6 - 9.10). Clusters of sucha type we shall call pseudo- supertiles in the sequel.
9>>>>>=>>>>>; (19.3)10 ) In this section we use the term type as an abbrevation for \congruence class of : : : , all coloured in thesame way". We call two clusters equal, if they are of the same type. Obviously there are c o n g r u e n tclusters, which are n o t equal.



5Colouring does help (Theorem 2) 13Every rectangle Rn(:; :) is the union of two c -supertiles of order n . Forn � 3 it contains three c -supertiles and one pseudo-supertile of ordern� 1 (cf. (3)). 9=; (19.4)These pseudo-supertiles will play an essential rôle in the proof of Theorem 2.Next we consider the vts of the coloured in
ation species de�ned by (10). Quitea few are contained in Figure 10. We see (and can deduce also from Fig. 9.10), that
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Figure 10: in
10c (Z :[X) ( in
10(Z) upper left, in
10(X) lower right part)V7c (W;Z) � in
c(V6c (W;Z) is a new type, while V7c (Z;W ) = V6c (V;X) . It is easily checked,that V8c (W;Z) = V6c (Z;X) . So we have with respect to in
c the following \family trees":Type 1: 1! 2! 3! 4! 5! 6� 7Type 2: 1! 2! 3! 4! 5! 6 �: (20)



5Colouring does help (Theorem 2) 14Here type 1 is represented modulo Autc by Vc(Z;X) whose vertex is always on the bound-ary of a pseudo-supertile, while type 2 is represented by Vc(X;Z) . The vertices with vts oftype 1 are highlighted by bold dots in Figures 9 and 10.We need a complete list of all vts v=V6 . Since (12) is subject to Autc there are 15 ofthem. For abbreviation we denote e.g. V6c (X;Z) byZAY ZjWAXZ (cf. Fig. 10): (21)The �rst place in this code corresponds to the large tile, whose middle edge is split by a V1c ,the second place to the small tile, which belongs to this V1c , etc.. We give the complete list:V6c (Z;X) = WE V W jZ B V X V6c (X;Z) = Z A Y Z jWAX ZV6c (X; V ) = Y DX Y jWAX Z V6c (V;X) = WE V W jY E ZWV6c (V; Y ) = V C Z V jY E ZW V6c (Y; V ) = Y DX Y jV DW YV6c (Y;W ) = XBWX jV DW Y V6c (W;Y ) = V C Z V jXC Y VV6c (W;Z) = Z AY Z jXC Y V V6c (Z;W ) = XBWX jZ B V XV7c (Z;X) = WE Y Z jWAZWV7c (X; V ) = V CX Y jV DY VV7c (V; Y ) = Z AWX jZ BX ZV7c (Y;W ) = Y DV W jY EW YV7c (W;Z) = XB Z V jXC V X

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
(L)

We close this section byRemark 7: If in a c -supertile of any order the colour of any one tile is given, the colouringof the whole c -supertile is determined.This is an immediate consequence of (17): There are only �ve c -supertiles of everyorder and at every place every colour occurs just once.5.2 The corresponding coloured lmr-speciesWe de�ne the coloured local matching rule lmrvic by the atlas made up by the 65coloured vertex stars (vts) of the coloured in
ation species considered in Subsection 5.1 .We want to proveTheorem 2: S(Fc; lmrvic) = S(Fc; in
c) .Obviously this implies theCorollary : S(F; in
) can be de�ned as F (S(Fc; lmrvic)) , where F is the \forget functor"with respect to the colours.



