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1 Propositional Logic

1.1 Basics
11. Oct.

Logic is about truth or falseness of statements. Consider some examples:

1. The university building is beautiful

2. 2+2

3. If it rains then I get wet

4. 2+2 = 5

5. Please do not smoke

6. Hello Kitty

Items number 2, 5 and 6 are not statements, since they are neither “true” nor “false”. Such examples
are out of our scope,

Some statements cannot be divided into smaller statements, like 1 and 2. Indeed: Any part of it
(like 2+ 2, or “The university building”) is neither true nor false, hence not a statement. Others are
combinations of smaller statements (like 3). For instance, 3 is of the form “If A (is true) then B (is
true)”.

A statement that cannot be divided into smaller pieces is called atomic formula. More complex
statements are built from atomic formulas as follows.

Definition 1.1. (and notation) Atomic formulas are abbreviated by A,B,C, . . ., or by A1,A2, . . ..

A formula (in propositional logic) is defined inductively as follows:

• Each atomic formula is a formula.

• If F and G are formulas, then F ∨G, F ∧G and ¬F are formulas.

Everything that can be built in this way is a formula.

Example 1.1. F = ¬((A∧B)∨C) is a formula. Its partial formulas are A,B,C,A∧B,(A∧B)∨C,
and ¬((A∧B)∨C). But (A∧, or ∨C, or ( are not partial formulas of F , since they are not formulas.

Notation

• A,B,C, . . ., or A1,A2, . . . denote atomic formulas.

• F,G,H, . . ., or F1,F2, . . . denote formulas.

• F ⇒ G is short for (¬F)∨G. F ⇔ G is short for (F ∧G)∨ (¬F ∧¬G).

Up to here this is entirely abstract, the symbols are just symbols (syntax: symbols and rules). We
want to give them some meaning (semantics):
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Definition 1.2. The elements of {0,1} are truth values. (Intuition: 0 = false, 1 = true). A valuation
(or truth assignment) of a set M = {A,B,C, . . .} of atomic formulas is a map

A : {A,B,C, . . .}→ {0,1}

A extends to all formulas by

1. A(F ∧G) = min{A(F),A(G)}=
{

1 if A(F) = A(G) = 1
0 else

2. A(F ∨G) = max{A(F),A(G)}=
{

0 if A(F) = A(G) = 0
1 else

3. A(¬F) = 1−A(F) =

{
0 if A(F) = 1
1 else

Example 1.2. Since we consider only finitely many atomic formulas, a valuation can be viewed as a

finite list. For instance, let A(A)= 1,A(B)= 1,A(C)= 0. Shortly we can write this A as
A B C
1 1 0

Now, for this particular A , what is the truth value of F = ¬((A∧B)∨C)?

A(¬((A∧B)∨C)) = 1−A((A∧B)∨C) = 1−
{

0 if A(A∧B) = A(C) = 0
1 else

= 1−
{

0 if A(A∧B) = 0
1 else

= 1−1 = 0 (since A(A) = A(B) = 1)

Of course this method of evaluation the value of F is tedious. A more efficient method is to use truth
tables. A formula with n atomic formulas has 2n possible distinct valuations. Hence we might define
¬,∨ and ∧ by truth tables, and we may construct the truth tables also for⇒ and⇔ by considering all
possibilities:

A(F ⇒ G) A(F ⇔ G)
A(F) A(G) A(¬(F)) A(F ∧G) A(F ∨G) = A(¬F ∨G) = A((F ∧G)∨ (¬F ∧¬G))

0 0 1 0 0 1 1
0 1 0 1 1 0
1 0 0 0 1 0 0
1 1 1 1 1 1

Note that each row in the truth table corresponds to one valuation A .

Interpretations of these rules are that∨means “or”, ∧means “and”, ¬means “not”. It can be discussed
whether “or” really is a good interpretation: the statement “I will have beef or chicken” usually means
that I take one of them, not both. Nevertheless, this is just an interpretation. In the sequel we want to
formalize, hence do not care about the interpretation. A further operator, covering the other meaning
of “or”, is “exclusive or”, short XOR or ⊕: A(A⊕B) = 1 if and only if A(A) 6= A(B). It is easy to
see that A⊕B is the same as ¬(A⇔ B).

An interpretation of⇒ is “implies”, an interpretation of⇔ is “if and only if”. This is in accordance
with the use in mathematics. Discussing this interpretation with respect to natural language becomes
ambiguous. Hence in order to formalize propositional logic we ignore ambiguities in the language.
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In order to spare brackets we introduce an order of operations:

¬ before ∧ , ∨ before⇒ before⇔.

Hence we may write for instance ¬A∨B⇒C rather than ((¬A)∨B)⇒C.

Main questions/aims:
1. Which formulas have the same meaning? I.e., for which formulas F,G we have that A(F) = A(G)
holds for all valuations?
2. Which formulas have at least one valuation making it true? I.e., for which formulas F we have that
there is at least one valuation such that A(F) = 1 holds?

The focus will be on the algorithmic treatment of these questions. Now we need some terminology. If
we write A(F) in the sequel it is always implicitly assumed that A is defined for all atomic formulas
contained in F .

Definition 1.3. A valuation A satisfies a formula F if A(F) = 1. Notation: A |= F .

Otherwise (A(F) = 0) we say A does not satisfy F . Notation: A 6|= F .

F is satisfiable if there is a valuation A such that A(F) = 1. Otherwise F is unsatisfiable.

F is a tautology if for all valuations A holds: A(F) = 1. In this case we write shortly |= F .

F is equivalent to G if for all valuations A holds: A(F) = A(G). Notation: F ≡ G.

Example 1.3. A∨¬A and ¬A⇒ (A⇒ B) are tautologies. A∧¬A is unsatisfiable (truth tables!)

Remark 1.1. F and G may contain different atomic formulas and nevertheless F ≡ G may hold (for
instance, if both formulas are tautologies, like F = A∨¬A and G = ¬(B∧¬B)).

Remark 1.2. The use of |= seems strange at first, but one gets used to it. Only later in the course one
may appreciate its benefit. It can roughly be translated with ”... makes ... true”. For instance, A |= F
means ”A makes F true”. In Definition 1.6 we will see it in the form ”F makes G true” (F |= G). In
the form |= F it can be read as ”nothing is needed to make F true”: F is true anyway, since F is a
tautology.

1.2 Calculation rules

Rules like F ∧G≡ G∧F are obvious (are they?), but there are more sophisticated ones: 18. Oct.

Theorem 1.1. Let F,G,H are formulas. Then the following equivalences hold:

F ∧F ≡ F, F ∨F ≡ F (Idempotence)
F ∧G≡ G∧F, F ∨G≡ G∨F (Commutativity)
(F ∧G)∧H ≡ F ∧ (G∧H), (F ∨G)∨H ≡ F ∨ (G∨H) (Associativity)
F ∧ (F ∨G)≡ F, F ∨ (F ∧G)≡ F (Absorption)
F ∧ (G∨H)≡ (F ∧G)∨ (F ∧H), F ∨ (G∧H)≡ (F ∨G)∧ (F ∨H) (Distributivity)
¬¬F ≡ F
¬(F ∧G)≡ ¬F ∨¬G, ¬(F ∨G)≡ ¬F ∧¬G (de Morgan’s laws)
If F is a tautology, then F ∨G≡ F, F ∧G≡ G
If F is unsatisfiable, then F ∨G≡ G, F ∧G≡ F

All identities can be proven by truth tables, compare exercises.

Because of the associativity law we may write F ∧G∧H rather than (F ∧G)∧H or F ∧ (G∧H).

5



Example 1.4. One can use truth tables to check whether the two formulas (A∨ (B∨C))∧ (C∨¬A)
and (¬A∧B)∨C are equivalent. But one can use the equivalences above as well:

(A∨ (B∨C))∧ (C∨¬A)
(Ass.,Comm.)
≡ (C∨ (A∨B))∧ (C∨¬A)

(Distr.)
≡ C∨ ((A∨B)∧¬A)

(Comm.,Distr)
≡ C∨ ((¬A∧A)∨ (¬A∧B))

(unsat.)
≡ C∨ (¬A∧B)

(Comm.)
≡ (¬A∧B)∨C.

In order to show some very formal aspect, namely, some proof in formal logic, we state and prove the
following theorem.

Theorem 1.2 (Replacement theorem). Let F,G be formulas with F ≡ G. Let F be a partial formula
of H. Let H ′ be the formula arising from H by replacing F with G. Then H ≡ H ′.

Proof. By induction (structural induction, on the inductive construction of a formula)

Base of induction: Let H be an atomic formula. Then H = F , hence H ′ = G, hence H ′ ≡ H.

Induction step: Let F be some formula. Let the claim be true for all formulas smaller than F (in
particular all partial formulas of F except F itself).

Case 0: H = F , then exactly as above.

Case 1: H = ¬H1. By induction hypothesis H1 ≡ H ′1, hence H = ¬H1 ≡ ¬H ′1 = H ′.

Case 2: H = H1∨H2. Let us assume (without loss of generality) that F is a partial formula of H1. By
the induction hypothesis holds H1 ≡ H ′1, hence H = H1∨H2 ≡ H ′1∨H2 = H ′.

Case 3: H = H1∧H2 (completely analogous to Case 2).

This proof illustrates a general phenomenon: most proofs in formal logic are technical, not elegant,
and yield no deeper insight. Because of this we will show only the few nice proofs in the sequel, and
omit the technical ones.

1.3 Normal forms

Truth tables yield an algorithmic method to answer for a given formula F whether F is satisfiable, or
whether F is equivalent to some further given formula G. But this is not efficient: If F contains n
atomic formulas then the number of rows in the truth table is 2n. In the sequel we want to introduce
three efficient decision procedures to answer the question “is F satisfiable?” efficiently, at least for
certain classes of formulas. The first two methods (Horn formula algorithm, resolution calculus)

require the formulas to have some normal form. Notation:
n∧

i=1
Fi = F1 ∧F2 ∧ ·· · ∧Fn;

n∨
i=1

Fi = F1 ∨
F2∨·· ·∨Fn.

Definition 1.4. A literal is a formula of the form A or ¬A, where A is some atomic formula.

A formula F is in disjunctive normal form (DNF) if

F =
n∨

i=1

( mi∧
j=1

Li j
)

where Li j are literals.

A formula of the form L1∧L1∧·· ·∧Ln (where Li are literals) is called conjunctive clause.
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A formula F is in conjunctive normal form (CNF) if

F =
n∧

i=1

( mi∨
j=1

Li j
)

where Li j are literals.

A formula of the form L1∨L1∨·· ·∨Ln (where Li are literals) is called disjunctive clause.

Example 1.5. All of the following formulas are in DNF:

(A∧¬B∧¬C)∨ (¬D∧E ∧F), (A∧B)∨C, A∧B, A.

However, the following formulas are not in DNF:

¬(A∨B) (since an OR is nested within a NOT), A∨(B∧(C∨D)) since an OR is nested within an AND.

Theorem 1.3. Each formula has some equivalent formula in DNF, and also some equivalent formula
in CNF.

The proof of this result is long and technical and uses induction on the construction of the formula. It
essentially consists of showing that the following algorithm terminates and yields a CNF for F :

Algorithm 1.1. First convert all partial formulas of F of the form G⇒ H into ¬G∨H, and all
partial formulas of the form G⇔ H into (G∧H)∨ (¬G∧¬H).

1. Replace in F each

• ¬¬G by G

• ¬(G∧H) by ¬G∨¬H

• ¬(G∨H) by ¬G∧¬H, as long as possible.

2. Replace in F each

• G∨ (H ∧ J) by (G∨H)∧ (G∨ J)

• (G∧H)∨ J by (G∨ J)∧ (H ∨ J), as long as possible.

3. Remove repetitions of clauses, if necessary.

The corresponding algorithm to construct the DNF of a formula F is obtained by replacing step 2.
above by

2. Replace in F each

• G∧ (H ∨ J) by (G∧H)∨ (G∧ J)

• (G∨H)∧ J by (G∧ J)∨ (H ∧ J)

Example 1.6. Let F = (A∧B∧C)∨ (D∧E). This has DNF. Let us apply the algorithm to transform
F into CNF:

(A∧B∧C)∨ (D∧E) =
(
(A∧B∧C)∨D

)
∧
(
(A∧B∧C)∨E)

)
= (A∨D)∧ (B∨D)∧ (C∨D)∧ (A∨E)∧ (B∨E)∧ (C∨E)
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Remark 1.3. By using the distributivity law in particular examples (see exercises) one realizes that
the distributivity law generalizes as in the example above, respectively in the most general form to

(
n∨

i=1

Fi)∧ (
m∨

j=1

G j)≡
n∨

i=1

( m∨
j=1

(Fi∧G j)
)

resp. (
n∧

i=1

Fi)∨ (
m∧

j=1

G j)≡
n∧

i=1

( m∧
j=1

(Fi∨G j)
)

There is an alternative algorithm to produce CNF or DNF using truth tables. Assume that we would
have already constructed the truth table of some formula F , containing atomic formulas A1, . . . ,An.

Algorithm 1.2. In order to construct the DNF of F :

• Each row where A(F) = 1 yields a clause (L1∧ ·· ·∧Ln). If A(Ai) = 1 in this row then set
Li = Ai, else set Li = ¬Ai (i = 1, . . . ,n)

• Connect the parts by ∨

In order to construct the CNF of F :

• Each row where A(F) = 0 yields a clause (L1∨ ·· ·∨Ln). If A(Ai) = 0 in this row then set
Li = Ai, else set Li = ¬Ai (i = 1, . . . ,n)

• Connect the clauses by ∧

Example 1.7. Consider F = ¬(A⇒ B)∨¬(A∨B∨C). The truth table is

A B C F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

We read off for the DNF

F ≡ (¬A∧¬B∧¬C)∨ (A∧¬B∧¬C)∨ (A∧¬B∧C).

We read off for the CNF

F ≡ (A∨B∨¬C)∧ (A∨¬B∨C)∧ (A∨¬B∨¬C)∧ (¬A∨¬B∨C)∧ (¬A∨¬B∨¬C)

Note that this yields in some sense a “standard CNF”. The normal forms obtained by Algorithm 1.1
are frequently shorter (but in some cases even longer than the latter ones, compare exercises).

Theorem 1.4. For each formula F there is a formula G in CNF where each disjunctive clause has at25. Oct
most three literals, such that F is satisfiable if and only if G is satisfiable.

Proof. By Theorem 1.3 F has a CNF. We just need to show how to replace each disjunctive clause in
the CNF that has more than three literals by one or more disjunctive clauses with three literals without
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changing satisfiability. The trick is to replace each clause with m literals by a partial formula that is
the conjunction of four clauses with m−1,3,2 and 2 literals.

Assume there is a clause H with more than three literals: H = A∨B∨G. We replace H in the CNF
by H ′ = (A′⇔ A∨B)∧ (A′∨G), introducing a new atomic formula A′ that does not occur in F . If F
is satisfiable, then for any valuation A with A |= F holds A(H) = 1. Now this A can be extended to
H ′ by setting A(A′) := A(A∨B).

Why does this help? We claim that (a) A(H) = A(H ′) (hence A(F) = A(F ′)), and (b) H ′ can be
written as disjunctive clause with m−1,3,2 and 2 literals.

(a) For the A above holds

A(H) = A(A∨B∨G) = A(A′∨G) = A
(
(A′⇔ A∨B)∧ (A′∨G)

)
= A(H ′).

