Dr. Dirk Frettlöh 5.5.2021

Übungen zur Vorlesung Kryptographie

Blatt 4

Für Aufgaben 13-15 sollte sagemath oder python benutzt werden.

Aufgabe 13: (Fermattest nutzen) Eine der Zahlen $2^{100} + 447$ und $2^{100} + 471$ ist eine Primzahl, die andere nicht. Finden Sie mit dem Fermattest heraus, welche was ist. (Nutzen Sie bitte den Fermattest, nicht etwa is_prime oder next_prime oder Ähnliches. Obacht, nicht alle Befehle sind geich gut geeignet, um die benötigten Terme zu berechnen!)

- Aufgabe 14: (Zwei ist ein Lügner/alle sind Lügner) Obwohl der Fermattest nicht perfekt ist (siehe Vorlesung bzw. Skript), ist es ganz oft so, dass bereits die 2 ein Zeuge ist für "N ist Nichtprimzahl". Diese Aufgabe illustriert das.
- (a) Finden Sie drei Zahlen $N \in \mathbb{N} \setminus \{1\}$ mit $N \leq 1000$, die keine Primzahlen sind, und für die dennoch gilt: $2^{N-1} \equiv 1 \mod N$.
- (b) Finden Sie zwei Carmichaelzahlen größer als 1000. Also: finden Sie zwei Zahlen $N \in \mathbb{N}$ mit $N \ge 1000$, die keine Primzahlen sind, so dass dennoch für alle $a \in \mathbb{N}$ mit $2 \le a \le N-1$ gilt: Falls ggT(a, N) = 1, so ist $a^{N-1} \equiv 1 \mod N$.

 (Ergoogelte Lösungen zählen hier nicht, zeigen Sie Ihren Programmcode.)

Aufgabe 15: (Miller-Rabin-Lügner)

- (a) Finden Sie den kleinste Miller-Rabin-Zeugen dafür, dass N=3215031751 keine Primzahl sein kann. (Das heißt, finden Sie $a\in\{2,3,\ldots,N-1\}$ mit $\mathrm{ggT}(a,N)=1$, so dass der Miller-Rabin-Test für dieses a ausgibt "N ist keine Primzahl".)
- (b) Finden Sie alle Miller-Rabin-Lügner für N=155, und für N=561. (Das heißt, finden Sie $a\in\{2,3,\ldots,N-1\}$ mit $\operatorname{ggT}(a,N)=1$, so dass der Miller-Rabin-Test für dieses a ausgibt "N ist wahrscheinlich Primzahl".)
- (c) Vergleichen sie diese Anzahlen mit denen in Satz 3.3.

Aufgabe 16: (Carmichaelzahlen selber basteln)

Es sei $N = p_1 \cdot p_2 \cdot p_3$, wobei die p_i ungerade Primzahlen sind. Das **Kriterium von Korselt** sagt in diesem Fall, dass N eine Carmichaelzahl ist genau dann, wenn $p_i - 1$ Teiler von N - 1 für alle $1 \le i \le 3$.

- (a) Zeigen Sie: falls N eine Carmichaelzahl ist, dann ist $p_i 1$ Teiler von N 1 für alle $1 \le i \le 3$.
- (b) Zeigen Sie: falls $p_i 1$ Teiler von N 1 für alle $1 \le i \le 3$ ist, dann ist N eine Carmichaelzahl.
- (c) Zeigen Sie damit, dass jede Zahl der Form (6m+1)(12m+1)(18m+1) eine Carmichaelzahl ist, sofern 6m+1, 12m+1 und 18m+1 alles Primzahlen sind.

Abgabe bis Mittwoch 12.5.2021 bis 14 Uhr per Email an den Tutor. Bitte auf jeder Abgabe das Tutorium angeben!

Jan Jan-Philipp Brünger Leonard Simon Ellinghaus Kallias Stoupas jbruenger@techfak.de lellinghaus+krypto@techfak.de kstoupas+krypto@techfak.de