5Colouring does help (Theorem 2) 15Before we start with the proof of the theorem itself we premise �ve remarks and a cruciallemma. In all these statements the silent prerequisite is, that we are in S(Fc; lmrvic) andnot yet in the desired in
ation species and that our structures occur in a global tiling.Remark 5c : For 1 � n � 5 Vnc (:; :) enforces the corresponding c o l o u r e d rectangleRnc (:; :) . In the same sense for 6 � n � 7 Vnc (:; :) enforces Cnc (:; :) (cf. Def. 3).The proof is quite analogous to the proof of Remark 5. At every step the colour of twotiles, one tile at e i t h e r side of the principal diagonal, is known already. Hence only oneof the ten congruent coloured vts will �t.Remark 8: Let D be a cluster congruent to a supertile of �rst order (cf. (3)) in a tiling ofS(Fc; lmrvic) ; then D is a c -supertile. In other words: There are no pseudo-supertilesof �rst order.Proof: Consider the vertex x , where the two right angles are. Due to Remark 4(e) V(x)v=V1or V3 . In both cases D lies completely on one side of the principal diagonal of the corre-sponding rectangle, and therefore is a c -supertile. �Remark 9: (a) Let D be a cluster congruent to a supertile of order two and let x beits rightangled vertex. Further assume Vc(x) to be of order n di�erent from 6(n � 7 ). Then D is a c -supertile.(b) The same holds, in case Vc(x) = V6c (:; :) , if D contains the tiles in place 5 andplace 6 in our list (L).(c) The cluster D is a p s e u d o -supertile, if and only if Vc(x) = V6c (:; :) and Dcontains the tiles numbered 2 and 3 in (L).Proof: In all cases of part (a) and (b) D is a natural subsupertile of one of the two c -supertiles of order n , which constitute the rectangle in which Vc(x) is contained. The onlycase not covered by (a) and (b) is (c) (cf. Fig. 10). The \if-part" of (c) is true, since it istrue for V6c (X;Z) and for V6c (Z;X) . �Remark 10: Whenever a vts V7c (:; :) occurs in S(Fc; lmrvic) the tile in place 5 of our codeis part of a c -supertile of �rst order (cf. the small shadowed tiles in Figs 9.10 and10).Proof: W.l.o.g. we consider only V7c (Z;X) , the one of Figure 9.10. Due to Remark 5c itenforces C7c (Z;X) (cf. Fig. 11). If Remark 10 were false, due to Remark 8 we should haveV(k) 6v=V3: (22)Applying Remark 6 we conclude V(k)v=V2 and V(i)v=V6 . Since the code of V(i) has tobe : : : W jZB : : , we get Vc(i) = V6c (Z;X) . It follows V(q)v=V5 or V6 (cf. Remark 4(f)).If V(q) were a V5 , the triangle 4iqv had to be a c -supertile. Since it is not, we concludeV(q)v=V6 with code Y C : : j : : WY . But such a code does not exist in the list (L) andhence (22) must be false. �
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Figure 11: Proof of Remark 10Lemma : Let R3c be a rectangle of order three in a tiling of S(Fc; lmrvic) . Then the twocorners of R3 which lie on its principal diagonal have vts congruent to V6 . (Theymay by of type V7(:; :) .)Proof: W.l.o.g. we may assume R3c = R3c(V;X) (P.0)as shown in Figure 12. The little ciphers in the tiles correspond to the order of the argumentsin the following considerations. When only the location of a tile is known, but its colour yetunknown, the cipher is in one of its corners. Otherwise it appears as a lower index of thename of the tile.Since 4ace is a pseudo-supertileVc(a) = V6c ( : ; Z) (cf. Remark 9(c) and (L)); (P.1)and we get Figure 12 up to index 1.Now, due to Remark 4(f), V(d) has to be either a V5 or a V6 . In the latter case |since the code : : WW jZ : : : does not exist |, Z0 must be in place 7 and W1 in place 1.In either casewe can add the tiles with index 2 in Figure 12 (but yet cannot determinetheir colours). � (P.2)This shows V(b) 6v=Vn for n � 3 .Let us assume V(b) 6v=V6 . (23)Consequently V(b)v=V4 or V5 (P.3)
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Figure 12: The case V(d)v=V6and we get the two shadowed tiles at the vertex b . This enforcesV(f)v=V4 (P.4)because, due to Remark 4(c) and 4(f), the only other possibility would be a V3 , leading atc to the con�guration of Figure 5(d), which we had excluded.The new tile at f rules out the case V(b)v=V5 , which would require the dotted tilethere. So we can stateV(b)v=V4 and consequently Vc(b) = V4c ( : ; X): (P.5)Case 1 : V(d)v=V6 .Then, due to (P.5), the code of V(d) is W : : : j : AZW andVc(d) = V7c (Z;X) (cf. (L)), and we may apply Remark 10. (P.6)This (the highlighted tile B6 ) impliesVc(g) = V3c (Y; V ): (P.7)Now | since X5D7X7 is a pseudo-supertile | we can apply Remark 9(c) once moreand see, Vc(h) has to be a V6c with the tile D7 in place 2. But this contradicts thecon�guration at h determined by (P.5).Case 2 : V(d)v=V5 . ThenVc(d) = V5c (W;Z) (cf. Fig. 13, which is up to index 5 a copy of Fig. 12). (P.8)Now the highlighted tile E8 does not allow V(g)v=V3 (cf. Remark 4(j)). ThereforeVc(g) = V4c (Y; V ): (P.9)
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Figure 13: The case V(d)v=V5Next V(i) cannot be a V5 , since then the large triangle 4 � i � had to be a c -supertile,but is not. Hence V(i)v=V6 with code either : : XY jV : : : or X : : : j : : V Y . The lattertype is not in our list (L) and we concludeVc(i) = V6c (Y; V ) orV7c (X; V ): (P.10)Since these two vts coincide in D10 , we getVc(j) = V3c (W;Y ): (P.11)Now the cluster W11B9W9 is a pseudo-supertile, and again we end up withV(h)v=V6 (cf. Remark 9(c)): (P.12)The code had to be : : : : jWBX : , which does not appear in (L).This proves (23) to be false. �Now let T be an arbitrary lmrvic -tiling. Due to Remark 8 we can de�ne DEFLc(T )as follows (cf. the proof of Remark 1) 11):Every supertile of �rst order is considered as o n e tile with the appropriate namegiven by (10) (BW becomes V etc.). The remaining large tiles are also renamed accordingto (10) (V becomes A etc.). Finally the whole tiling is shrunk by the factor p� andclockwise rotated by 90� (i.e. we apply ��1 ; cf. Fig. 1).11 ) DEFLc is n o t de�ned in terms of in
c and it must not be considered as left inverse of in
c ; notyet. It is rather an operation deduced from lmrvic (which of course once was derived from in
c , which isin geometric accordance with in
 . The authors regret the somewhat confusing situation.)



5Colouring does help (Theorem 2) 19Of course the de�nition is designed to guaranteein
c(DEFLc(T )) = T : (24)The crucial rôle of our Lemma becomes evident in the proof ofRemark 11: If T is a member of S(Fc; lmrvic) , then so is DEFLc(T ) .Proof: It is su�cient to show:Let a be a vertex of T , V := Vnc (a) its vertex-star ( 2 � n � 7 ) and W the vts ofthe corresponding vertex b in DEFLc(T ) ; then W is a member of lmrvic .Case 1 : All the supertiles of order 1 with vertex a are contained in the correspondingrectangle Rnc (:; :) (for n � 5 ) or in Cnc (:; :) (for n = 6 , 7 ).Then W is contained in Rn�1c (:; :) (or in C6c or C7c respectively) and therefore it is inlmrvic .Case 2 : There is a supertile of order 1 with vertex a whose smaller part is outsideof Rnc ( C6c , C7c resp.). Then | independent of n | we have the situation of Figure 14.W.l.o.g. we may assume the critical supertile to be of type in
c(Y ) = DX .
a

D

X

xFigure 14: The critical con�guration for DEFLcFrom Remark 4(e) we deduce V(x)v=V3 , and our Lemma showsV(a)v=V6: (25)Due to the assumption of case 2 X must be in position 5 in the list (L), and we haveeither Vc(a) = V6c (W;Z) or V6c (W;Y ) or V7c (W;Z): (26)It is easily checked, that this leads toW = Vc(b) = V7c (Z;X) or V6c (X;Z) or V6c (W;Z): (27)All three vts are in (L). �Proof of Theorem 2: We have to show: A tiling T is an in
c -tiling if and only if it is anlmrvic -tiling.If T is a member of the in
ation species, then by de�nition all its vts are in lmrvic .