The second equality holds simply because A(A∨B∨G)=min{A(A∨B),A(G)}=min{A(A′),A(G)}=
A(A′∨G). The second to last equality holds because A(A′⇔ A∨B) = 1 (since we defined A(A′) =
A(A∨B)), compare the tautology rule in Theorem 1.1. Thus H ′ is satisfiable if and only H is. (In one
direction since any A for H can be extended to A for H ′, in the other direction since the restriction of
the larger valuation (for H ′) yields the original valuation A (for H) by ignoring A′).

(b) This is easy:

A′⇔ A∨B≡ (A′⇒ A∨B)∧ (A∨B⇒ A′)≡ (¬A′∨A∨B)∧ (¬(A∨B)∨A′)

≡ (¬A′∨A∨B)∧ ((¬A∧¬B)∨A′)≡ (¬A′∨A∨B)∧ (¬A∨A′)∧ (¬B∨A′),

hence
H ′ ≡ (¬A′∨A∨B)∧ (¬A∨A′)∧ (¬B∨A′)∧ (A′∨G),

the new formula has CNF, too. Moreover, the claim on the number of clauses follows. This completes
the proof.

Let us also count how the number of clauses grows during this replacement process: replacing H by
H ′ means replacing a single clause with m≥ 4 literals by one clause with m−1 literals plus one more
clause with three literals plus two clauses with two literals. This can be applied until all clauses have
three literals or less. Hence if our general formula F in CNF has n clauses with at most m literals
each, our counting shows that we can reduce each clause in m−3 steps to several small clauses with
at most three literals. How many clauses? In each step we trade one clause for four clauses, so
in each step the number grows by three. So each long clause (of length m) is replaced by at most
3(m−3)+1 = 3m−2 clauses of length three (or less). Altogether we end up with at most n(3m−2)
clauses. This is polynomial in n and m, resp. in max{n,m}.

Remark 1.4. The question whether a formula G is satisfiable is NP-complete in general (Cook’s
Theorem 1971, see also Levin 1973). He showed that the question of the satisfiability of any formula
in propositional logic can be reduced in polynomial time to the question about satisfiability of formulas
in CNF (sometimes called CNFSAT). We just showed that, the more general problem CNFSAT can be
reduced (in polynomial time) to the question whether a given formula in CNF where each clause has
at most three literals is satisfiable. This latter problem is called 3SAT (“three-satisfiability”). Hence
3SAT is also NP-complete (Karp 1972). In contrast to this we will see in the next section a special
case where the question for satisfiability is efficiently computable Btw: the corresponding problem
2SAT — satisfiablity of a formula in CNF where each clause has at most two literals — is decidable
in polynomial time.
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SAT is NP-complete (Cook 1971, Levin 1973)
CNFSAT is NP-complete (Cook 1971)
3SAT is in NP-complete (Karp 1972)
2SAT is in P (exercise)
DNFSAT is in P (exercise)

Table 1: Overview of the remarks (for an explanation of P and NP see ”‘Complexity”’ on page 54)

Remark 1.5. The corresponding problem of solving a formula in DNF is decidable in polynomial
time. Hence we cannot expect to have a general way to transform any formula in CNF into an equiv-
alent formula in DNF with polynomial costs. In fact already the length of the formula can grow
exponentially in general. The worst case is achieved for instance by

F =
n∧

i=1

Ai∨Bi = (A1∨B1)∧ (A2∨B2)∧·· ·∧ (An−1∨Bn−1)∧ (An∨Bn)

(this CNF having essentially length 2n). The DNF of F is then

(A1∧A2∧·· ·∧An−2∧An−1∧An)∨
∨(A1∧A2∧·· ·∧An−2∧An−1∧Bn)
∨(A1∧A2∧·· ·∧An−2∧Bn−1∧An)

...
...

∨(B1∧B2∧·· ·∧Bn−2∧Bn−1∧An)
∨(B1∧B2∧·· ·∧Bn−2∧Bn−1∧Bn)

of length 2n. (The analogue holds if one exchanges all ∨ with ∧ and vice versa.)

However, there are some classes of formulas where there is an efficient decision procedure for satisfi-
ability.

1.4 Horn formulas

Definition 1.5. A formula F is called a Horn formula, if it is in CNF and if each disjunctive clause
has at most one positive literal (i.e. one literal not containing ¬)

For example, F = (¬A∨¬B∨C)∧ (A∨¬D)∧ (¬A∨¬B∨¬C)∧D∧¬E is a Horn formula, whereas
G = (A∨B∨¬C)∧ (A∨¬B∨¬C) is not.

Each Horn formula can be written more intuitively using implications. For instance, the formula F
above can be written as

(A∧B⇒C)∧ (D⇒ A)∧ (A∧B∧C⇒ 0)∧ (1⇒ D)∧ (E⇒ 0),

where 1 stands for some arbitrary tautology and 0 stand for some arbitrary unsatisfiable formula.

There is an efficient algorithm checking for satisfiability of some Horn formula.
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Algorithm 1.3. Input: some Horn formula F .

1. If F contains some partial formula (1⇒ A), then mark all (!) literals in F containing the
atomic formula A in F

2. while F contains some clause G with G = (A1∧·· ·∧An⇒ B) (with n≥ 1) where all Ai are
marked (and B is not) do

if (B = 0) return “F is unsatisfiable” STOP

else B 6= 0 (i.e. B is literal) then mark all (!) literals containing B in F ,

3. Return “F is satisfiable” STOP

A valuation satisfying F is then given by setting A(Ai) = 1 for all marked atomic formulas Ai and
A(A j) = 0 for all unmarked atomic formulas A j.

Theorem 1.5. The algorithm above is correct for all Horn formulas and stops after at most k marking
steps, where k denotes the number of atomic formulas contained in F.
Moreover, the algorithm yields a minimal satisfying valuation A for F. That is, for any other valuation
A ′ with A ′ |= F holds that A(Ai) = 1 implies A ′(Ai) = 1.

The last statement can be seen as follows: when the algorithm starts all atomic formulas Ai are un-
marked, i.e. their value is 0. All markings are forced, i.e. all marked Ai necessarily need to have value
1. If F is satisfiable the algorithm stops with a satisfying valuation in which all atomic formulas with
value 1 are forced to have value 1. In this sense our obtained valuation A is minimal.

1.5 Compactness Theorem

As well as a single formula we can consider finite (or infinite) sets of formulas, and ask for simulta- 8. Nov.
neous satisfiability of the formulas That is, if M = {F1,F2, . . .} is a set of formulas, we want to find a
valuation A such that A(Fi) = 1 for all i = 1,2 . . ..

If the set of formulas ist finite it is simple.

Remark 1.6. A set of formulas {F1,F2, . . . ,Fn} is satisfiable if and only if F =
∧n

i=1 Fi is satisfiable.

For later purposes we want to consider also infinite sets {F1,F2, . . .}= {Fi | i ∈N} of formulas. In this
case we want to find A such that A(Fi) = 1 for all i ∈N. This cannot longer be espressed easily using
finite sets of formulas. Therefore, we need some way to deal with it; in particular since it will become
important in the sequel.

Theorem 1.6 (compactness theorem). An infinite set M of formulas is satisfiable if and only if each
finite subset of M is satisfiable.

The precise proof is long and technical, see for instance UWE SCHÖNING: LOGIC FOR COMPUTER

SCIENTISTS. A sketch of the proof is given below. However, the proof uses an important and inter-
esting fact.

Theorem 1.7 (König’s Lemma). Let T be a tree with infinitely many vertices such that each vertex
has only finitely many neighbours. Then T contains an infinite path. (That is, a path v1v2 · · · with
infinitely many vertices such that vi 6= v j for i 6= j.)
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Proof. (Entirely from Wikipedia:) Let vi be the set of vertices. Since T is an infinite tree we know
that this vertex set is infinite and the graph is connected (i.e., for any two vertices vi,v j there is a path
in T from vi to v j).

Start with any vertex v1. Every one of the infinitely many vertices of G can be reached from v1 with
a (simple) path, and each such path must start with one of the finitely many vertices adjacent to v1.
There must be one of those adjacent vertices through which infinitely many vertices can be reached
without going through v1. If there were not, then the entire graph would be the union of finitely many
finite sets, and thus finite, contradicting the assumption that the graph is infinite. We may thus pick
one of these vertices and call it v2.

Now infinitely many vertices of G can be reached from v2 with a simple path which does not include
the vertex v1. Each such path must start with one of the finitely many vertices adjacent to v2. So an
argument similar to the one above shows that there must be one of those adjacent vertices through
which infinitely many vertices can be reached; pick one and call it v3. Continue.

König’s Lemma implies the Compactness theorem essentially as follows: Draw a tree. One vertex is
the root. Its children are all satisfying valuations A1, . . . ,Ak for F1. The children of Ai are all satisfying
valuations A ′1, . . . ,A ′m for F1∧F2 with A ′j(A`) = Ai(A`) for all atomic formulas A` in F1. (Hence A ′j is
an extension from Ai to F2).

Repeat the same for each A ′j: its children are all extensions from A ′j to all atomic formulas in F3
satisfying F1∧F2∧F3. By the condition of the compactness theorem there are infinitely many vertices
in this tree, since for each n there is at least one satisfying valuation A∗ for F1∧F2∧·· ·∧Fn.

Note that different vertices may stand for the same valuation. As an extreme example consider the infinite set of
formulas {A,A,A, . . .}. There is only one single satisfying valuation here, the one with A(A) = 1. But it yields
infinitely many vertices in the tree (which is a apath here).

By construction each vertex has finitely many children (possibly none), hence finitely many neigh-
bours. Hence König’s Lemma implies that there is an arbitrary long path. This path corresponds to
the valuation satisfying all formulas.

Note that the proof does not tell us which numbers will do: it shows only the existence of such
sequence, not the construction.

1.6 Consequences I

Definition 1.6. A formula G is a consequence of F1, . . . ,Fn, if whenever A(F1) = · · · = A(Fn) = 1
then A(G) = 1. In this case we write shortly {F1, . . . ,Fn} |= G.

In the simplest case when n = 1 this simplifies to F |= G. 1 In other contexts logical consequences are
also called inference (or inference rules), or entailment.

The difference between “implies” (“⇒”) and “is consequence of” (“|=”) is subtle. The implication⇒
is on a syntactic level. F ⇒ G just means ¬F ∨G. Whether it is “true” depends on the As: for some
it may be true, for others not.

1This may seem strange at first sight since we used the symbol |= also for a satisfying valuation: A |= F . But on a
meta-level it kind of makes sense: “A makes F true” and “F makes G true”.
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The consequence |= lives on a higher level: If F holds then G holds for each valuation (respectively,
in Section 2, for each “world”). Wehther F |= G is “true” depends on all A .

A minor point is that the left hand side can also be an infinite set of formulas, rather than F .

The exercises may give you another hint on the difference between the two concepts. Moreover the
following remark (and its proof) may help.

Lemma 1.8. The following are equivalent:

1. {F1, . . . ,Fn} |= G,

2. F1∧·· ·∧Fn⇒ G is a tautology,

3. F1∧·· ·∧Fn∧¬G is unsatisfiable.

Proof. For the equivalence of 1 and 2 we show the two implications separately.

1. implies 2.: Case 1: Let A(F1) = · · · = A(Fn) = 1. Since G is a consequence of F this implies
A(G) = 1. In this case F1∧·· ·∧Fn⇒ G is true.

Case 2: Let not all A(Fi) equal one. Then A(F1 ∧ ·· · ∧Fn) = 0, hence F1 ∧ ·· · ∧Fn ⇒ G is true. In
both cases F1∧·· ·∧Fn⇒ G is true, hence it is a tautology.

2. implies 1.: Let H = F1∧·· ·∧Fn⇒ G be a tautology.
Case 1: There is A such that A(Fi) = 0. Then A(F1∧·· ·∧Fn) = 0, hence A(H) = 1.

Case 2: A(F1) = · · · = A(Fn) = 1. Now — since A(H) = 1 — it follows A(G) = 1. Thus in both
cases {F1, . . . ,Fn} |= G.

For the equivalence of 2. and 3. we need to compare whether F1 ∧ ·· · ∧Fn⇒ G is a tautology with
whether F1∧·· ·∧Fn∧¬G is unsatisfiable.

Let F1∧ ·· ·∧Fn⇒ G be a tautology. This means that ¬(F1∧ ·· ·∧Fn⇒ G) is unsatisfiable. Because
of

¬(F1∧·· ·∧Fn⇒ G)≡ ¬(¬(F1∧·· ·∧Fn)∨G)≡ (F1∧·· ·∧Fn)∧¬G

the latter term is unsatisfiable, too.

It would be tempting to use truth tables. But this does not really work here. If we would insist on
applying truth tables: we would see that the case A(F1) = · · · = A(Fn) = 1 and A(G) = 0 can not
happen (!); in one direction since G is a consequence of {F1, . . . ,Fn}, in the other direction since
F1∧·· ·∧Fn⇒ G is a tautology. Therefore we need to consider only certain rows of the truth table.

The notion of consequence plays a central rule in several calculi. Another notation for {F1, . . . ,Fn} |=
G is

F1
F2

...
Fn

G

or
F1,F2, . . . ,Fn

G

Some more examples of consequences are shown in Table 2. One of the best known is the modus
ponens:
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{F,F ⇒ G} |= G (modus ponens)
{¬G,F ⇒ G} |= ¬F (modus tollens)
{F ∨G,¬F ∨H} |= G∨H (resolution)
{¬(F ∧G),F} |= ¬G (modus ponendo tollens)
{F ⇒ G} |= F ⇒ F ∧G (absorption)
{F} |= F ∨G (disjuntion introduction)

Table 2: Examples of consequences (aka inference rules)

Lemma 1.9 (modus ponens). {F,F ⇒ G} |= G

Using the two other notations above we may write it as

F
F ⇒ G

G
, respectively

F1,F ⇒ G
G

In plain words this means: whenever F and F ⇒ G are true (i.e., whenever A |= F and A |= F ⇒ G)
then G is also true under A (i.e., A |= G). Why is this consequence rule true?

Proof. By Lemma 1.8 we need to show for instance that F ∧ (F ⇒ G)⇒ G is a tautology:

F ∧ (F ⇒ G)⇒ G≡ ¬(F ∧ (¬F ∨G))∨G≡ ¬F ∨¬(¬F ∨G)∨G≡ ¬F ∨ (F ∧¬G)∨G

≡
(
(¬F ∨F)∧ (¬F ∨¬G)

)
∨G≡ (¬F ∨¬G)∨G≡ ¬F ∨¬G∨G

The last expression is obviously a tautology. Hence F ∧ (F ⇒ G) |= G.

1.7 Resolution

A calculus is typically a collection of transformation rules, or more general: any algorithmic rule to
decide some question on logical formulas (for instance, F ≡ G, or F satisfiable). Truth tables are an
example of a calculus, but an untypical one: it does not use transformation rules. Other examples of
calculusses include an inference rule (that is just another name for consequence) to generate conse-
quences of a given formula (resp. set of formulas). One particular calculus uses the modus ponens as
the inference rule. In this section we present another such calculus using resolution as the inference
rule.

Remark 1.7. A calculus is particularly useful if it is correct and complete. In the context of this
section (“Is F unsatisfiable?”) this means:

• The calculus is correct, if it does not return “unsatisfiable” for any satisfiable F .

• The calculus is complete, if it returns “unsatisfiable” for any unsatisfiable F .

This is a subtle point: a calculus that is both correct and complete for “Is F unsatisfiable?” might not
be complete for the question “Is F satisfiable?” (it may return nothing, resp. run forever, for some
satisfiable F).
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The resolution calculus uses just a single transformation rule to decide whether a formula F is satisfi-15. Nov.
able or unsatisfiable. (Later we will use the resolution calculus to decide whether a given formula in
first-order logic is unsatisfiable.)

Remark 1.8. A test for unsatisfiability of F answers several further questions, for instance

• Is F a tautology? (if and only if ¬F is unsatisfiable)

• Is G a consequence of F1, . . . ,Fn? (if and only if F1∧·· ·∧Fn∧¬G is unsatisfiable)

The first point is obvious: A(F) = 1 for all A implies A(¬F) = 1−A(F) = 0 for all A . The second
point is Lemma 1.8.

In order to describe the resolution calculus for formulas in propositional logic we need some notation.
Given some formula F in CNF:

F = (L1,1∨L1,2∨·· ·∨L1,n1)∧ (L2,1∨L2,2∨·· ·∨L2,n2)∧·· ·∧ (Lk,1∨Lk,2∨·· ·∨Lk,nk)

where the Li j are literals, we write F in clause set notation as

F =
{
{L1,1,L1,2, . . . ,L1,n1},{L2,1,L2,2, · · · ,L2,n2}, · · · ,{Lk,1,Lk,2, · · · ,Lk,nk}

}
.

Different formulas can have the same form in this notation. In fact the set notation reduces ambigui-
ties. For instance the formulas

(A1∨¬A2)∧A3∧A3, A3∧ (¬A2∨A1), and A3∧ (¬A2∨A1∨¬A2)

are all represented in set notation by
{
{A3},{A1,¬A2}

}
.

Definition 1.7. Let K1,K2 be clauses, L a literal such that L ∈ K1, ¬L ∈ K2. Then the resolvent (of K1
and K2) is

R = (K1 \{L})∪ (K2 \{¬L})

It may happen that R= {} (for instance, if K1 = {A} and K2 = {¬A}). Since this means “unsatisfiable”
in the sequel we write R =� in this case (rather than R = {} or R =∅, which could be confused with
the empty clause).

In a diagram we will write a resolvent R of K1 and K2 as K 2K1

R

Example 1.8. A1  A A3 4{ , , { {{A1 A4,

A3{ , {A1

(using L = A4) or A1  A A3 4{ , , { {{A2 A4,

A1 A2{ , , {A3

(also using L = A4).

It is fruitful to think about whether it is OK to use two different literals (for instance, A1 and ¬A1 as
well as A4 and ¬A4) at once in the same resolution step (see exercises).

Lemma 1.10. Let F be a formula in clause set notation, let R be a resolvent of two clauses in F. Then
F ≡ F ∪{R}.
In the language of consequences: the resolution F ∨G is a consequence of F ∨ L and G∨¬L. In
short: {F ∨L,G∨¬L} |= F ∨G.
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Hence the general idea of the resolution calculus is to determine all possible resolvents iteratively. F
is unsatisfiable if and only if � appears at some point.

Notation: Let F be a formula in clause set notation.

• Res(F) = F ∪{R | R resolvent of two clauses in F}

• Res0(F) = F

• Resn+1(F) = Res(Resn(F))

• Res∗(F) =
⋃

n≥0
Resn(F)

Even though in general the questions “Is F unsatisfiable?” and “Is F satisfiable?” might be of different
nature, in propositional logic they are the same with respect to resolution:

Theorem 1.11. F is unsatisfiable if and only if � ∈ Res∗(F). Since the procedure always terminates
(see below) it follows that the resolution calculus is consistent and complete.

A proof is contained in the book of Schöning.

The corresponding algorithm is clear now: compute iteratively Res∗(F). Stop if Resk(F)=Resk+1(F)
for some k (then Resk(F)=Res∗(F), see exercises). Return “F is unsatisfiable” if �∈Res∗(F), return
“F is satisfiable” else.

The algorithm always terminates since we are dealing with finite formulas only. (In the next section
we need to apply this algorithm to infinitely many formulas, hence it might not terminate if F is
satisfiable.) We describe the algorithm by an example:

Example 1.9. Given F = (A∨ B∨¬C)∧ (A∨ B∨C)∧ (A∨¬B)∧¬A. We write F in clause set
notation:

F =
{
{A,B,¬C},{A,B,C},{A,¬B},{¬A}

}
.

A B C{ , , {

A B{ , {

A B C{ , , { A B{ , { A{ {

A{ {

Hence F is unsatisfiable.

In general, the diagram may not be a tree: sometimes one needs to use the same clause more than
once, hence creating some loop.

The resolutions used in the example were chosen in some optimal way. The list of all resolvents is:

Res1(F) = F ∪
{
{A,B},{A,C},{A,¬C},{B,¬C},{B,C},{¬B}

}
Res2(F) = Res1(F)∪

{
{A},{B},{C},{¬C}

}
A lot of work has been done on improving the algorithm by choosing resolvents in some optimal way.
Nevertheless:
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Theorem 1.12 (Haken 1984). There are formulas where each derivation of � needs exponentially
many steps resolution in n, where n is the number of atomic formulas.

Moreover, the CNF of some given formula F can be exponentially longer than F , see Remark 1.5.

Remark 1.9. The resolution calculus is efficient for Horn formulas: consider only those resolvents
using clauses K1 and K2 where either K1 has only one element, or K2 has only one element. This
can be seen by comparing the algorithms: This version of resolution simulates the Horn formula
algorithm 1.3: Using clauses with one element covers all clauses in the Horn formula of the form
1⇒ Ai. Marking means setting A(Ai) = 1, hence implicitly adding a clause {Ai}. Marking all copies
of Ai in (Ai∧A j∧·· ·∧Am⇒ B) means marking Ai in (¬Ai∨¬A j∨·· ·∨¬Am∨B) This corresponds to
the clause {¬Ai,¬A j, · · · ,¬Am,B}. The resolvent of the latter clause with {Ai} is {¬A j, · · · ,¬Am,B},
and so on.

The resolution calculus is also efficient for formulas (in CNF) where each clause has at most two
elements (see exercises).

There are several implementations of the resolution algorithm and of its refinements (Davis-Putnam-
algorithm, Davis-Putnam-Logemann-Loveland algorithm, SAT-solvers...)

1.8 Tableau calculus

For later purposes we need a further formalism deciding the satisfiability of some formula in propo-
sitional logic that is not in CNF. It is assumed that the reader is familiar with the notion of a binary
tree (root, vertex, child, leaf, path...). In the sequel “path” means a path ending in a leaf.

The idea is to start constructing a tree of all possibilities how a formula F may be true. The root will
be F . A formula of the form G∨H leads to a branch

G  H 

G H

meaning that either G or H (or both) must be true. A formula of the form G∧H leads to a branch

G  H 

G 

H H 

meaning that both G or H must be true. We continue to unravel the formula into a tree until all ∧ and
∨ are translated into nodes of the tree. Then all leaves are literals.

Then we check for satisfiability: If we see for instance A and ¬A in some path, then this path does not
yield a satisfying valuation (since in this path both A and ¬A must be true). A formula is satisfiable if
there is at least one path that is satisfiable in this sense. The general method is as follows.
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Algorithm 1.4. Input: some formula F in propositional logic (without⇒ and⇔).

1. Start with F as the root.

2. Choose an unmarked vertex G that is not a literal. Mark G. Apply the following rules until
all possibilities are exhausted.

• If G is of the form ¬¬H then add a single vertex H to each path starting in G.

• If G is of the form H1∨H2 then add to each path starting in G this:

H H 12

• If G is of the form H1∧H2 then add to each path starting in G this:

H

H

1

2

• If G is of the form ¬(H1∨H2) then add to each path starting in G this:

H

H

1

2

• If G is of the form ¬(H1∧H2) then add to each path starting in G this:

H H 12

3. If there is no further vertex to mark then return the tableau, STOP.

A path is closed if it contains Ai and ¬Ai for some i. In this case we mark the leaf of this path
by ⊗. A tableau is closed if all leaves are marked by ⊗. In this case F is unsatisfiable. Else
F is satisfiable, and each path with a leaf having no ⊗ yields a satisfying valuation A : for each
occurrence of Ai set A(Ai) = 1, for each occurrence of ¬Ai set A(Ai) = 0.

There are some obvious simplifications. For instance, a formula of the form A∨B∨C can be realized
in one step with three branches rather than two (the tree is no longer binary in this case).

There are also several refinements of this algorithm in order to improve the runtime. Two obvious
examples are: paths can be marked closed as soon as they are detected to be closed. A partial formula
H1∧H2∧H3 can be unraveled in one step, resulting in three new vertices (see Example 1.10).

Theorem 1.13. The Tableau algorithm of propositional logic is consistent and complete.

A proof is contained in the book of Kreuzer-Kühling.
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F

¬A∨B

¬B∨C

¬(¬A∨C)

F

¬A∨B

¬B∨C

¬(¬A∨C)

¬A B

F

¬A∨B

¬B∨C

¬(¬A∨C)

¬A

¬B C

B

¬B⊗ C

F

¬A∨B

¬B∨C

¬(¬A∨C)

¬A

¬B

¬¬A

¬C

C

¬¬A

¬C⊗

B

¬B⊗ C

¬¬A

¬C⊗

F

¬A∨B

¬B∨C

¬(¬A∨C)

¬A

¬B

¬¬A

¬C

A⊗

C

¬¬A

¬C⊗

B

¬B⊗ C

¬¬A

¬C⊗

Figure 1: An example of the Tableau algorithm. For each new marking (boxed formula) there is a new
diagram ((1)-(5)). (Thanks to Andreas Mazur)

Example 1.10. We show that {F ⇒ G,G⇒ H} |= F ⇒ H. In order to show this we use the fact that
it does not matter whether F,G and H are atomic formulas or not: either A(F) = 1 or A(F) = 0 etc.
So whenever we want to prove a rule (like in Theorem 1.1, or in Table 2) it does not matter whether
we use A,B, · · · or F,G, . . ..

Hence we proceed by proving {A⇒ B,B⇒C} |= A⇒C. This means (see Remark 1.8) that

F = (A⇒ B)∧ (B⇒C)∧¬(A⇒C)≡ (¬A∨B)∧ (¬B∨C)∧¬(¬A∨C)

is unsatisfiable. The resulting tableau is shown in Figure 1. All paths are closed, hence F is satisfiable,
hence the claim follows.

Interlude: Relations

In the next section predicates will play a central role. Predicates are a generalisation of relations. 22. Nov
(Predicates can have one, two, three... inputs, whereas relations have always two inputs.)

A relation is explained on some set W. Think of W as all students in the Faculty of Technology, or all
integers, or all 0-1-words. In plain words a relation is some property that any pair of elements in W
may have or not have. For instance, on W = Z a relation may be <: 2 < 5 is true, so the relation is
true for the pair (2,5). The relation is not true for the pair (5,2), or the pair (3,3).

Another relation on W = Z is “a− b is odd”. So the relation is true for (2,5) and (5,2), but not for
(3,3).

Recall that for two sets V,W the Cartesian product is

V ×W := {(a,b) | a ∈V,b ∈W}.
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A convenient way to define a relation is to view it as a subset R of W ×W . For the <-example we
obtain

R = {(a,b) | a,b ∈ Z,a < b}

So (2,5) ∈ R, (5,2) /∈ R, (3,3) /∈ R. For the “a−b is odd”-example we obtain

R′ = {(a,b) | a−b is odd.}

So (2,5) ∈ R, (5,2) ∈ R, (3,3) /∈ R. A particular nice class of relations are equivalence relations.

Definition 1.8. Let R be a relation. R⊆W ×W is called an equivalence relation, if for all a,b,c ∈W
holds:

1. (a,a) ∈ R, (reflexive)

2. (a,b) ∈ R if and only if (b,a) ∈ R, and (symmetric)

3. (a,b) ∈ R and (b,c) ∈ R implies (a,c) ∈ R. (transitive)

An equivalence relation partitions the set W into equivalence classes: By [a] we denote the set of
all b ∈W such that (a,b) ∈ R. A simple example of an equivalence relation is = in Z. Here each
equivalence class [a] consists of one element only, namely, a.

2 First-order logic

In propositional logic we cannot split statements like “x is a philosopher” or “for all n ∈ N holds:
n≥ 0” into smaller statements (thus “atomic” formula). Extending the language of logic we introduce
now variables (like x). A statement “x is a philosopher” then is a predicate, its value being 0 or 1,
depending on the value of x. Furthermore adding quantifiers ∀ and ∃ and functions to the language of
propositional logic yields the language of first-order logic. This allows for the formal logical treatment
of statements like

∀ε ∃δ ∀x (|x−a|< δ⇒ | f (x)− f (a)|< ε)

Here ∀ and ∃ are quantifiers, f and | · | and − are functions, ε,δ,x and a are variables, and < is a
predicate.

Like in Section 1 the general structure of this section is

1. formal definition of syntax and semantics,

2. normal forms,

3. algorithms to decide (un-)satisfiability of formulas.

Unlike in Section 1 we will face here some problems that are undecidable, no matter which tools we
may apply.
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2.1 Syntax of first-order logic

As in Section 1 we first declare what are valid formulas in a purely abstract way (syntax). Later we
see how to fill this formulas with concrete meaning (semantics).

Definition 2.1 (syntax of first-order logic). The building blocks of formulas are

• Variables denoted by x1,x2, . . . or u,v,w,x,y,z.

• Predicate-symbols denoted by P1,P2, . . . or P,Q,R.

• Function-symbols denoted by f1, f2, . . . or f ,g,h.

• Terms are denoted t1, t2, . . . and are defined inductively:

– Each variable is a term.

– If f is a function (with k inputs) and t1, . . . , tk are terms, then f (t1, . . . , tk) is a term.

• Formulas are defined inductively:

– If P is a predicate (with k inputs) and t1, . . . , tk are terms, then P(t1, . . . , tk) is a formula.
(Sometimes these are called atomic formulas)

– If F is a formula, then ¬F is.

– If F and G are formula, then F ∨G and F ∧G are.

– If x is a variable and F is a formula then ∀xF and ∃xF are formulas.

All intermediate steps of this inductive construction are called partial formulas. An occurrence of
some variable x in some partial formula G of some formula F is bound if G is of the form ∀xH or ∃xH
such that H contains x; otherwise this occurrence of x is called free. Note that a variable can be both
bound and free in the same formula, see the example below. A formula is closed if all occurrences
of all variables are bound. The matrix of F is obtained by deleting all ∀x and ∃x. Functions with no
inputs are allowed. Such functions are also called constants.

Remark 2.1. Because “being equal” is such a natural and frequently occurring concept, it is some-
times useful to allow a further symbol: =. The definition of the syntax has to be adjusted appropri-
ately: If t1 and t2 are terms, then t1 = t2 is a formula.

Example 2.1. F = ∃xP(x, f1(y))∨¬∀yQ(y, f7( f2, f3(z))) is a formula. All partial formulas of F are

F, ∃xP(x, f1(y)), P(x, f1(y)), ¬∀yQ(y, f7( f2, f3(z))), ∀yQ(y, f7( f2, f3(z))), Q(y, f7( f2, f3(z))).

All terms in F are x,y, f1(y), f7(( f2, f3(z)), f2, f3(z),z. All occurrences of x in F are bound. The first
occurrence of y in F is free, the second is bound. The occurrence of z in F is free. The matrix of F is

P(x, f1(y))∨¬Q(y, f7( f2, f3(z))).

Remark 2.2. In order to use fewer brackets we agree on the rule that ∀x and ∃x binds stronger than ∨
and ∧. Hence ∀x P(x)∨∀y P(y) means (∀x P(x))∨ (∀y P(y)), and not ∀x (P(x)∨∀y P(y)).
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2.2 Semantics of first-order logic

In order to interpret formulas in first-order logic as “true” or “false” one needs to give the symbols
a meaning. More precisely, one needs to define a basic set in which the variables and functions take
their values (the universe), and an interpretation of any predicate-symbol as a predicate (relation) in
this universe, any function symbol as a function, and so on. More precisely:

Definition 2.2. A structure (aka world) for a formula F is a pair A = (UA , IA), where

• UA is a nonempty set (the universe), and

• IA is a map (the interpretation) such that

– IA(x) is an element of UA for all free variable-symbols x in F ,

– IA( f ) is a function over UA for all function-symbols f in F ,

– IA(P) is a predicate over UA for all predicate-symbols P in F .