6Projecting the tilings of the species (Theorem 3) 20If on the other hand T satis�es lmrvic and L is any cluster of T , we have to prove:There exists a prototile T and an exponent n , such that in
nc (T ) containsa cluster which equals L (cf. 10) on page 12).Indeed: We only need to apply Remark 11 m times, such that p��mL is containedin a circular disc D of radius :3 . Then, due to (8) D is contained in some vts Vc(x) ofDEFLmc (T ) , which by Remark 11 is a member of lmrvic .By De�nition 1 there is a prototile T and an exponent k such that a copy of Vc(x)is contained in in
kc(T ) 12). Thus there is an isometry ' with'(L) � '(D) � in
k+mc (T ): �6 Projecting the tilings of the speciesAs one of our aims is to calculate the Fourier transform of the autocorrelation func-tion of the vertex set of a p�� -tiling, we do not actually present a projection scheme forsuch a tiling but for the vertex set of such an tiling. From this vertex set, the tiling can begenerated by the following method: The minimal distance of two vertices is ��1 , and thissolely occurs between a pair of vertex stars V1 . So in this �rst step we can decorate allareas of rectangles R1 with the proper tiles. For the second step we have a closer look atthe next larger possible distance, which is p��1 . If none of both involved vertex stars isa V1 , then both have to be V2 , and with that we get all tiles lying in some R2 . In thethird step we use, that a similar fact is true for distance 1 of two vertex points: If noneof both is known to be V1 or V2 , then both are V3 and therefore all tiles in rectangularsR3 are known. As all small triangles have their rectangular vertex in a vertex V1 or V3we already reconstructed all small triangles. These uniquely de�ne supertiles of �rst orderrespectively all large triangles in such supertiles. Now the remaining unknown areas couldonly be single large triangles and pairs of large triangles. The dissection of these pairs intotwo large triangles is unique, because the splitting diagonal is restricted to one of the fourorientations of edges in the tiling.
12 ) In fact we see from Figure 9: Every Vjc (X;Z) , and every Vjc (Z;X) as well, occurs in in
j+3c (V ) .Hence k = 10 will do.



6Projecting the tilings of the species (Theorem 3) 216.1 A setting for de�ning the species by a strip projection methodA general scheme for a strip projection method can be seen in the following diagram 13),V � Z � EP��� ��� x??�P x??�P������ ������ � � E S = EP � E I??y ??y ??y�I ??y�IW � E I = E I (28)
where� V is a discrete point set, here the vertex set of one of our tilings,� Z is a Z -module containing all vertices,� EP is the so-called physical space, the space the tiling lives in, the Euclidean plane inour case,� E I is the so-called internal space, its dimension is chosen as small as possible allowinga lattice � in the direct product ES = EP � E I (the so-called superspace) such thatthe projection �P from ES to EP , when restiricted to � , becomes a bijection from� to Z ,� �I is the other projection from the ES to E I and we require �I(�) to be dense inE I ,� �� := �I � ��1P is de�ned on Z and� the window W is chosen such that V = fx 2 Z j ��(x) 2 Wg . We require W to becompact, the closure of its interior and that there are no projections of lattice pointson the boundary of the window, @W \ �I(�) = ; .For a �xed lattice � and shape W � E I one usually considers all windows W + c ( c 2 E I ),such that @(W + c) \ �I(�) = ; .De�nition 5: Given EP , E I , a lattice � 2 EP � E I and a window W we call c 2 E Iregular if @(W + c) \ �I(�) = ; and denote with C the set of all regular c . For eachregular c we de�ne the projection set V (c) := fz 2 Z j ��(z) 2 W + cg and the set ofall projection sets P (�;W ) := fV (c) j c 2 Cg .13 ) To be honest, this is not the most general scheme, as the physical and internal spaces need not tobe Euclidean ones, they only have to be topological Abelian groups; the lattice � then becomes a discretesubgroup of the direct product (compare [13]).