Here “element” has the usual meaning: some element of UA . “Function” means a function from
(UA)

k → UA , where f has k inputs. “Predicate” is to be thought of as some property. E.g., for a
predicate P with one input P(x) may mean “x is odd”, or “x is a prime number” (if UA = N), or P(x)
may mean “x is a philosopher” if UA is the set of all humans. For a predicate P with two inputs P(x,y)
can mean x < y, or x divides y (if UA = N), or P(x,y) can mean “x knows y” if UA is the set of all
humans.

Remark 2.3. . More formally a predicate P is defined as a subset of UA (if P has one input), or a
subset of UA ×UA (if P has two inputs), or a subset of UA ×UA ×·· ·×UA (n times) if P has n inputs.
Then P is for instance

{x ∈ N | x is odd }, {x ∈ N | x is prime },

respectively
{(n,m) ∈ N×N | n < m}, {(n,m) ∈ N×N | n divides m}

for the examples mentioned above.

In the sequel we will write shortly xA , f A , PA rather than IA(x), IA( f ), IA(P).

Example 2.2. Consider the formula F ′ = (∀xP(x, f (x)))∧Q(g(h,x)). Here x is both a bound variable
and a free variable, f is a function with one input, g is a function with two inputs, and h is a function
with no input; hence h is a constant. P is a predicate with two inputs, Q is a predicate with one input.

In order to avoid confusion let us consider F = (∀xP(x, f (x)))∧Q(g(h,z)). A possible structure for
F is

UA = {0,1,2, . . .}= N0

PA = {(x,y) ∈ N0×N0 | x < y}
QA = {x ∈ N0 | x is prime }
f A :N0→ N0, f (x) = x+1

gA :N0×N0→ N0, g(x,y) = x+ y

hA = 2 and zA = 3.
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This structure does not only match F , but it makes F true! Indeed, in this universe F means

(∀x ∈ N0 x < x+1)∧2+3 is prime.

Since both statements are true, F is true in the structure A . We will write shortly A |= F .

If we change the structure above into A ′ by changing zA = 3 to zA ′ = 4 then F is false in the new
structure A ′ (since 2+4 = 6 is not prime).

In the sequel we will focus on the question “Given some formula F , is there some structure making F
true?” (satisfiability); respectively “Given some formula F , is F true for all structures (matching F)?” 29. Nov.
(compare tautology in Section 1, here this will be denoted as “valid”) In the spirit of Def. 1.2 we will
define what it means that A makes F true.

Definition 2.3. Let F be a formula and A be a structure for F . A(F) is defined inductively by
Definition 1.2 together with the following points

1. If F = P(t1, . . . , tk) then

A(F) =

{
1 if (tA

1 , . . . , tA
k ) ∈ PA ,

0 else

2. If F = ∀xG then

A(F) =

{
1 if for all xA ∈UA holds A(G) = 1
0 else

3. If F = ∃xG then

A(F) =

{
1 if there is xA ∈UA with A(G) = 1
0 else

Given a formula F and a structure A for F .

• If A(F) = 1 then A satisfies F , short: A |= F We say also in this case: A is a model for F .

• If for all A for F holds A |= F then F is valid, short: |= F (this is the analogue concept of
tautology in propositional logic).

• If there is A for F such that A |= F then F is satisfiable.

Example 2.3. Let F = ∀x∃y P(x,y). A structure A with A |= F is

UA = N, PA = {(x,y) | x < y,x ∈ N,y ∈ N}.

(“For all x ∈ N exists y ∈ N such that x < y”, bingo)

A structure A with A 6|= F is for instance

UA = {0,1,2, . . . ,9} PA = {(x,y) | x,y ∈UA , x = 2y,}.

In this case F is false for x = 1.

In order to illustrate that a structure is not necessarily a mathematical object: Let UA be the set of all
humans, and let PA(x,y) mean “x loves y”. Consider all combinations of quantifier-variable-quantifier-
variable P(x,y). Then
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• ∀x ∃y P(x,y) is “everybody loves someone”,

• ∀y ∃x P(x,y) is “everybody is loved by someone”,

• ∃x ∀y P(x,y) is “there is someone loving everybody” (Jesus?),

• ∃y ∀x P(x,y) is “there is someone loved by everybody” (Elvis??),

• ∀x ∀y P(x,y) is “everybody loves everybody” (Woodstock???),

• ∃x ∃y P(x,y) is “somebody loves someone”.

• ∃x P(x,x) is “somebody loves himself”.

The truth of each formula depends on A , but all these formulas are satisfiable (in a universe where
everybody loves everybody), and none of these formulas is valid (= true in all possible universes): we
can just define a world where no one loves no one by choosing P to be the empty predicate.

Remark 2.4. Again, for first-order logic with identity, the definition of the semantics needs to be
adjusted. This is done by giving the predicate = the usual meaning: being equal as elements in UA .

Remark 2.5. In analogy to Remark 1.8 one can show here that

• F is valid if and only if ¬F is unsatisfiable.

• G is a consequence of F1∧·· ·∧Fn if and only if F1∧·· ·∧Fn∧¬G is unsatisfiable.

Remark 2.6. First-order logic does indeed contain propositional logic as a special case. In fact
each formula in first-order logic without quantifiers can be interpreted as a formula in propositional
logic: all variables are free, hence treated as constants. All predicates contain only constants. Hence
variables as such vanish. For instance,

F = (P( f )∨¬Q( f (g),h))∧R(g,h)

corresponds in each interpretation to constants and predicates of constants. The latter are the atomic
formulas, so F becomes

(A∨¬B)∧C.

The latter is satisfiable (resp. a tautology) if and only if the former is satisfiable (resp. valid).

Remark 2.7. Not every statement can be expressed in first-order logic. Up to now we need to deal
with one universe: we cannot express “for all students there is an integer” (at least not easily). More-
over, we cannot express statements like “for all functions”, or “it exists a predicate”. Allowing for
these possibilities yields second-order logic. The latter is beyond the scope of this course.

2.3 Normal forms

All laws of calculation in propositional logic (see Theorem 1.1) do also apply to first-order logic. We
need some further laws for treating quantifiers. These laws tell us when two formulas are equivalent.
Being equivalent here means essentially the same as in Section 1: F ≡ G means that for all A holds
that A(F) = A(G). The definition is the same only the meaning of A has changed.
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Theorem 2.1. Let F and G be formulas. Then the following rules hold.
1. ¬∀x F ≡ ∃x ¬F
¬∃x F ≡ ∀x ¬F

2. If x does not occur freely in G, then
(∀x F)∧G≡ ∀x (F ∧G)
(∀x F)∨G≡ ∀x (F ∨G)
(∃x F)∧G≡ ∃x (F ∧G)
(∃x F)∨G≡ ∃x (F ∨G)

3. (∀x F)∧ (∀x G)≡ ∀x (F ∧G)
(∃x F)∨ (∃x G)≡ ∃x (F ∨G)

4. ∀x ∀y F ≡ ∀y ∀xF
∃x ∃y F ≡ ∃y ∃xF

Proof. The proofs of 1, 3 and 4 are standard. As an example we show only the proof of Formula 3.1.
Using Definition 2.3 we get:

A((∀x F)∧ (∀x G)) = 1 iff A(∀x F) = 1 and A(∀x G) = 1

iff ( for all x ∈UA : A(F) = 1) and ( for all x ∈UA : A(G) = 1)

iff for all x ∈UA : (A(F) = 1 and A(G) = 1)

iff for all x ∈UA : A(F ∧G) = 1

iff A(∀x(F ∧G)) = 1.

Regarding the proofs of the formulas in 2: The case when G does not contain x at all is easy. The case
when x is bound in G by ∀ only (and by ∀x F by ∀) is also pretty simple. The problem occurs only
when x is bound by exists in G (and x is bound by ∀ in ∀x F). What means ∀x ∃x P(x)? (One can show
that ∀x ∃x P(x)≡ ∃x P(x)≡ P(x). For much more details (complicated!) see the book of Rautenberg,
pages 65-72.)

We do not need to delve into this here, since we will avoid this problem by renaming variables such
that no variables in F are both bound and free; see Lemma 2.2 below.

In order to construct normal forms we will use the rules above to push quantifiers “to the front”.

Example 2.4.

¬(∃x P(x,y)∨∀z Q(y))∧∃w Q(w) =¬∃x P(x,y)∧¬∀z Q(y)∧∃w Q(w)

=∀x ¬P(x,y)∧∃z ¬Q(y)∧∃w Q(w)

=∀x
(
¬P(x,y)∧∃z ¬Q(y)

)
∧∃w Q(w)

=∀x (∃z(¬P(x,y)∧ ¬Q(y)))∧∃w Q(w)

=∃w ∀x ∃z (¬P(x,y)∧¬Q(y)∧Q(w))

Note that the order of the quantifiers above depends on the transformations used. In this case the
quantifiers can be arranged to any order, but this is not always the case.

A problem occurs if we want to use rule 2: ∀x F ∧G≡ ∀x (F ∧G) and if a variable x is free in G, but
bound in F .
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Lemma 2.2. Let F [x/y] denote the formula obtained by replacing each occurrence of x in F by y.

Let G be some formula not containing y. Then

∀x G≡ ∀y G[x/y] and ∃x G≡ ∃y G[x/y]

Using this lemma we may transform each formula into one where no two quantifiers have the same
variable, and where no variable occurs both bound and free. This is the requirement in order to
construct the following normal form.

The next definition describes an intermediate state: the first thing we want to ensure is that all quanti-
fiers are as far left as possible. Let us make this precise.

Definition 2.4. A formula F has prenex normal form (PNF) if

F = Q1x1Q2x2 · · ·QnxnG,

where the Qi are quantifiers, and G contains no further quantifiers.

In other words, all variables in G (!) are free, respectively G is the matrix of F . For instance

F = ∃x ∀y ∃z ((P( f (x))∧P(y))∨Q(z))

has PNF, whereas
F = ∃x ∃y (P( f (x))∧P(y))∨∀z Q(z)

has not.

Theorem 2.3. Each formula in first-order logic has an equivalent formula in PNF.

Again, this theorem is proven using the inductive definition of a formula. For the algorithmic treatment6. Dec
of (satisfiability of) formulas we need a more special normal form. Maybe the exercises gave an idea
already on the fact that it makes no big difference whether a variable is free, or is bound by an ∃. So
the next step is to delete all ∃ in some appropriate manner.

Definition 2.5. Given a formula in PNF its corresponding Skolem normal form (SNF) is the output
of the following algorithm:

1. while F contains ∃ do

• Is F = ∀y1 ∀y2 · · ·∀yn ∃x G
then choose a function f not contained in G and let F :=∀y1 ∀y2 · · ·∀yn G[x/ f (y1, . . . ,yn)].

2. STOP

Note that G can contain ∀. For instance, if F = ∀x∃y∀z P(x,y,z), then G= ∀z P(x,y,z), and F becomes
∀x∀z P(x, f (x),z).

The case n = 0 is possible, that is, F is of the form ∃xG. In this case f has no arguments, hence f is
a constant. Consequently, F is replaced by G[x/ f ] in this case. For a further illustration see Example
2.5 below.
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Theorem 2.4. For each formula F in first-order logic there is a formula G in SNF, such that F is
satisfiable if and only if G is.

Remark 2.8. Obviously, constants play a particular role here. Up to now we used function symbols
f ,g,h... for constants (where f ,g,h... had no inputs). For the sake of clarity, from now on we will use
a,b,c... or a1,a2, ... for constants.

The following list summarizes the steps needed to transform some arbitrary formula into the normal
form we need later. This normal form does not seem to have a particular name in the literature, even
though it is the most important one in the sequel. So we call it THE normal form.

Algorithm 2.1 (THE normal form (TNF)).

0. Replace all partial formulas F ⇒ G by ¬F ∨G, and all F ⇔ G by (F ∧G)∨ (¬F ∧¬G).

1. Rename bound variables in F until no two quantifiers have the same variable, and where no
variable occurs both bound and free.

2. Let y1, . . . ,yn be all free variables in F . Replace each yi by a constant ai.

3. Transform F into PNF (by pushing quantifiers to the front).

4. Delete all ∃ by transforming F into Skolem normal form.

5. Transform the matrix of F into CNF.

Note that the TNF of a given formula is not unique: we may swap some of the quantifiers; and the
CNF is also not unique, as we saw in Section 1.

Note that only steps 0, 1, 3 and 5 preserve equivalence of formulas. In general the output will not be
some equivalent formula but only an equisatisfiable one. We say that F and G are equisatisfiable if G
is satisfiable if and only if F is; notation: F ' G.

Example 2.5. A full example illustrating all the steps needed to establish TNF: Consider

F = ∃x ∀y
(
P(x)⇒ Q(y)

)
∧P(x)∧∀y ¬Q(y).

Applying steps 0-5 above yields

F
0.≡ ∃x∀y

(
¬P(x)∨Q(y)

)
∧P(x)∧∀y ¬Q(y)

1.≡ ∃w∀y
(
¬P(w)∨Q(y)

)
∧P(x)∧∀z ¬Q(z)

2.' ∃w∀y
(
¬P(w)∨Q(y)

)
∧P(a)∧∀z ¬Q(z)

3.≡ ∀z∃w∀y
((
¬P(w)∨Q(y)

)
∧P(a)∧¬Q(z)

)
4.' ∀z∀y

((
¬P( f (z))∨Q(y)

)
∧P(a)∧¬Q(z)

)

The matrix of the last formula is in CNF already, so we get step 5 for free. (Note the use of ' versus
≡.)
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2.4 Resolution calculus of first-order logic

We will see in Section 4 that we cannot hope for anything better than a test for unsatisfiability of a
formula F that returns “Yes” whenever F is unsatisfiable, and may return nothing (runs forever) if F
is satisfiable. Moreover, we may wait for a positive answer arbitrarily long: if there would be some
bound on the waiting time this test could be turned into some test on satisfiability (“wait long enough,
if algorithm did not terminate, return ‘satisfiable”’).

The problem is essentially that we need to test infinitely many structures, partly because of the fol-
lowing result:

Theorem 2.5. There are satisfiable formulas in first-order logic possessing only infinite models; that
is, models A = (UA , IA) such that UA is an infinite set.

Proof. (Exercise)

The solution to the problem is to use a certain standard structure.

Definition 2.6. The Herbrand universe H(F) of some formula F is the set of all variable-free terms
that can be constructed out of partial formulas of F . That is, H(F) consists of

1. All constants a,b, . . . occurring in F are in H(F).

2. If t1, t2, . . . tn ∈ H(F) and f occurs in F then f (t1, t2, . . . , tn) ∈ H(F).

If F contains no constant then add one constant a to H(F) and proceed as above.

Note the twist here: the elements of the universe are the symbols in F . This means we define the
semantics to be the syntax. Consequently, any two different symbols are different elements of H(F).

Example 2.6. Let F = ∀x ∀y ∀z P(x, f (y),g(z,x)). F contains no constant, so we add a to H(F) and
get

H(F) = {a, f (a),g(a,a), f ( f (a)), f (g(a,a)),g(a, f (a)),g( f (a),a),g( f (a), f (a)), f (g(a, f (a))), . . .}

Let G = ∀x ∀y Q(a, f (z),h(y,b)). G contains two constants a,b, and we get

H(G) = {a,b, f (a), f (b),h(a,a),h(a,b),h(b,a),h(b,b), f ( f (a)), f ( f (b)),

f (h(a,a)), f (h(a,b)), ...,h( f (a),b),h( f (b),b), ...}

In order to obtain a structure A we need an interpretation. All terms are already defined (e.g. aA =13. Dec
a, f A(a) = f (a) and so on). In principle we still need to define interpretation of the predicates. But in
the sequel we proceed by considering all possible interpretations of some formula F . Explicitly this
means that we will iterate over all instances of (the matrix of) F — for instance

PA(a, f (a),g(a,a)),PA(b, f (a),g(a,a)),PA(a, f (b),g(a,a)),PA(a, f (a),g(b,a)), . . .

in the example above — and consider all these instances as atomic formulas, until we obtain a contra-
diction. Any structure A = (H(F), IA) with A |= F is called a Herbrand model for F .
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Theorem 2.6. Let F be in Skolem normal form. Then F is satisfiable if and only if F has a Herbrand
model.

A proof is contained in Schöning.

Definition 2.7. Let F = ∀y1 · · ·∀ynF∗ be a formula in Skolem normal form, and let F∗ be the matrix
of F . Let E(F) be the set of all instances of F , that is:

E(F) = {F∗[y1/t1][y2/t2] · · · [yn/tn] | t1, t2, . . . , tn ∈ H(F)}.

E(F) is called Herbrand expansion.

The important point here is that we replaced the single formula F in first-order logic into a set E(F)
of formulas without quanitifiers and variables.

Theorem 2.7. For each formula F in Skolem normal form holds: F is satisfiable if and only if E(F)
is satisfiable (in the sense of propositional logic).

Note that E(F) is infinite, so this is the point where the Compactness Theorem (Thm. 1.6) is needed.
Now we are able to provide a test that answers whether a given formula is unsatisfiable.

Algorithm 2.2. Input: a formula F in Skolem normal form such that the matrix of F has CNF. Let
E(F) = {F1,F2,F3, . . .} be an enumeration of the Herbrand expansion of F . Let n = 0, M := {}.

while � 6∈M do

• n := n+1

• M := M∪Fn

• M := Res∗(M).

Return “unsatisfiable”.

Note that this test runs forever if F is satisfiable.

Because ¬F is unsatisfiable if and only if F is valid, this yields also a (semi-)decision procedure for
validity of some formula.

Example 2.7. Consider F = ∀x (P(x)∧¬P( f (x)). The matrix of F in clause set notation is

{{P(x)},{¬P( f (x))}}.

The Herbrand universe is H(F) = {a, f (a), f ( f (a)), f ( f ( f (a)))), . . .}. The Herbrand expansion of F
therefore is

E(F) = {P(a)∧¬P( f (a)),P( f (a))∧¬P( f ( f (a))), . . .}.

In clause set notation this looks somewhat awkward:

E(F) =
{{
{P(a)},{¬P( f (a))}

}
,
{
{P( f (a))},{¬P( f ( f (a)))

}
, . . .
}
.

But remember how to read the clause set notation: the inner commas mean ∧, and the outer commas
mean ∧, too. So we may write equivalently (and more readable)

E(F) =
{
{P(a)},{¬P( f (a))},{P( f (a))},{¬P( f ( f (a))), . . .

}
.
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In any case, Algorithm 2.2 extracts the clauses from F1, F2, ... and adds them to M. For this example
we obtain

F1 =
{
{P(a)},{¬P( f (a))}

}
M =

{
{P(a)},{¬P( f (a))}

}
F2 =

{
{P( f (a))},{¬P( f ( f (a)))}

}
M =

{
{P(a)},{¬P( f (a))},{P( f (a))},{¬P( f ( f (a)))

}
And so on. Applying the resolution calculus to the M from the second step above we obtain

{P(a)} {¬P( f (a))} {P( f (a))} {¬P( f ( f (a)))}
� �

�

This shows that F is unsatisfiable.

In the example above we needed only two Fi, hence four clauses, and only one resolution step. Still,
two of the clauses generated are superfluous. In bigger examples it is profitable to produce only
clauses that are assumed to lead to � pretty quickly.

Example 2.8. Consider F = ∀x ∀y
(
(¬P(x)∨¬P( f (a))∨Q(y))∧P(y)∧(¬P(g(b,x))∨¬Q(b))

)
. The

matrix of F in clause set notation is

{{(¬P(x),¬P( f (a)),Q(y)},{P(y)},{¬P(g(b,x)),¬Q(b)}}

We use a more clever approach: start with the matrix of F and substitute variables in a prudent manner:

P(x),

 

{ {P(f(a)), P(g(b,x)),P(y)Q(y) { {{ Q(b) {

{P(f(a)),Q(y){ P(f(a)){ {

[x/f(a)] [y/g(b,b)][y/f(a)] [x/b]

P(g(b,b)){ { P(g(b,b)),{ Q(b) {

{Q(y){ {Q(b){

{Q(b){
[y/b]

Hence F is unsatisfiable.

Further questions now may be:

1. How can we refine this algorithm in order to make it more efficient? E.g. using prudent substi-
tutions, or delayed substitutions (like delaying [y/b] in the example above)

2. Which classes of formulas are efficiently decidable? (compare Horn formulas)

3. Can we apply the resolution calculus to prove mathematical theorems automatically?

Remark 2.9. In order to illustrate the last one consider this formula:

F = ∀x ∀y ∀z f (x, f (y,z)) = f ( f (x,y),z)∧∀x f (x,e) = x∧∀x ∃y f (x,y) = e

Each model for F is a group (see Maths I, or Wikipedia). Hence every consequence derived from F is
a (true) statement about groups. If there is a machine (or algorithm) printing all true statement about
groups a lot of mathematicians (namely, group theorists) would be unemployed. This is undergoing
work, but it is not clear whether it will succeed. Right now the assumption is ”no”. One problem is
that a machine cannot detect which result is ”important” and which one is not. The tendency goes in
direction ”computer assisted proofs” and ”computer aided proofs”, see e.g. the very interesting survey
Formal Proof by Thomas Hales. (Please note also the advertisement at the end of the paper.)
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Interlude: Infinite cardinalities

For a finite set M it is clear how to define the number of its elements: the set M = {2,3,5,7} has 20. Dec
four elements, for instance. This number is called the cardinality of M, denoted by |M| (sometimes
also #M or card(M)). If M has infinitely many elements it becomes more tricky. Then the following
concept becomes helpful.

Recall:
A map f : M→ N is called bijective if for each m ∈M there is exactly one n in N such that f (m) = n.
A map f : M→ N is called injective if for each m ∈M there is at most one n in N such that f (m) = n.

Think of a mass wedding: M consists of a bunch of men, N consists of a bunch of women. Then a
bijective f assigns to each man exactly one woman and vice versa. Everyone gets married. For finite
sets M and N this is clearly possible only if they have the same number of elements.

An injective map assigns to each man one woman, but some women may remain without partner. All
men get married, but not necessarily all women. For finite sets M and N this is only possible only if
M has not more elements than N.

Definition 2.8. Two sets M and N have the same cardinality if there is a bijective map from M to N.
Short: |M|= |N|.
A set M has cardinality less than or equal to N if there exists an injective map from M to N. Short:
|M| ≤ |N|.
A set M has cardinality strictly less than N if there exists an injective map from M to N, but no bijective
map. Short: |M|< |N|.

We can now extend the notion of cardinality to infinite sets like N, Z, Q, R..., or to their power sets.

Definition 2.9. The power set of some set M is the set of all its subsets, including M and ∅. It is
denoted by P (M).

For instance, the power set of {1,2,3} is

P ({1,2,3}) =
{
∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}

}
The first maybe surprising fact is the following. (Surprising, since for finite sets it is not possible that
a proper subset of M has the same cardinality as M.)

Theorem 2.8. |N|= |Q|.

Proof. We need to construct a bijective map f from Q to N. Write all elements of Q in an infinite
two-dimensional array:

1
1

1
2

1
3

1
4

1
5 · · ·

2
1

2
2

2
3

2
4

2
5 · · ·

3
1

3
2

3
3

3
4

3
5 · · ·

4
1

4
2

4
3

4
4

4
5 · · ·

5
1

5
2

5
3

5
4

5
5 · · ·

...
...

...
...

...
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It is clear that this array contains each positive element of Q. Some of them occur in multiple copies
(e.g. 1

1 =
2
2 =

3
3 = · · · ) Now walk through this array in the way indicated here in the following diagram,

numbering each element of Q with consecutive integer numbers that is not numbered yet (e.g., don’t
mark 2

2 ,
3
3 , . . . since 1

1 is numbered already).

1
1 (1) → 1

2 (2)
1
3 (5) → 1

4 (6)
1
5 (11) →

↙ ↗ ↙ ↗
2
1 (3)

2
2 (·)

2
3 (7)

2
4 (·)

2
5 · · ·

↓ ↗ ↙ ↗
3
1 (4)

3
2 (8)

3
3 (·)

3
4

3
5 · · ·

↙ ↗
4
1 (9)

4
2 (·)

4
3

4
4

4
5 · · ·

↓ ↗
5
1 (10)

5
2

5
3

5
4

5
5 · · ·

...
...

...
...

...

It is clear that each number in the array will be marked: it will be reached after finitely many steps.
This yields a bijection between N and the positive rationals Q+:

1 2 3 4 5 6 7 8 9 10 11 · · ·
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 1

2 2 3 1
3

1
4

2
3

3
2 4 5 1

5 · · ·

The rest is easy: Before the 1 add a 0, after each number its negative:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 −1 1

2 −1
2 2 −2 3 −3 1

3 −1
3

1
4 −1

4
2
3 −2

3 · · ·
.

This is the desired bijective map, hence |N|= |Q|.

This proof shows a general trick: in order to show M|= |N| it suffices to enumerate all elements of M
by 1,2,3, . . . such that each element gets exactly one number. The second surprising fact is:

Theorem 2.9 (Cantor 1874). |R|> |N|.

The following proof is not the original one, but one found by Cantor in 1891.

Proof. by contradiction. We show that there is no bijection from N into the half-open interval [0;1[
(i.e., all numbers x such that 0 ≤ x < 1). If we succeed this shows that that there is no bijection
between R and N, since R is even larger than [0,1[.

So let us assume there is a bijection from N into [0;1[. Then we can write the elements a1,a2, . . . of
[0;1[ in a list. We use the decimal representation 0.ai,1ai,2ai,3 . . ..

a1 = 0. a1,1 a1,2 a1,3 a1,4 a1,5 ...
a2 = 0. a2,1 a2,2 a2,3 a2,4 a2,5 ...
a3 = 0. a3,1 a3,2 a3,3 a3,4 a3,5 ...
a4 = 0. a4,1 a4,2 a4,3 a4,4 a4,5 ...
a5 = 0. a5,1 a5,2 a5,3 a5,4 a5,5 ...

· · ·
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If there is an ambiguity (like 0.09999 · · ·= 0.1) we choose the finite version, ending in ...0000..., and
omit the infinite version, ending in ...99999...

By our assumption this list contains all elements of [0,1[. We will now find a contradiction by con-
structing an element that is not in the list: define s = 0.s1s2s3 · · · by

si =

{
7 if aii = 3
3 if aii 6= 3

This number s is clearly in [0,1[, and it does not end in ...99999... (since its digits are all either 3 or
7). The first digit of s after the period differs from the first digit of a1 (by construction: if the first digit
of a1 is 3, then the first digit of s is 7; and if the first digit of a1 is not 3, then the first digit of s is 3).
In a similar fashion, the ith digit of s after the period differs from the ith digit of ai.

Hence s is not equal to any number ai in the list.

The last result leads to the following terminology.

Definition 2.10. A set M with |M| = |N| is called countable set. A set M with |M| > |N| is called
uncountable set.

Now that we know that there are different levels of ”infinitely many”, can we describe this hierarchy?
Again Georg Cantor can help.

Theorem 2.10. Let M be a set. Then |P (M)|> |M|.

For a finite set M = {m1,m2, . . . ,} this is a simple observation: P (M) contains at least {m1},{m2}, . . .,
but also {m1,m2}, or M. Note that |∅|= 0, but

|P (∅)|= |{∅}|= 1.

In particular the theorem implies |P (N)|> |N|, |P (P (N))|> |P (N)| etc. There is a notation for these
growing infinite cardinalities.

Definition 2.11. Let i0 := |N|. If |M|= in for n≥ 0, let in+1 := |P (M)|.

Remark 2.10. One can show that |R| = |P (N)| = i1. In principle this can be achieved by finding a
bijection (like the ones above). But usually the simplest way to show such equalities is the Schröder-
Bernstein Theorem.

Theorem 2.11. Let A and B be sets. If there exist injective functions f : A→ B and g : B→ A between
the sets A and B, then |A|= |B|.

The i (”beth”) is the second letter in the Hebrew alphabet. It is (was) a big question whether these
ins are the only infinite numbers, or whether there are more infinite numbers in between. In particular
the continuum hypothesis asks whether there is some infinite cardinality between i0 and i1. Click
the link for more information (Wikipedia). The Wikipedia article uses terms like “independent from
ZFC” etc. These are explained in Section 5.

Remark 2.11. There is a maybe more prominent notation for infinite cardinalities: ℵ (aleph) is the
first letter of the Hebrew alphabet. The smallest infinte cardinality is ℵ0. One can show that ℵ0 = i0
(exercise). The next largest infinity is ℵ1. The next largest infinity is ℵ2, and so on. Of course we
have ℵn ≤ in for all n ∈ N. The continuum hypothesis can now be stated as ℵ1

?
= i1.
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3 Modal logic

In some contexts it is desirable to generalize the notions of “true” and “false”. E.g. “I am hungry” or10. Jan
“I wear a blue shirt” depends on the circumstances, e.g. on the time of the day or week. With respect
to chronological order we may distinguish

• A is always true vs

• A is sometimes true

Or with respect to consequence we may distinguish

• A is necessarily true vs

• A is possibly true

For this purpose we introduce two new operators: � and �.

3.1 Syntax and semantics

The modal logic we discuss here is an extension of propositional logic. There is also a first-order
modal logic, but it is not part of this course.

Definition 3.1 (Syntax). A formula in modal logic is defined inductively as follows:

1. Each formula in propositional logic is a formula in modal logic.

2. If F and G are formulas in modal logic, then ¬F , F ∨G, F ∧G, �F (“necessary F”) and �F
(“possibly F”) are formulas in modal logic.

For instance �A⇒¬�(B∧�¬C) is a formula (in modal logic; in the remainder of this section “for-
mula” means always “formula in modal logic” if not explicitly stated that not).

In order not to use too many brackets we agree that � and � are stronger than ∧ and ∨ (hence stronger
than⇒ and⇔).

Example 3.1. Three football experts make three statements:

1. “If Schalke wins the championship ever again then I will eat my hat.”

2. “At some time your statement will become true.”

3. “Statement 2 being correct is the same as saying that Schalke will always be champion from
now on.”

If A=”Schalke will be champion” and B=”expert 1 will eat his hat” then 1. can be stated as �A⇒�B, 2.
becomes �(�A⇒�B), and 3. becomes �(�A⇒�B)⇔�A. (It is not clear yet whether this statements
are true, or even make sense.)
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In order to define the semantics of modal logic we need to specify a collection W of different states
(“worlds”) in which a formula holds, or does not hold. For each state in W there are further points in
W that can be reached from this state (“possible futures”), others not (e.g. “the past”, or “impossible
futures”). This is realised as follows.

Definition 3.2 (Semantics). A structure (in modal logic) is a triple A = (W,R,α), where

• (W,R) is pair such that W is a nonemtpy set and R ⊂W ×W . (I.e., R is a relation on W ). The
pair (W,R) is called the frame.