6Projecting the tilings of the species (Theorem 3) 22We will �nd the correct terms for the vertex sets of our tilings in two steps: �rst wederive the Z -module Z and choose a matching internal space and lattice. In a second stepwe choose a proper window. In this subsection we will describe how we get to these di�erentsets by smart guessing and choosing without bothering about proofs. In the next subsectionwe will proof the whole setting at once.A closer look at the tilings of the species suggests, that all vertices lie in the rank fourZ -module Z := (p� h1; �i)� h1; �i (at least if one vertex is at the origin). So it suggestsitself to take as superspace E 4S = E 2P � E 2I . Let �P be the projection on the �rst two com-ponents and �I the projection on the last two components of a vector x 2 E 4S . To �nda possible basis fl1; l2; l3; l4g of the matching lattice � � E4S we split the in
ation in
 aspresented in Section 1 into two parts: the scaling (and rotation) given by the linear map �and the subdivision or (as we only look at the vertex set in this section) the addition of newvertices � . Like the module Z is invariant under the action of � , the lattice � should beinvariant under the lifted version �S of � . That is, �S has to be an uni-modular trans-formation of � . �S , the lift of � on � , is de�ned as �S = � � �� = � � (�� � � � ���1) .As �(�01�) = ��p�0 � , �(��p�0 �) = � 0��� , �(� 0���) = �p�30 � and �(�p�30 �) = �01�� � 0��� , with�P (l1) := �01� , �P (l2) := ��p�0 � , �P (l3) := � 0��� , �P (l4) := �p�30 � �S becomes the uni-modular transformation which maps l1 7! l2 7! l3 7! l4 7! l1 � l3 . Taking �S as a linearmap on R4 the eigenvalues are �p�� and �p��1 and E 2P is the real part of the sumof the eigenspaces to �p�� . As this is characteristic for the lift of the expansion map� , the linear in
ation factor is indeed rather p�� than p� . To make the projection �tto the in
ation, the last components of the lattice basis have to be chosen in such a way,that E 2I contains the eigenspaces to the other two eigenvalues. Because it makes later cal-culations more convenient we choose �� to be represented by the matrix � 0 p��1p��1 0 � and�I(l1) = ��p�31 � . With this choice the lattice � reads� = hl1; l2; l3; l4i = *0BB@ 01�p� 31 1CCA ;0BB@�p�0p��1�� 1CCA ;0BB@ 0���p���1 1CCA ;0BB@ p� 30p��3�1 1CCA+ : (29)To get an idea of how the window W may look like, we take some points of �and project them into E 2I , distinguishing between points which belong to a certain tilingand points which do not. In Figure 15 every �lled circle corresponds to a vertex of thetiling indicated in Figure 10 (if the origin is settled at the vertex denoted with V6(X;Z) ),whereas every un�lled circle represents a lattice point not being projected on a vertex ofthat tiling. Looking at this �gure, we claim, that the window W + c is a rectangularbox with edge length 2p� 3 and 2� which is translated by some vector c . So we de�neW := ���p�3�� �; �p�3� �� , denoting by ��x1x2�; �y1y2�� the closed rectangular set with lower leftcorner �x1x2� and upper right corner �y1y2� , ��x1x2�; �y1y2�� := [x1; y1]� [x2; y2] . For a; b 2 Zevery line � Ra+b�� and �ap�+bp�3R � in E 2I contains a dense set of lattice points projected by�I , but every other horizontal or vertical line contains no points of �I(�) . Hence the set
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Figure 15: Determining the window experimentallyC of all regular points c is given byC = E 2I n [a;b2Z�� Ra+b�� [ �ap�+bp�3R �� ; (30)because c 2 S� Ra+b�� if and only if c+ �[�p�3;p�3]�� � � S� Ra+b�� and similar for the verticallines. Using this terms we stateTheorem 3: For every regular c , the above projection set V (c) = fz 2 Z j ��(z) 2 W + cgis the vertex set V (P) of a tiling P 2 S(F; in
) , the in
ation species of De�nition 1.6.2 Proof of Theorem 3The tiles A and X occur in a tiling P 2 S(F; lmrvi) in (at most) four orientationsgiven by the four linear maps '0 = id , the re
ections '1 and '2 de�ned in Section 2 andthe composition of both re
ections, the 180� rotation '3 . The maps '�i corresponding to'i in E 2I (the linear extension of �� � 'i � ���1 on �I(�) to E 2I ) are '�0 = id , '�1 and '�2are the re
ections at the vertical respectively horizontal line and '�3 is of course again the180� rotation.We now split the window W into 24 parts Wi;j ( i = 1; : : : ; 6 , j = 0; : : : ; 3 )given by W1;0 = ��p�0 �; �p�3� �� , W2;0 = ��01�; �p�� �� , W3;0 = ��p��10 �; �p�1 �� ,W4;0 = �� 0��1�; �p��11 �� , W5;0 = ��p��30 �; �p��1��1 �� , W6;0 = ��00�; �p��3��1 �� andWi;j = '�j(Wi;0) . (The Wi;0 are the black boxes in the last column of Table 1.) c 2 Censures, that the boundary @Wi;j of each Wi;j contains no points of ��(Z) . So we uniquelycan assign to every point x 2 V (c) a vertex star V i and an orientation 'j according to��(x) 2 Wi;j .Table 1 then shows (explicitly for j = 0 , but for the other orientations the situation isof course congruent), that if vertex star V i and orientation 'j is assigned to x 2 V (c) , then



6Projecting the tilings of the species (Theorem 3) 24No.(i) Vertex stars V i Image of thevertex pointsunder �� possiblepositions in W( = Wi;0 )1
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Table 1: Internal images of the vertex stars



6Projecting the tilings of the species (Theorem 3) 25V (c) contains all vertex points of the tiles in the vertex star 'j(V i) + x : For the vertexstars in column 2, column 3 shows the position of the internal images of the vertices of alltiles relative to the point where the vertex star is settled. The last column then proofs, thatif x 2 Wi;j , all these internal images are in the window W .Furthermore, by investigating the possible positions of the points a; : : : in the windowW , one easily sees, that to each of those points such a vertex star and orientation is assigned,that its correctly oriented vertex star �ts together with the central one, i.e. the intersectionconsists of non overlapping tiles.So starting from one point x 2 V (c) it is possible to �nd tiles surrounding x , suchthat every vertex of these tiles is a point of V (c) , and then to �nd tiles surrounding all thesevertices with the same property and so on. Finally one gets a tiling Pc;x 2 S(F; lmrvi) ,whose vertex set V (Pc;x) is contained in V (c) .The same can be done for another y 2 V (c) leading to Pc;y 2 S(F; lmrvi) . The deter-mination of the vertex star and the orientation assigned to a point y 2 V (c) is unique. Henceit is V (Pc;x) = V (Pc;y) for y 2 V (Pc;x) and V (Pc;x) \ V (Pc;y) = ; for y 2 V (c) n V (Pc;x) .Therefore V (c) = : [x2XV (Pc;x) (31)for some X � V (c) and Pc;x 2 S(F; lmrvi) .The global density dens(V (c)) := limr!1 #(V (c) [ (rB d + x))Vol(rB d) (32)( x 2 E 2P ) exists for the projection set V (c) (independent of x 2 E 2P and c 2 C ) and isgiven by dens(V (c)) = Vol(W )det(�) : (33)(For a rather general proof of this existence and formula see [13].) Hencedens(V (c)) = 4p� 510� = 25p� 3 � :82327 : (34)The global density of a set V (P) , P 2 S(F; lmrvi) can be estimated byinfx2E2P lim infr!1 #(V (P) [ (rB d + x))Vol(rB d) � 12 � 1Vol(X) = p��3 � :48587 (35)and supx2E2P lim supr!1 #(V (P) [ (rB d + x))Vol(rB d) � 1 � 1Vol(X) = 2p��3 � :97174 (36)



6Projecting the tilings of the species (Theorem 3) 26as 12 � 1Vol(X) is the density of vertex points in a triangle X with no vertices on edges andtherefore the smallest possible local density in a tile, and 1 � 1Vol(X) is the density of vertexpoints in a triangle X with vertices on both possible edges and therefore the largest possiblelocal density in a tile. (The vertex density in a triangle A is always 12 � 1Vol(A) = p��1 � :786in-between.)A comparison of (35) and (36) with (34) shows that the union in (31) is a union overjust one tiling, that is to sayfor every V (c) 2 P (�;W ) there is a (uniquely de�ned) Pc 2 S(F; lmrvi) ,such that V (c) = V (Pc) . � (37)For each c 2 C let in the remainder Pc be that uniquely de�ned tiling in S(F; lmrvi)with V (Pc) = V (c) . In order to show that every Pc is in fact a tiling in S(F; in
) , wede�ne an in
ation on P (�;W ) by in
(V (c)) := V (in
(Pc)) and describe this map in termsof the internal space. This is done separately for both parts of the in
ation in
 = � � � (cf.Section 6.1). We already have the internal counterpart �� to � for whichV (�(Pc)) = �(V (Pc)) = �(V (c)) = f�(x) 2 Z j ��(x) 2 W + cg= fx 2 Z j ��(x) 2 ��(W + c)g (38)holds. The de�nition of the in
ation in
 (cf. Fig. 1) shows, that the subdivision � onlyproduces new vertex points in a tiling �(Pc) on the long edge of a tile �(X) . And eventhat only occurs if two such edges meet edge to edge, that means only in a scaled rectangle\0" (cf. Fig. 4). Furthermore, from the vertex stars V1; : : : ;V6 it can be revealed, thatfour vertex points in such a rectangular position uniquely determine a scaled rectangle \0".So for the scaled vertex set �(V (c)) = �(V (Pc)) all new vertices can be described in theform (�(V (c)) + t1;j) \ (�(V (c)) + t2;j) \ (�(V (c)) + t3;j) \ (�(V (c)) + t4;j) , where ti;0 arethe translations, which move the four points of a scaled rectangle \0" in orientation '0into one of the two new vertices inside and ti;j = 'j(ti;0) . Fixing the orientation of a scaledrectangle \0" as that of vertex star V1 we get t1;0 = �p��1� , t2;0 = �p���1� , t3;0 = ��p��1�1 � ,t4;0 = ��p��1��1 � the other ti;j by ti;j = 'j(ti;0) . Hence the in
ation of V (c) as a pure pointoperation reads in
(V (c)) = � (�(V (c))) (39)= �(V (c)) [ [j2f0;:::;3g0@ \i2f1;:::;4g(�(V (c)) + ti;j)1A : (40)Using the notation t�i;j = ��(ti;j) (which is well de�ned as all ti;j 2 Z ) we de�ne for W 0 � E 2I��(W 0) := W 0 [ [j2f0;:::;3g0@ \i2f1;:::;4g(W 0 + t�i;j)1A : (41)



6Projecting the tilings of the species (Theorem 3) 27With this �� we have the equivalencex 2 �(�(V (c))), ��(x) 2 ��(��(W + c)) (42)respectively in
(V (c)) = fz 2 Z j ��(z) 2 in
�(W + c)g (43)where in
� := �� � �� .Deriving t�1;0 = �p���1� , t�2;0 = �2p�0 � , t�3;0 = �p��1� � and t�4;0 = �p�31 � and using��(W + c) = ��(W ) + ��(c) = ���p��� �; �p�� ��+ ��(c) the \'0 " component in the unionof �� applied to ��(W + c) reads\i2f1;:::;4g(��(W + c) + t�i;0)= � �� 0�1�; � 2p�2��1�� \ ��p����; �3p�� �� \ ���p��30 �; �p�32� �� \ ��p��1���1�; �p�5�2 ��� + ��(c)= ��p�0 �; �p�3� ��+ ��(c) (44)(compare Fig. 16). This is exactly W1;0 + c , which is not to surprising, as V1 arises duringin
ation only as result of two tiles X sharing the long edge. Because of the symmetry of the
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Figure 16: \In
ation" of the window W + cti;j , the other components of (41) have to be 'j(W1;0) + c =W1;j + c and the \in
ation"of a window W + c simpli�es toin
�(W + c) = ��(��(W + c)) = (��(W ) [W1;0 [W1;1 [W1;2 [W1;3) + ��(c) = W + ��(c):(45)