• Let M be a set of atomic formulas. A map α : M×W → {0,1} is a valuation of M. In plain
words: α assigns to each pair (A,s) true or false.

The pair (W,R) is called a frame for F . (W,R) can be viewed as a directed graph, see below.

Now we can define truth values for a formula F inductively as follows.

1. Is F an atomic formula A then A(F,s) = α(A,s).

2. If F is a formula then A(¬F,s) =
{

1 if A(F,s) = 0
0 else

3. If F and G are formulas then A(F ∧G,s) =
{

1 if A(F,s) = A(G,s) = 1
0 else

4. If F and G are formulas then A(F ∨G,s) =
{

1 if A(F,s) = 1 or A(G,s) = 1
0 else

5. Is F a formula then A(�F,s) =
{

1 if A(F, t) = 1 for all t ∈W with (s, t) ∈ R
0 else

6. Is F a formula then A(�F,s) =
{

1 if A(F, t) = 1 for some t ∈W with (s, t) ∈ R
0 else

As always we implicitly assume that A , resp. M, contains all atomic formulas of F .

Example 3.2. A frame (W,R) can be visualized as a directed graph. The elements of W are the
vertices of the graph, and an element (n,m) ∈ R yields a directed edge from n to m. For instance the
graph for the relation in the example above, i.e. for (W,R) = (N0,<) looks in part as follows:

.....

.....
.....

.....
In particular the graph above is an infinite graph. Moreover, from each vertex infinitely many edges
are leaving. A simpler example are the days of the week {1,2, . . . ,7}, ordered with respect to <.

Another simple example is the game rock-paper-scissors. Here W = {rock, paper, scissors}, and R =
{(n,m) | n,m∈W, n beats m}= {(rock, scissors), (scissors, paper), (paper, rock)}. The corresponding
graph is simply

rock

scissors

paper.
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Example 3.3. (Ex. 4.1 cont.) A possible structure for F = �(�A⇒�B)⇔�A is A = (W,R,α), where
W = N (0 stands for the current championship 2022/23, 1 for the next championship and so on), the
accessibility relation R is < (that is, R = {(n,m) | n,m ∈N,n < m)}). A valuation α that makes F true
is

α(A,s) = 1 for all s ∈ N, α(B,s) = 1 for s odd, α(B,s) = 0 else.

(“Schalke will always be champion from now on”, “expert 1 eats his hat in season 2022/23, 2024/25,
206/27...”)

Another structure for F — using the same frame — is A ′ = (N0,<,β) is for instance given by

β(A,s) = 1 for s = 2, β(A,s) = 0 else , β(B,s) = 1 for s = 3, β(B,s) = 0 else.

In this case A ′(�(�A⇒�B),s) = A ′(�(¬�A∨�B),s) = 1 for all s≥ 2 (since A ′(�A,s) = 0 for s≥ 2,
hence A ′(¬�A,s) = 1 for s≥ 2, hence A ′(�(¬�A∨�B), t) = 1 for all t). On the other hand we have
A ′(�A,s) = 0 for all s. Hence A ′(F) = 0 in this structure.

In particular the truth of a formula F depends on the point s in which we evaluate F . Therefore we
will adjust the terms ”model” and ”valid” now to the context of modal logic.

The option to choose different frames for a given formula F , as well as different valuations for each
frame, leads to a diversity of options for F “being true”. The following definition lists all possibilities.
In the sequel we will concentrate on the usual question “Is F unsatisfiable?” (or not!)

Definition 3.3. Let F be a formula in modal logic and A = (W,R,α) a structure for F .

• If A(F,s) = 1, then F holds in s. (One writes short s 
A F , or s 
 F if A is clear from the
context). If there is A = (W,R,α) and s ∈W with s 
A F then F is satisfiable.

• If A(F,s) = 1 for all s ∈W we call A a model for F , short: A |= F .

• Let a frame (W,R) be given. If for all structures A = (W,R,α) holds A |= F then F is called
valid in (W,R). In this case we write shortly (W,R) |= F .

• F is a tautology if F is valid in each frame for F .

With respect to Example 3.3 above: with A = (N0,<,α) we have that A(F,s) = 1 for all s ∈ N0,
hence A is a model for F , short: A |= F .

With A ′ = (N0,<,β) we saw that A ′(F,s) = 0 for all s. Hence A ′ 6|= F (but A ′ |= ¬F). Therefore we
also see (N0,<) 6|= F , that is, F is not valid in (N0,<). Because of this, F is in particular no tautology.

A and s given, A(F,s) = 1 s 
A F F holds in s
There is A ,s with A(F,s) = 1 — F is satisfiable

A given, for all s ∈W : A(F,s) = 1 A |= F A is model for F
(W,R) given, for all α,s ∈W : A(F,s) = 1 (W,R) |= F A is valid (under (W,R))
For all A = (W,R,α),s ∈W : A(F,s) = 1 |= F F is a tautology.

Table 3: An overview of how ”true” a formula F in modal logic can be, depending on which data out
of A = (W,R,α),s ∈W is given (compare Def. 3.3).
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3.2 Calculation rules (and normal forms)

As in Sections 1 and 2 we also have some rules of calculation for modal logic. In order to state these 10. Jan
we need to define equivalence and consequence.

Definition 3.4. G is a consequence of F (short: F |= G), if for all A with A |= F holds: A |= G.
F is equivalent to G if for all A holds: A |= F if and only if A |= G. In this case we write shortly
F ≡ G.

Remark 3.1. Like in Lemma 1.8 we have that F |= G if and only if F ⇒ G is a tautology if and only
if F ∧¬G is unsatisfiable. In a similar fashion, we have that F ≡G if and only if F⇔G is a tautology
if and only if ¬(F ⇔ G) is unsatisfiable.

Theorem 3.1. Let F,G be two formulas. In addition to all calculation rules for formulas in proposi-
tional logic (see Theorem 1.1) the following rules apply:

1. ¬�F ≡ �¬F

2. ¬�F ≡�¬F

3. �(F ⇒ G) |= �F ⇒�G

4. �(F ⇒ G) |= �F ⇒�G

5. �(F ⇒ G)≡�F ⇒�G

6. �(F ∧G)≡�F ∧�G

7. �(F ∨G)≡ �F ∨�G

8. If F is valid then �F is valid.

All identities can be proven by using the inductive definition of truth values. For instance, Rule 1 can 17. Jan
be seen as follows:

A(¬�F, t) = 1≡ ¬(A(�F, t) = 1)

≡ ¬∀s with (t,s) ∈ R : A(F,s) = 1

≡ ∃s with (t,s) ∈ R : ¬(A(F,s) = 1)

≡ ∃s with (t,s) ∈ R : A(¬F,s) = 1

≡ A(�¬F, t) = 1.

More on this in the exercises.

Remark 3.2. There are normal forms for formulas in modal logic. The procedure is analoguous to
Algorithm 1.2 together with pulling �s and �s directly in front of the literals. However, since we do
not have the two rules analoguous to Theorem 3.1 6. and 7. (with ∨ and ∧ swapped) there is no pretty
normal form, only a “quasi” CNF which in general consists of nested CNFs (a CNF within a CNF
within.... However, we do not need normal forms in the sequel since we will use the tableau calculus.
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3.3 Tableau calculus for modal logic

The following algorithm is an extension of Algorithm 1.4. For the sake of completeness we list also
the instructions from the previous version. This is the point where the notation s 
 F is convenient,
which is short for A(F,s) = 1. Recall that “path” here means a path ending in a leave. As usual we
assume that our formula does not contain⇒ or⇔ (or that we get rid of them in a 0th step).

Algorithm 4.1 (Tableau calculus for modal logic) Input: some formula F in modal logic.

1. Start with s 
 F as the root.

2. Choose an unmarked vertex u 
 G where G is not a literal (in the sense of propositional logic). Mark
u 
 G. Apply the following rules until all possibilities are exhausted.

• If G is of the form u 
 ¬¬H then add a single vertex u 
 H to each path starting in u 
 G.

• If G is of the form H1∨H2 then add
H H 12 uu

to each path starting in u 
 G.

• If G is of the form H1∧H2 then add
H

H

1

2

u

u

to each path starting in u 
 G.

• If G is of the form ¬(H1∨H2) then add
H

H

1

2

u

u

to each path starting in u 
 G.

• If G is of the form ¬(H1∧H2) then add

H H 12u u

to each path starting in u 
 G.

• If G is of the form �H then add
(u,t) ∈ R

t H

to each path starting in u 
 G, where t ∈W is a point

not occurring in the tableau yet. For every vertex u 
 �H ′ in the path from the root through
u 
 G add

t H'
at each path starting in u 
�H ′ that contains u 
 G.

• If G is of the form �H then add

t H1

t    H 2

t    H k

to each path starting in u 
 G, where t1, . . . , tk are the

points that occur in the form (u, ti) ∈ R contained in this path.

• If G is of the form ¬�H then add

u H

to each path starting in u 
 G.

• If G is of the form ¬�H then add

u H

to each path starting in u 
 G.

3. If there is no further vertex to mark then return the tableau, STOP.

A path is closed if it contains u 
 Ai and u 
 ¬Ai for some i. In this case we mark the leaf of this path by
⊗. A tableau is closed if all leaves are marked by ⊗. In this case F is unsatisfiable. Else F is satisfiable.
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Next we show two examples: First we prove Rule 3 of Theorem 3.1 by showing that �(F ⇒ G)⇒
(�F ⇒ �G) is a tautology; hence by showing that ¬

(
�(F ⇒ G)⇒ (�F ⇒ �G)

)
is unsatisfiable.

(Recall that we amy as well use A,B rather than F,G, see Example 1.10). Then we show that our
master example �(�A⇒�B)⇔�A is satisfiable.

39



v ⊩   A

s ⊩ ⋄  A

Example: F≡⋄(⋄A⇒⋄B)⇔□A

s⊩F

≡(⋄(  ⋄A∨⋄B)∧□A)∨(  ⋄(  ⋄A∨⋄B)∧  □A)

s ⊩ ⋄(  ⋄A∨⋄B)∧□A s ⊩   ⋄(  ⋄A∨⋄B)∧  □A

s ⊩ ⋄(  ⋄A∨⋄B)

s ⊩ □A

s ⊩   ⋄(  ⋄A∨⋄B)

s ⊩   □A

(s,t) ∈ R

t ⊩    ⋄A∨⋄B

t ⊩ A

t ⊩   ⋄A t ⊩ ⋄B

(t,u) ∈ R

u ⊩ B

 

t ⊩ □   A

s ⊩ □   (  ⋄A∨⋄B)

(s,v) ∈ R

  v ⊩   (  ⋄A∨⋄B)

  v ⊩      ⋄A

v ⊩   ⋄B

  v ⊩ ⋄A

v ⊩ □   B

(v,w) ∈ R

  w ⊩ A

w ⊩   B

3.4 Decidability of modal logic

In the sequel we will extend the Tableau calculus of Section 1.8 to modal logic. Before that we state
the main result of this Section. In plain words it states that the satisfiability of formulas in modal logic
is decidable.

Theorem 3.2. A formula F in modal logic is unsatisfiable if and only if the complete tableau is closed.
The number of vertices in any tableau for F is at most O(n), where n denotes the number of partial
formulas of F.

Note that the number of partial formulas of a formula of length n (n symbols of any kind, ¬, �, A,
∨...) is O(n) in the worst case.

For the complete proof of the result above see Kreuzer-Kühling. We only briefly describe one core
point of the proof. As before, finiteness ist the key: for each formula in propositional logic there
are only finitely many possible valuations, hence propositional logic is decidable. In first-order logic
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some formulas require infinite models (see Theorem 2.5) which is one reason for first order logic
being undecidable. In monadic first-order logic (see exercises, around sheet 10) reduction to finite
models was the key for decidability.

In modal logic this is similar: infinite models are possible (e.g., W =N), but we can reduce everything
to something finite by showing the following results.

Definition 3.5. Let R be a relation on W 6=∅, and let s ∈W . A point t ∈W is accessible from s in n
steps, if there are t0, t1, . . . , tn ∈W such that s = t0, t = tn, and (ti, ti+1) ∈W for i = 0,1, . . . ,n−1

This is best viewed in the digraphs, compare example 3.3: t is accessible from s in (W,R) in n steps,
if one can walk from s to t in the digraph by using n edges or less.

Definition 3.6. Let F be a formula. The modal rank MR(F) of F is defined inductively as follows.

• If F is an atomic formula then MR(F)=0.

• If F = ¬G then MR(F)=MR(G).

• If F = G∧H or F = G∨H then MR(F)=max{MR(G),MR(H)}.

• If F =�G or F = �G then MR(F)=MR(G)+1.

For example, the modal rank of F = �(�A⇒�B)⇔�A is MR(F) = 2.

Theorem 3.3 (Coincidence Lemma). Let F be a formula with MR(F) = m, let (W,R) be a frame for
F, and let s ∈W. Furthermore, let A = (W,R,α) and A ′ = (W,R,β) be two structures for F that
are identical on all t that are accessible from s in at most m steps. Then A(F,s) = 1 if and only if
A ′(F,s) = 1.

In plain words this means: Whether a formula F is true under A in the point s depends only on the
value of A in those points t ∈W that are accessible from s in at most MR(F) steps.

With respect to Example 3.3 above this means: if we want to determine the value of A(A,s), i.e.
α(A,s), we need to consider all points in the graph that are accessible in at most two steps. Unfortu-
nately this means here: all years in the future, since each year in the future is accessible in only one
step: (n,m) ∈ R whenever n < m.

However, using the concidence lemma, we can identify points that behave in the same way, thus
reducing the structure to a finite one.

3.5 Different flavours of modal logic

In general frames can have pretty general forms, see above or the exercises for examples. A lot of
work has been dedicated to study modal logic under certain restrictions for frames. Three important
properties that frames may or may not have are reflexive, and/or symmetric, and/or transitive; compare
Definition 1.8.

Requiring one or more of these may make additional rules become true that are false under modal
logic in general. For instance, if (W,R) is reflexive then �A is a consequence of A.

s 
 A⇒�A≡ s 
 ¬A∨ s 
 �A≡ s 
 ¬A∨∃t accessible from s : t 
 A
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and with s = t ((s,s) ∈ R!) this becomes s 
 ¬A∨ s 
 A which is a tautology. This is not true in
general modal logic.

In general the following flavours of modal logic are studied in detail:

K No conditions on (W,R)

D serial, i.e. ∀s ∈W ∃ t ∈W : (s, t) ∈ R (no dead ends)

T reflexive

S4 reflexive and transitive

S5 reflexive, symmetric and transitive

A further particular application of modal logic uses time as a frame. This is temporal logic: it uses
the same elements as modal logic, but for the frame (W,R) one requires additionally that it is transitive
and irreflexive: ∀s ∈W : (s,s) /∈ R. So a frame (N0,<) realizes temporal logic.

It is known that the modal logics K, T, S4, S5 and temporal logic are all decidable, even though the
tableau algorithm in the form above might not terminate in all cases (e.g. in temporal logic the tableau
calculus will not terminate in all cases).

4 Undecidability

A celebrated result in the area of undecidability is due to the legendary (and tragic) figure of Kurt24. Jan
Gödel. There are two distinct senses of the word “undecidable” in the context of logic, or computabil-
ity. The first of these is used in relation to computability theory and applies not to statements but
to decision problems, which are countably infinite sets of questions each requiring a yes or no an-
swer, see this section below. I.e., such a problem is said to be undecidable if there is no computable
function (Turing machine) that correctly answers every question in the problem set.

The second sense of this term is the sense used in relation to Gödel’s theorems, that of a statement
being neither provable nor refutable in a specified deductive system. Here we use the word “decidable”
in the first sense only.

4.1 Undecidable problems

Definition 4.1. A decision problem is a yes-no question with infinitely many possible inputs. For-
mally it can be modeled as a pair (I,M) where I is the set of all possible inputs, and M ⊂ I is the set
of inputs with answer “yes”.

A problem is decidable (aka computable, berechenbar, entscheidbar) if there is a Turing machine that
answers correctly “yes” or “no” on any input. (If you don’t know what a Turing machine is, replace
”‘Turing machine”’ by ”‘algorithm”’ and think of a haskell or python algorithm.) A problem is semi-
decidable (aka semi-computable) if there is a Turing machine that answers correctly “yes” for every
input with answer “yes”, and does not answer “yes” for any input with answer “no”.

Usually the inputs can be enumerated, hence in several cases one has I = N or I = Nk and M ⊂ N.
Then one can state the same question using a function f : Nk → {0,1}, with f (n) = 1 if n ∈ M,
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f (n) = 0 else. The corresponding names for f are then recursive (corr. to decidable=computable)
and recursively enumerable (corr. to semi-decidable).

A famous problem that is undecidable is the question “does Turing machine number i ever stop on
input j?” This question is known as the halting problem. Since there are countably infinitely many
Turing machines we may enumerate all Turing machines by numbers in N. All inputs (finite starting
configurations on the tape) can be enumerated as well (by some appropriate scheme).

Theorem 4.1 (Turing 1937). The halting problem is undecidable.

Proof. Phrased as a function the problem asks now for a computable f : N×N → {0,1} where
f (i, j) = 1 if Turing machine i stops on input j, f (i, j) = 0 else. Assume that f is computable.
Consider

g : N→{0,1,undefined}, g(i) =
{

0 if f (i, i) = 0
undefined else

For instance, as a program g can be realized as

If f (i, i) = 0 then return 0 else run forever

Clearly g is computable if f is. Hence there is a Turing machine t that computes g. What is f (t, t)?

Case 0: If f (t, t) = 0 then g(t) = 0. In particular (since the Turing machine t computes g) the t stops
on input t, and f (t, t) = 1. Contradiction.

Case 1: If f (t, t) = 1 then g(t) is not defined, hence t does not stop on input t, thus f (t, t) = 0.
Contradiction. The assumption that f is computable leads to a contradiction in all (two) cases, hence
f is not computable.

Theorem 4.2 (Turing 1937). The halting problem is semi-decidable. I.e. there is a Turing machine
that returns 1 on input (i, j) if Turing machine i stops on input j, and returns nothing if not.

Proof. The rough idea is: just let a given Turing machine i run on input j. If it stops return 1. As
usually we rely on the results in Theoretische Informatik and formulate just an algorithm without
implementing it as an actual Turing machine.

It is known that there is one “universal” Turing machine t that emulates the kth step for Turing machine
i on input j in the following order:

(i, j,k)= (1,1,1),(1,1,2),(1,2,1),(2,1,1),(1,1,3),(1,2,2),(1,3,1),(2,1,2),(2,2,1),(3,1,1),(1,1,4), . . .

In plain words: list all triples (i, j,k) with i, j,k ∈N\{0} in ascending order wrt i+ j+k and then wrt
lexicographical order. It is clear that all possibilities in N3 are covered. Our special Turing machine
takes input (i, j), uses t, and returns 1 if Turing machine i eventually stops.

Some undecidable problems The following problems are undecidable (usually, semi-decidable)

1. Is a given formula in first-order logic valid? (Church 1936, Turing 1937)

Theorem 4.3 (Church 1936, Turing 1937). The problem whether a formula in first-order logic is
satisfiable is undecidable.
Since F is unsatisfiable if and only ¬F is valid, the problem whether a formula in first-order logic is
valid is undecidable as well.
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One strategy of the proof is the following (the original proof was different):

1. Show that: If the problem above is decidable then the Post correspondence problem below is
decidable.

2. Show that: If the Post correspondence problem is decidable then the halting problem is decid-
able.

This yields a contradiction to Theorem 4.1. Hence the problem above must be undecidable. It remains
to show 1 and 2.

2. The Post correspondence problem (PCP): The input of the problem consists of two finite lists
u1, . . . ,un and v1, . . . ,vn of words over the alphabet {0,1}. A solution to this problem is a sequence of
indices i1, i2, . . . , ik with k ≥ 1 such that

ui1 . . .uik = vi1 . . .vik .

Here u1u2 just means concatenation: if u1 = 10 and u2 = 01 then u1u2 = 1001. The decision version
of the PCP problem then is to decide whether such a solution exists or not.

A nice illustration of this problem is: assume we have finitely many distinct domino tiles, with some
0-1-words on top and on bottom. With an arbitrary large amount of copies of these, can we place them
in a row such that the top row shows the same string as the bottom row?

For instance assume that we have u1 = 1,u2 = 10,u3 = 011, and v1 = 101,v2 = 00,v3 = 11. The tiles
thus look as follows: [

1
101

]
,
[

10
00

]
,
[

011
11

]
.

A solution is (1,3,2,3), that is, [
1

101

][
011
11

][
10
00

][
011
11

]
.

The word in the top row, as well as in the bottom row, is 101110011.

3. The Wang tile problem: Given a set of squares such that the edges are coloured with distinct
colours (“Wang tiles”). Can the plane be tiled by copies of those such that adjacent edges have the
same colour? Tiling the plane means: placing the tiles such that they do not overlap and leave no
gaps. Tiles should lie vertex-to-vertex. It is not allowed to rotate or reflect tiles. For instance, the set
of 11 tiles below can tile the plane (but it is veeeeery tricky to see how)

No subset of 10 tiles can tile the plane. In general this problem is undecidable for more than three
colours and more than 10 tiles.

4. Mortal matrix problem: Given some matrices A1, . . . ,An in Zd×d . Is there any combination of
them (say, (i1, i2, . . . , im) with 1≤ i j ≤ n) such that the product equals the zero matrix? That is, is there
i1, . . . , im such that

Ai1 ·Ai2 · · ·Aim =

0 · · · 0
...

...
0 · · · 0

 ?

This problem is undecidable for n≥ 6.
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5. Conway’s Game of Life (see Wikipedia): given some start pattern and another pattern, can the
latter ever be the result of the first one?

6. Diophantine equations: Given a polynomial with several variables, but integer coefficients, does
it have an integer solution? (Diophantine means we are only interested in integer solutions). For
example, the Diophantine equation 3x2−2xy− y2z−7 = 0 has an integer solution: x = 1, y = 2, z =
−2. By contrast, the Diophantine equation x2 + 4y2− 3 = 0 has no such solution (only non-integer
ones, like x = 1,y =

√
2

2 , or x =
√

2,y = 1
2 ).

In a similar manner as the halting problem all problems above can be shown to be semi-decidable.

4.2 Computable numbers

The paper in which Turing proved Theorem 4.3 also introduced Turing machines. It was titled ”On
computable numbers with an application to the Entscheidungsproblem”. Turing defined a number to
be computable as follows: all integers are computable. A number x /∈ Z is computable if there is a
Turing machine that computes the n-th digit of its fractional part (”die n-te Nachkommastelle”) on
input n. This is in essence equivalent to the modern definition:

Definition 4.2. A number x ∈R is computable if for each ε∈Q,ε > 0 there is a computable function
f :Q→Q such that |x− f (ε)|< ε.
The set of all computable numbers is denoted by B.

The modern definition solves the problem of a Turing machine approximating the number 2, for
instance, by computing n digits of 1,9999999 . . .. Turing already realized that not all numbers are
computable. The argument is simple: There are only countably many Turing machines (because
each Turing machine can be encoded as some finite 0-1-word) hence there are at most countably
many computable numbers. Since R is uncountable, almost all numbers in R are not computable.
Nevertheless, Turing already showed that

1. All rational numbers are computable. In other words/symbols: Q⊂ B

2. All algebraic numbers are computable (this is, the roots of some polynomial with integer coef-
ficients).

3. π and e are computable.

4. The limit of a computable sequence that is computably convergent is computable.

In order to explain point 4: It is not true that the limit of any convergent sequence of any computable
number is computable. We need to make sure that: (a) the sequence itself is computable, and (b) the
fact that it converges is computable.

Definition 4.3. A sequence of computable numbers an is called computably convergent if there is a
computable function N : B→ N such that for all ε ∈ B,ε > 0 and for all m,n ∈ N such that m > N(ε)
and n > N(ε) holds |an−am|< ε.

Compare this definition with the definition of a Cauchy sequence.

Now point 4 ensures that

π = 4(1− 1
3
+

1
5
− 1

7
+

1
9
−·· ·) and e = 1+

1
1!

+
1
2!

+
1
3!

+
1
4!

+ · · ·
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are computable. Moreover, point 4 ensures that all algebraic numbers are computable, because there
are efficient methods to approximate roots of polynomials. In fact, almost all numbers we can describe
in words are computable. Exceptions are constructed as follows:

A non-computable number Consider the halting problem for Turing machines. Let us assume we
did agree already on an enumeration of all Turing machines. Let 0 < a < 1 such that the nth digit of
a is 0 if Turing machine number n stops on input 0, and 1 else. It is clear that a ∈ R. If a would be
computable we would have a solution to the halting problem. This contradicts Theorem 4.2.

4.3 Consequences II

In order to illustrate Gödel’s results we need to extend our terminology for consequences. The defini-
tion of a consequence in Section 1 was a preliminary one that is OK for propositional logic. In general
one needs to distinguish two different flavours of consequence.

Definition 4.4. A formal system is a pair (F ,S), where F is a set of axioms (formulas that we
assume to be true, they are our starting point) and a set S of rules for drawing syntactic consequences
(like resolution, or modus ponens).

A formula G is a semantic consequence of F , if for all A we have that whenever A |= F then A |= G.
In this case we write shortly F |= G.

A formula G is a syntactic consequence of F , if we can deduce G from F using the rules S. In this
case we write shortly F ` G (or F `S G, if we want to emphasize that we use rules of S).

In the sequel we think of F usually as a set of formulas in first-order logic. One gets an idea of “using
S” by thinking of resolutions: resolutions are consequences, see Lemma 1.8.

One of Turing’s achievement was that he gave us a better understanding what “drawing consequences”
can mean. Another way to think of it is considering a Turing machine, or some algorithm on any
Turing complete machine.

For propositional logic there is no difference between the two kinds of consequences: everything that
is true in propositional logic can be proven in propositional logic. (”‘Proven”’ means: deduced by
using truth tables, or resolution, or...) Moreover, everything that can be proven in propositional logic
is true in propositional logic. (Happily! Otherwise...) Let us state this explicitly.

Theorem 4.4. Let F,G be formulas in propositional logic. Then F |= G if and only if F ` G.

The idea of the proof is simple: There are only finitely many valuations A for F and G. Hence we can
check all possibilities for A . If there is none with A |= F then F is indeed unsatisfiable. (OK, here we
assume the formal system to be “make the truth table”. For the resolution calculus this follows from
Theorem 1.11, for the tableau calculus this follows from Theorem 1.13.)

In first-order logic the situation is less convenient. Some things fail here. In order to describe exactly
what fails, we need to sharpen our terminology. A formal system (say, in first-order logic) is called

• correct, if F ` G then F |= G (“no false statements can be proven”)

• complete, if F |= G then F ` G (“all true statements can be proven”)

• consistent, if F ` G then F 6` ¬G (“a statement and its negation cannot both be proven”)
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• negation-complete, if F 6` G then F ` ¬G (”If G cannot be proven, then ¬G can.”)

As a first mental exercise, note that it is easy to find a formal system that is complete: just define 31. Jan
everything to be true, and for any two formulas F,G we define F ` G to be OK. (Of course here we
cannot have a formal negation, we need a language different from propositional logic.)

Now we are prepared to formulate Gödel’s famous results in a precise way.

4.4 Gödel’s completeness theorem

In order to get a better understanding of the incompleteness theorems below let us start with another
celebrated result by Gödel:

Theorem 4.5. Let F be a set of formulas in first-order logic, and G be a formula.

F |= G implies F ` G

Very naively one might be confused by “everything can be proven” (completeness theorem) versus
“not everything can be proven” (incompleteness theorems). A more careful formulation is this one:
“All valid sentences can be proven” (completeness theorem) versus “There are sentences that are
neither true nor false” (incompleteness theorem). This is a clumsy interpretation, but one might get
some better idea about the difference.

Indeed, by Definition 4.4 F |=G means: whenever A |=F then A |=G (G is a semantic consequence.)
And F ` G means that we can deduce G from F in the formal system. So as well as in propositional
logic and in modal logic, also for first order logic holds:

Everything that is true in first-order logic can be proven in first-order logic.

But the next section shows that not every statement in first-order logic is either true or false (viewed
from within the formal system)

4.5 Gödel’s incompleteness theorems

Gödel’s first inclompeteness theorem states that any formal system (F ,S) cannot have all four of the
following properties:

1. (F ,S) is recursively enumerable,

2. (F ,S) contains, or implies, integer arithmetic,

3. (F ,S) is negation-complete,

4. (F ,S) is consistent.

For Numbers 3. and 4. see the definitions above.

Number 1. means that the set of all syntactic consequences (from F using S) is recursively enumerable
(see Section 4.1), and that F (and S) themselves are. I.e., the problem whether any given G is a
syntactic consequence of F using S is semi-decidable, compare Definition 4.1.
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Number 2. means that (F ,S) is rich enough to contain the axioms for the natural numbers N together
with the rules for addition and multiplication. One way to achieve this in first-order logic are the
Peano axioms. Usually this requires the usage of infinitely many formulas in first-order logic. One
possibility uses the identity, one constant (0), one function with one argument (S, “successor”, i.e.
S(x) = x+1) and two functions with two arguments: f (x,y) (to be understood as +) and g(x,y) (to be
understood as x · y). There are six particular formulas stated as axioms:

1. ∀x 0 6= S(x) (read: 0 6= x+1)
2. ∀x∀y S(x) = S(y)⇒ x = y (read: x+1 = y+1⇒ x = y)
3. ∀x f (x,0) = x (read: x+0 = x)
4. ∀x∀y f (x,S(y)) = S( f (x,y)) (read: x+(y+1) = (x+ y)+1)
5. ∀x g(x,0) = 0 (read: x ·0 = 0)
6. ∀x∀y g(x,S(y)) = f (g(x,y),x) (read: x · (y+1) = x · y+ x)

Furthermore, for every predicate P with k+1 arguments we add the formula

∀y1, . . . ,yk

((
P(0,y1, . . . ,yk)∧∀x

(
P(x,y1, . . . ,yk)⇒ P(S(x),y1, . . . ,yk)

))
⇒∀x P(x,y1, . . . ,yk)

)
to the axioms. Hence there are countably infinitely many axioms altogether. These latter formulas
realize the principle of induction (”Vollständige Induktion”)

There are several ways to formulate the next result. One common way is this.

Theorem 4.6 (Gödel’s first incompleteness theorem, 1931). Any consistent and recursively enumer-
able formal system (F ,S) that contains integer arithmetic is not negation-complete.

In this form it means that there are formulas G (expressable in the language of (F ,S)) where neither
F `S G nor F `S ¬G. Using the enumeration from the list above it says in this form “if we have
1,2 and 4 we cannot have 3”. Of course there are now equivalent ways to state the same result: “if
we have 1,2, and 3 we cannot have 4”; or “if we have 2,3 and 4 we cannot have 1”. It is helpful to
consider examples for each instance.