6Projecting the tilings of the species (Theorem 3) 28So �nally we have a very simple description of the in
ation of a projection setin
(V (c)) = in
(V (Pc)) = V (in
(Pc)) in terms of the internal spacein
(V (c)) = V (��(c)): (46)As ��(E I n C) = E I n C and �� is bijective we have, that this in
ation in
 is a bijectionof P (�;W ) into itself. Hence de
 = in
�1 exists and reads de
(V (c) = V (���1(c)) .As the de
ation of a tiling is uniquely de�ned depending locally only on neighbouringtiles (compare Remark 1), for P 2 S(F; lmrvi) de
(P) is well de�ned, even though it mightbe, that de
(P) is no longer a member of S(F; lmrvi) . But for a Pc 2 S(F; lmrvi) we canstate V (de
(Pc)) = de
(V (c)) = V (���1(c)) = V (P���1(c)) (47)and as the vertex set V (P���1(c)) uniquely de�nes the tiling P���1(c) 2 S(F; lmrvi) within
(P���1(c)) = Pc , we �nd de
(Pc) = P���1(c) 2 S(F; lmrvi) . Therefore the de
ation canbe iterated on the the set fPc j c 2 Cg .For a tiling Pc ( c 2 C ) a cluster C � Pc is covered by a ball of some radius � . If nis chosen such that 12��1 � p� n > � we can conclude that C is part of the n th in
ation ofa vertex star of de
n(Pc) (compare (8)). Each vertex star is contained in the tenth in
ationof some tile A (compare proof of Remark 3a respectively Fig. 10), hence C is congruent tosome part of in
n+10(A) . As this is true for each cluster of Pc , according to De�nition 1Pc is a member of S(F; in
) .6.3 On the converse of Theorem 3While Theorem 3 statesP (�;W ) � fV (P) j P 2 S(F; in
)g (48)the converse is obviously not true. Despite of all V (c) � Z , the vertices of P 2 S(F; in
)can be in arbitrary positions, and while each triangle reconstructed from a V (c) is in oneof the orientations '0; : : : ; '3 , with one tiling P 2 S(F; in
) , all congruent copies of Pare also members of S(F; in
) . But besides these trivial cases there are some singulartilings P 2 S(F; in
) with V (P) � Z and all triangles nicely oriented, whose vertex setis not a projection set in P (W;�) . To construct an example, we take a tiling Pc withc 2 C \ (�W6;0) . Then 0 2 V (Pc) and V(0) = V6 in orientation '0 . Now we de�neP := lim in
n(P0) for n!1 (cf. Fig. 17). P is well-de�ned as V6 � in
(V6) . ObviouslyP is a member of S(F; in
) , but V (P) 62 P (�;W ) , because V (in
n(Pc)) = V (��n(c)) andlim��n(c) = 0 62 C . NeverthelessP (�;W ) = �V (P) ���� P 2 S(F; in
) , V (P) � Z and all T 2 P arein orientation '0 , '1 , '2 or '3 � (49)with one of the usual topologies in the space of all discrete subsets of E 2 de�ned by identityaround the origin (cf. for example [6]).
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Figure 17: An in
ation invariant tiling6.4 Non equivalence to the Ammann tiling SA2Obviously the tiling P of the last subsection is invariant under in
ation. Togetherwith the rotational part of the expansion map � this causes an in�nite spirale in the centerof the tiling, see Figure 17. Now the repetitivity of the species enforces every local part ofevery tiling to contain �nite spirals. Similar spirals can be observed in another species oftilings. The connection to this species will be investigated in this subsection.In [2] chapter 10.4 Gr�unbaum and Shephard describe a class A2 of species withso-called chair tiles designed by Robert Ammann. One of these species (choosing the freeparameter to be � ) has an in
ation with the real in
ation factor p� , and a closer lookshows that a precise description of the in
ation again uses the expansion map � de�ned inSection 2. Let us denote with SA2 this special species of the whole class in the remainder.The fact that S(F; in
) has no local matching rule whereas SA2 has one, shows



6Projecting the tilings of the species (Theorem 3) 30that the two species are not mutually locally derivable (MLD). (For a introduction into theequivalence concept MLD for LI-classes of tilings see [9].) We will give here another argumentfor this non equivalence, based on the projection of both species. In [5] was proven, that twoprojection sets projected from the same lattice are MLD, if and only if the window(s) of oneprojection set can be reassembled by a �nite collection of the operations A [ B , (A \ B)� ,A nB applied to translates of the window(s) of the other projection set and vice versa.In order to get a tiling SA2 by a projection of the lattice � (see (29)), we choose theedge lengths of S to be 1p2p��3 , 1p2��1 , 1p2p��1 , 1p2 , 1p2p� , 1p2� and that of L to be1p2��1 , 1p2p��1 , 1p2 , 1p2p� , 1p2� and 1p2p� 3 , respectively.The orientation of the two prototiles is �xed such that all edges are parallel to the re-
ection lines of '1 and '2 de�ned in Section 2 (cf. Fig 18). Then there are four orientationsof the two tiles given by Si = 'i(S) and Li = 'i(L) with 'i as in Section 6.2.
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ation of the Ammann chairs and control pointsIn contrast to Section 6 we will not project the vertices of a tiling of SA2 because theZ -module de�ned by the vertices is | in contrast to the triangle tiling | not the limittranslation module determining the projection. Therefore we choose certain control points,one class for each prototile in each orientation. As position of the control points we choosethe center of a spiral built by consecutive supertiles. Given a tiling P 2 SA2 the sets PTi(P)(T = S; L and i = 0; 1; 2; 3 ) of all control points can be derived by putting a control pointin each tile. Given all control point sets PTi one gets a tiling by surrounding each controlpoint with the assigned tile.The in
ation of a system of control point sets of a tiling is of course de�ned as thesystem of control point sets of the in
ated tiling. From Figure 18 we can read o�PS0(in
SA2(P)) = �(PL1(P)) + t0PS1(in
SA2(P)) = �(PL0(P)) + t1PS2(in
SA2(P)) = �(PL3(P)) + t2PS3(in
SA2(P)) = �(PL2(P)) + t3 PL0(in
SA2(P)) = �(PS0) [ �(PL3)PL1(in
SA2(P)) = �(PS1) [ �(PL1)PL2(in
SA2(P)) = �(PS2) [ �(PL2)PL3(in
SA2(P)) = �(PS3) [ �(PL0) (50)with t0 = ��p��10 � , t1 = ��p��3���1 � , t2 = �p��3��1 � and t3 = �p��10 � . Now the system of windows



6Projecting the tilings of the species (Theorem 3) 31(cf. Fig 19) WS0 = 4���p��2 �; ��p�31 �; ��p�5� ��WS1 = 4���p���2 �; ��p�3�1 �; ��p�5�� ��WS2 = 4��p��2 �; �p�31 �; �p�5� ��WS3 = 4��p���2�; �p�3�1 �; �p�5�� ��
WL0 = 4��00�; �p�3�1 �; �p���2��WL1 = 4��00�; ��p�3�1 �; ��p���2 ��WL2 = 4��00�; �p�31 �; �p��2 ��WL3 = 4��00�; ��p�31 �; ��p��2 �� (51)

is invariant under the internal in
ation in
�SA2 .
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Figure 19: Windows for Ammann tiling SA2The size of the windows is again veri�ed by the calculation of the density and for-mula (34). The density of the set of all control points of one tiling, is given bydens(P ) = 1��2Vol(S) + ��1Vol(L) = 25p� 3 (52)because ���2��1� gives as a right eigenvector of the in
ation matrix ( 0 11 1 ) the relative frequen-cies of the tiles S and L (and in each tile there is exactly one control point). This matchesVol(SWT;i)= det(�) = 25p� 3 , completing this outline for a proof of this projection settingfor SA2 tilings.Notice that the density of control points of any SA2 tiling is the same as the densityof the vertex sets of the tilings in S(F; in
) (with the above sizes of the prototiles) (cf. (34).All edges of the window W for the vertex sets of S(F; in
) tilings are horizontalor vertical, whereas edges of the windows WT;i for the control points of SA2 tilings areneither horizontal nor vertical. By the allowed reassembling operations (translations, A [B ,(A \B)� and A nB ) no edges in new orientations can arise. Hence S(F; in
) and SA2are in di�erent MLD-classes.But there is another connection between the species SA2 and S(F; in
) : The in
ationin
A2 of SA2 is the Galois dual of the p�� -in
ation in
 , see [8] Anhang B.5.



6Projecting the tilings of the species (Theorem 3) 326.5 Fourier transformFor a �xed projection set de�ne � = V (c)� V (c) and for x 2 � let �(x) be thedensity of points y 2 V (c) such that also x+ y 2 V (c) . Then the so-called autocorrelationdistribution of V (c) reads 
V (c) :=Xx2� �(x)�x (53)where �x is the Dirac-delta distribution settled at x 2 E 2P . The amplitudes of the Fouriertransform of this autocorrelation distribution are proportional to the intensity of the Bragg-Peaks observed in a di�raction experiment.

Figure 20: Calculation of the di�raction image of the vertex set of one tilingAs all projection sets V (c) are in the same local isomorphism class, the Fourier trans-forms of their autocorrelation distributions are identically and given by
̂�;W = Xz02�P (�0) jA(z0)j2�z0 (54)where �0 2 E 4S is the dual of the lattice � and the amplitudes A(z0) areA(z0) = 1det(�) Z�W e�2�ih��(z0);yidy= 110� � 1�2 � sin(2�p� 3z0�1)z0�1 � sin(2��z0�2)z0�2 (55)where the z0�i are the two coe�cients of ��(z0) (cf. [14], [11] and references in the latter).Figure 20 shows this Fourier transform. The radii of the printed circles are proportional tothe absolute values of the amplitudes, that is to say the area is proportional to the intensityof the Bragg peaks in a di�raction image. Only those spots are drawn, whose intensity isgreater that 0:1% of the central one. Notice the both re
ection symmetries, which are ofcourse '1 and '2 de�ned in Section 2 and the almost self-similarity with expansionmap � .



7Concluding remarks, open questions 337 Concluding remarks, open questions1. We think, it would be worth-while to search for species with similar properties for othercomplex PV - numbers instead of p�� (e.g. � =q�(1 + 2 cos(2�7 )) � 1:498993 i ).2. The atlas of the local matching rule lmrc of Section 5.1 cannot be reduced to theatlas of couples of tiles, which share an edge or part of an edge. Therefore it is alsoimpossible, to replace lmrc by small alterations of the shapes (in �ve { resp. ten {di�erent ways).

(a) Tiling (b) Fourier transformFigure 21: Scaled p�� -tilings3. If a tiling in S(F; in
) is scaled by 1= 4p5 in the direction of the line of re
ection of'1 (see Section 2), but not scaled in the perp direction (that of the line of re
ectionof '2 ), then the two tiles deform into two new tiles, the two Robinson triangles,which are the two isosceles triangles whose angles are multiples of 36� ; that is to saythe two isosceles triangles, the edge lengths of which are 1 and � (see Figure 21(a)).The Fourier transform shows an almost tenfold symmetry and it is near by handto compare it with the Fourier transform of one of the decagonal species with theRobinson triangles. This is done in Figure 22 for the species STTT of so-calledT�ubingen Triangle Tilings (c.f. [4]).The standard projection for STTT from a root lattice A4 embedded in a �ve-dimensional space can easily be transfered to our projection setting, where we scale thephysical space in '1 -direction and also the internal space in the a�liated (horizontal)direction by 1= 4p5 . Both the resulting windows are shown in Figure 23.4. In addition to STTT there are other well-known examples of species with these twoRobinson triangles, namely the Penrose-tilings in Robinsons triangulation
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(a) Tiling (b) Fourier transformFigure 22: \T�ubingen Triangle Tiling"

Figure 23: Windows ( scaled p�� species, TTT )(SP-R cf. [1]) and the chiral tilings (Schiral cf. [3]). Table 2 shows the di�erent in
ationrules to the in
ation factor � . Notice that for the scaled p�� species Sscaled in
ationwith a linear factor p� is no longer possible, because the tiles change their shape when� is applied. But the squared in
ation is again a pure tile in
ation. Here we mayignore the 180� -rotation of �2 , because this rotation occurs already as orientation ofthe single tiles in the tiling.5. In general there are essentially two types of in
ation rules for the Robinson triangleswith factor � = � (cf. Table 3). The orientation of the isosceles prototiles A and Bcan be described by arrows along their bases. W.l.o.g. they can be chosen as shown inTable 3.But in the supertiles one has 23 � 22 = 32 possibilities for either type. Precisely in 8cases of either type the pseudo-supertile, which is contained in in
(A) coincides within
(B) , as it is the case for all four species mentioned in Table 2.



7Concluding remarks, open questions 35In
ation ofSpecies A B RemarksSscaled The tiles occur in only four di�er-ent orientations, not 20 as in theother cases.STTT The tilings are vertex-to-vertex.No tiling with global D5 symme-try.Schiral No re
ection in the in
ation,therefore at most ten di�erent ori-entations of each tile.SP-R The tilings are vertex-to-vertex.There are two tilings with globalD5 symmetry.Table 2: Well-known in
ations for Robinson trianglesA BType 1Type 2Table 3: In
ation rules for the Robinson trianglesAre there among these 64 cases some for which the resulting species are MLD to eachother. How many di�erent MLD classes are de�ned this way?In which (how many) of the 64 cases is the resulting species vertex-to-vertex?In which (how many) of those is it possible, to colour the vertices black and white insuch a way, that white meets white and black meets black, as it is possible for SP-R ?Are there among these 64 species some w i t h o u t a unique de
ation?Are there others than the four species mentioned in Table 2, which deserve specialinterest?



8Appendix (algebraic background for Section 5) 366. The properties (A), (B), (C), (D) of the Appendix are p o s s i b l y su�cient butprobably not necessary for Theorem 2 to hold.7. Under the assumption of (56), (57), (58), (61), and (69) we conjecture: If (C) isviolated, then there are rectangles Rc(r; r) in S and hence (D) is also not true.8. We conjecture, that �ve is the minimal number of colours in order to get a localmatching rule for our original species.Acknowledgement: We have to thank Dirk Frettl�oh for a very careful reading of themanuscript and quite a few valuable comments.8 AppendixIn this Appendix the algebraic background for the coloured in
ation rule of Section5.1 is presented. We do not want to give full proofs here, but restrict ourselves to a sketchof the ideas and the more important formulae.We assume, we have k colours and describe the protoset by Fc := f1; 2; : : : ; k; 1; 2; : : : ; kg ,where the �rst k prototiles are congruent to A and the others congruent to X . Thereforeall the following calculations are mod k .For simplicity we assume k to be an odd prime. (56)Also for simplicity we consider only in
ation rules given by linear maps. W.l.o.g. sucha rule can be written asin
c(n) := n; in
c(n) := (bn + y; an+ x) (1 � n � k): (57)We are looking for in
ation rules with the following properties, which simpli�ed theproof of Theorem 2 (essentially of the Lemma) considerably.Fc shall be minimal with respect to in
c 14). (A)A necessary (but not su�cient) condition for (A) isgcd(b; k) = 1 ; under (56) this means: b 6� 0 (mod k) ( a may vanish). (58)The species S := S(Fc; in
c) shall be invariant under a permutation groupAutc , which is transitive on the colours. � (B)All rectangles Rc(r; s) occuring in S shall be equivalent under Autc . Inother words: s� r shall take { up to signature { only one value. � (C)In every rectangle R3c(r; s) of S there is at least one pseudo-supertile ofsecond order. � (D)14 ) I.e.: There is no exponent q and no proper subset F0c of Fc , such that in
qc(F0c) = F0c .



8Appendix (algebraic background for Section 5) 37In order to �nd necessary (and partly su�cient) conditions on the coe�cients a; b; x; ywe �rst deduce some formulae from (57).in
2c(n) = (bn + y; abn + bx + y; a2n + (a+ 1)x); (59)in
3c(n) = (b2n+ (b+ 1)y; abn+ ay + x; abn + bx + y;a2bn+ (a + 1)bx+ y; a3n+ (a2 + a+ 1)x): (60)(59) shows, that (B) will hold if and only ifb � a2 6� 0 (mod k) (cf. (58)); (61)and then Autc is generated by � := (1; 2; : : : ; k)(m; 2m; : : : ; km) , where m � a�1 (mod k) .From now on we assume (56), (57) and (61) and getin
3c(n) = (a4n+ (a2 + 1)y; a3n+ ay + x; a3n+ a2x+ y;a4n+ (a3 + a2)x+ y; a3n+ (a2 + a+ 1)x); (60�)in
4c(n) = (a4n+ (a2 + 1)y; : ; : ; : ; : ; a4n+ (a3 + a2)x + y; : ;a4n+ (a3 + a2 + a+ 1)x); (62)and in
6c(n) = (: : : ; a6n+ (a5 + a4)x + (a2 + 1)yposition 14 ; : : : ): (63)The �rst rectangles Rc(r; s) occur in in
3c(n) and can be read o� from (60�). Thisgives r � a3n+ ay + x; s � a3n+ a2x+ y (mod k) and (64)� := s� r � (a� 1)((a+ 1)x� y) (mod k) independent on n: (65)If y � (a+ 1)x , then � vanishes and in both corners of R3c(0; 0) we �nd the supertilein
2(x) , whence (D) is violated. Thereforewe assume y � (a+ 1)x� c , c 6� 0 (mod k) and consequently� � (a� 1)c (mod k) . � (66)Assume Rc(t; t+ ") occurs in S . Then we consider next the rectangles in the cornersof R4c(t; t+ ") . Due to (B) it su�ces to study the case t � 0 and we �nd (cf. (62) and (66))Rc((a2 + 1)((a+ 1)x� c); a4"+ (a3 + a2 + a + 1)x)andRc((a3 + a2 + a + 1)x; a4"+ (a2 + 1)((a+ 1)x� c): (67)
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