Not negation-complete. This was the “classical” case, surprising experts like David Hilbert or John
von Neumann: using the Peano axioms we cannot expect to prove or disprove any given statement
as a syntactic consequence. There are some statements G that are neither “true” nor “false”, at least
not viewed from within the system. This means that there are models A , A ′ for formulas G in (F ,S),
such that A |= G and A ′ |= ¬G. In fact, in such a case we may add either G or ¬G to the axioms
F without becoming inconsistent. (An example is the continuum hypothesis in the Zermelo-Frenkel
axioms, see Section 5.)

Not consistent. Take the Peano axioms above as our F and define some (very liberal) rule S that
says “for every formula G we have F ` G”. Hence every formula is a consequence of F under S.
This means in particular that F `S G and F `S ¬G for any G. This example is very far from being
consistent.

Not recursively enumerable. It is a very different thing to draw consequences in a formal system
(which can have several different models) in contrast to draw consequences in some particular concrete
model A . The definition of A allows us to decide whether A |= G or not. So let us assume the true
arithmetic, that is, the structure A for the Peano axioms where UA = N, the 0 symbol means the
actual 0, SA(x) = x+1, f A(x,y) = x+y and so on. (Each symbol means what it is intended to mean.)
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Now for every statement we can express in the language of the Peano axioms it can be decided (in
principle2) whether it is true or false in this model. Moreover, no statement can be both true and false.
So we have integer arithmetic (2), negation-completeness (3), and consistency (4). By Theorem 4.6
this system is not recursively enumerable.

Not containing integer arithmetic. It is an interesting (and deep) fact there are also negation-
complete (and consistent) theories. A simple example is propositional logic. More sophisticated ex-
amples include Presburger arithmetic (integer artihmetic without multiplication), or the first-order
theory of Euclidean geometry, or monadic first-order logic (all predicates have only one argument,
compare exercises).

Theorem 4.7 (Gödel’s second incompleteness theorem, 1931). The consistency of a consistent and
recursively enumerable formal system (F ,S) that contains integer arithmetic can be formulated as a
formula G in (F ,S), and F 6`S G.

The results above are pretty hard to comprehend fully. As a test we may ask:

• Isn’t the completeness theorem a contradiction to the first incompleteness theorem?

• Isn’t the completeness theorem a contradiction to Theorem 4.3; that is, Church’s and Turing’s
result on the undecidability of validity of a formula in first-order logic?

5 Zermelo-Fraenkel, axiom of choice and the Banach-Tarski paradox

In the beginning of the 20th century a lot of researchers tried to develop an axiomatization of the
foundations of mathematics. A milestone was the book Principia Mathematicae by Bertrand Russell
and Alfred North Whitehead, see for instance the interesting comic book Logicomix. It became clear
that the most basic notion is that of a set. Once a set is properly defined one can easily define numbers,
relations, functions etc.

For instance, once sets are defined, the natural numbers can be defined as follows:

0 = {}, S(n) = n∪{n},

where S is the successor function (think: “n+1”). This means the first natural numbers are 0 = {}=
∅,1= {0}= {∅},2 = {0,1}= {∅,{∅}},3= {0,1,2}= {∅,{∅},{∅,{∅}}}.... Once the successor
function S is defined we may define addition by

f (n,m) = n+m = Sn(m) = S(S(· · ·S(m) · · ·)

and multiplication by

n ·0 = g(n,0) = 0, n ·S(m) = g(n,S(m)) = Sn(g(n,m)).

The latter means for instance (note that 2 = S(1))

3 ·2 = S3(3 ·1) = S3(S3(1 ·0)) = S3(S3(0)) = 6

2Some statements that eluded an answer so far are ”is each even number larger than 2 the sum of two primes?”, or ”are
there infinitely many twin primes?”. (Twin primes are primes of the form p, p+ 2, like 11 and 13.) Nevertheless, these
statements are either true or false in (N,+, ·).
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One can easily check that these definitions satisfy the Peano axioms.

Relations on a set W are just subsets of W ×W , see the previous sections. Functions f : X →Y are an
assignment of elements f (x) ∈ Y for each x ∈ X . And so on. It remains to define what a set is.

Earlier approaches to define sets were given in a non-formal way, e.g. Georg Cantor’s naı̈ve set theory.
It went along the lines of “a set is a collection of objects”.

Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen
Objekten unserer Anschauung oder unseres Denkens zu einem Ganzen.

Hence a set is everything that can be defined using language. Even though several aspects of Cantor’s
work are milestones of logic and mathematics (Cantor’s diagonal argument, uncountable sets...) the
insufficiency of a naive definition of sets was revealed by Russell’s paradox:

Let R be the set of all sets that are not members of themselves. If R is not a member of itself, then its
definition implies that it must contain itself. If R contains itself, then it contradicts its own definition.
Symbolically:

Let R = {x | x 6∈ x}, then R ∈ R⇔ R 6∈ R≡ ¬(R ∈ R)

Russell’s paradox (also found earlier by Zermelo) and Hilbert’s demand to find an axiomatization for
all of mathematics lead people to develop an axiomatization of set theory.

Maybe the most standard definition today is called the Zermelo-Fraenkel-axioms (ZF), developed by
Ernst Zermelo in 1908 and later improved by Fraenkel and Skolem in order to allow to prove certain
concepts (“cardinal numbers”) and avoid certain improperly defined terms. Nowadays these axioms
can be (and usually are) stated in first-order logic. There are several equivalent formulations. One is
the following:

5.1 Zermelo-Fraenkel axioms

ZF uses identity = and one further binary predicate P(x,y), namely “x is element of y”, short (as
usual) x ∈ y. Hence we will write x = y and x ∈ y in the sequel rather than P(x,y). Note that this
allows us to define a further predicate “subsets”: a set z is a subset of a set x if and only if every
element of z is also an element of x: z⊆ x means: ∀q (q ∈ z⇒ q ∈ x).

In the sequel, keep in mind that the intended universe is “all sets”: the axioms are tailored in a way
such that each model behaves like its universe being sets.

Axioms number 1 to 5 are the “intuitive” axioms that we would expect from the properties of sets that
we are used to. Numbers 6 to 9 are rather less intuitive, but needed in order to avoid certain problems
(all axioms are accompanied by a short explanation of their respective meaning). This section makes
strong use of the corresponding Wikipedia article, but it is not exactly the same.

1. Axiom of extensionality Two sets are equal (are the same set) if they have the same elements.

∀x ∀y
(
∀z(z ∈ x⇔ z ∈ y)⇒ x = y

)
.

2. Empty set axiom There is a set without elements.

∃x ¬∃y y ∈ x
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Notation: this x is called ∅.

3. Axiom of pairing If x and y are sets, then there exists a set which contains x and y as elements.

∀x ∀y ∃z (x ∈ z∧ y ∈ z).

For instance, the pairing of x = {1,2} and y = {2,3} is z = {{1,2},{2,3}}.

4. Axiom of union The union over the elements of a set exists. More precisely, for any set of sets x
there is a set y containing every element of every element of x.

∀x ∃y ∀u
(
u ∈ y⇔ (∃v (v ∈ x∧u ∈ v))

)
For example, the union over the elements of the elements of x = {{1,2},{2,3}} is y = {1,2,3}.

5. Axiom of power set This axiom states that for any set x, there is a set y that contains every subset
of x (compare Def. 2.9):

∀x ∃y ∀z
(
z⊆ x⇒ z ∈ y

)
.

Ensures the existence of the set of all subsets of x, the power set (notation: P (x)) of any set x. For
instance if x = {1,2,3} then P (x) = {∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.

6. Axiom of specification Subsets are often denoted by something like {n ∈ N | n prime }, or
{n ∈ N | n≡ 2 mod 5}, or so. This axiom ensures that such subsets always exist.

Let F be any formula in the language of ZF with some free variable x (y is not free in F). Then:

∀z ∃y ∀x
(
x ∈ y⇔ (x ∈ z∧F)

)
.

Since this axiom is of the form “for any F” it is in fact an infinite collection of axioms in first-order
logic (compare the Peano axiom of induction).

This axiom ensures that we can write y = {n ∈N | n prime} using z =N and F = P(n) =”n is prime”.

This axiom prevents the “set” R of the Russell paradox from being a set!

Let us assume the set M of all sets is a set. Let P(x) = x /∈ x = ¬(x ∈ x). Then by this axiom
R = {x ∈ M | P(x)} is a set. But we know that it cannot be a set, since its existence leads to a
contradiction. Hence our assumption is wrong and the set of all sets does not belong to our universe,
that is, M is not a set (and neither is R).

7. Axiom of replacement The axiom of replacement asserts that the image of a set under any
definable function will also fall inside a set.

Formally, let F be a formula in the language of ZF whose free variables are x and y. Then:

∀x ∃y ∀u
(
u ∈ y⇔∃z (z ∈ x∧F(z,u))

)
.

Spelled out this means: For each set x exists a set y consisting of all elements u for which there is z∈ x
such that F(z,u) holds.
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In particular this means that the image of a set under some function f is again a set: choose F(z,u) as
u = f (z). Then y contains all u such that f (z) = u, where z takes all values in x.

Again this axiom is of the form “for any F”, hence it is in fact an infinite collection of axioms in
first-order logic (compare the Peano axiom of induction).

8. Axiom of infinity There are infinite sets. More precisely:

∃x
(
∅ ∈ x∧∀y (y ∈ x⇒ y∪{y} ∈ x)

)
.

This axiom ensures the existence of infinite sets like the natural numbers in the set theoretic definition
above: {∅,{∅},{∅,{∅}}, · · · ,}. Together with the power set axiom it ensures also the existence of
uncountably infinite sets.

9. Axiom of foundation Also known as “axiom of regularity”. Every non-empty set x contains a
member y such that x and y are disjoint sets.

∀x
(
x 6=∅⇒∃y (y ∈ x∧¬∃z (z ∈ y∧ z ∈ x))

)
This implies, for example, that no set is an element of itself. More generally, it prevents the existence
of cyclic chains of subsets: x1 ⊂ x2 ⊂ ·· · ⊂ xn ⊂ x1.

5.2 Axiom of choice

Now every model for the ZF-axioms has the properties that we require for the notion of “sets”, without
leading to some non-desired effects (as mentioned above: e.g. a set cannot be its own element, the set
of all sets is not a set, ...). Still it was found that one rule is missing:

Axiom of choice For any set x of nonempty sets xi there is a function that chooses one element from
each xi.

∀x
(
∅ /∈ x⇒∃ f : x→

⋃
x ∀u ∈ x f (u) ∈ u

)
.

It seems rather intuitive that such a rule must indeed be true: For instance, given the set

{{1,4,5},{12,31,44,77},{101,202,303}}

we can choose one element from each set, for instance 1, 12, 101. Sometimes the axiom of choice is
illustrated as follows:

Assume you are the king of n provinces with finitely many citizens each. You need to choose a
governour for each province. How do you proceed? Simple: just choose the oldest citizen to be
governour.

What if you have infinitely many provinces with finitely many citizens each? The same procedure
works. What if you have infinitely many provinces with infinitely many citizens each? There may not
longer be an oldest citizen... can you still formulate a general rule for this case?

Now consider an even worse case: you are supposed to choose one element from each subset of the
real numbers. There is no known rule how to achieve this. But the axiom of choice states that such a
rule exists. Even though it seems so intuitive this rule does not follow form the ZF axioms 1-9:
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Theorem 5.1 (Gödel 1940, Cohen 1963). The axiom of choice is not a consequence of the Zermelo-
Fraenkel axioms. Neither is its negation a consequence of the Zermelo-Fraenkel axioms.

Hence nowadays ZFC, that is, ZF together with the axiom of choice, are regarded as the (best known?)
standard axiomatization of set theory.

Given the ZF axioms there are several equivalent formulations of the axiom of choice. Here are two
of them:

Well-ordering Theorem For any set X there is a linear order, that is: there is a relation ≤ on X that is

• antisymmetric; that is if a≤ b and b≤ a then a = b.

• transitive; that is if a≤ b and b≤ c then a≤ c.

• total; that is a≤ b or b≤ a for all a,b.

Intuitively one may doubt that this can be true: think of the set C, or of R2. How can there possibly
be a well defined relation like ≤?

Zorn’s Lemma Let (M,≤) be a partially ordered set (i.e. (M,≤) is reflexive, antisymmetric and
transitive). If every subset of M that has a linear order has an upper bound in M then the set M
contains at least one maximal element.

The fact that the axiom of choice (resp. its equivalent formulations) are controversial (see Wikipedia)
is reflected in the following quotation:

The Axiom of Choice is obviously true, the well-ordering principle obviously false, and who can tell
about Zorn’s lemma?

The controversy maybe inspired the following strange result.

5.3 Banach-Tarski paradox

There are few mathematical results that really require the axiom of choice explicitly. Two important
exceptions are the theorem that every vector space has a basis (read: infinite dimensional vector
space), and every product of compact spaces is compact (Tychonoff’s theorem). A further example is
the following theorem, also called Banach-Tarski paradox.

Theorem 5.2. Let B ⊂ R3 denote the ball of radius 1 with centre in 0. B can be partitioned into
five sets B0,B1,B2,B3,B4, such that the union of B0, B1 and RB3 equals B (where R denotes some
rotation), and the union of B2 and RB4 also equals B (again, R denotes some rotation).

In plain words: A (solid) ball of radius one can be dissected into five pieces such that the union of
three of these pieces (one of them rotated) can be assembled into a ball of radius one, and the other
two (one of them rotated) can also be assembled into a ball of radius one.

We will sketch a proof of the following version.

Theorem 5.3. Let B⊂ R3 denote the ball of radius 1 with centre in 0. B can be partitioned into five
sets B0,B1,B2,B3,B4, such that the union of B1 and RB3 equals B (where R denotes some rotation),
and the union of B2 and RB4 also equals B (again, R denotes some rotation).
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[ proof: to be added... sometime... ]

Remark 5.1. The pieces Bi cannot possess a certain volume: otherwise this would prove that the
volume of a unit ball equals twice the volume of a unit ball. The fact that there are sets without a
certain volume lead to the notion of measurable sets.

Of course the procedure can be iterated: one ball yields two balls yields three balls...

In fact, a stronger form of the theorem implies that given any two “reasonable” solid objects (such as
a small ball and a huge ball) can be dissected such that the cut pieces of either one can be reassembled
into the other. This is often stated informally as “a pea can be chopped up and reassembled into the
Sun”.

Complexity

In Theoretical Computer Science there are several levels of complexity of a (class of) problem(s): P,
NP,... The question whether a formula in first-order logic is satisfiable is harder than any of them.
Let us briefly sketch this hierarchy. A problem is here a problem that can have infinitely many, and
arbitrary large, inputs, like an integer, or a graph, or a tree, or a list of integers. The size of the input
is measured by some reasonable measure, like the number of the digits of an integer, or the number of
vertices of a graph or tree, or the number of the entries of some list.

P A problem is in P if there is an algorithm that solves the problem for any input of size n in
polynomial time; i.e., the number of the required steps is in O(p(n)) where p is some polynomial (or
in general, something that is smaller than some polynomial). E.g. sorting a list of n numbers can be
done in O(n2) steps (quicksort), or even in O(n logn) (mergesort). Finding the minimal number in a
list of integers can be done trivially in time O(n). The problem PRIME, i.e., testing whether a number
x with n binary digits is a prime number requires naively O(2n/2) steps (test all odd numbers between
3 and

√
x if they divide x). If we couldn’t do better problem this would not be in P, but there are

algorithms known that need O(n12) steps. Hence PRIME is in P.

NP A problem is in NP if each correct solution (aka ”witness”, or ”certificate”) of it can be checked
in polynomial time (wrt the size n of the input). For instance, the question ”does a given graph G with
n vertices have a Hamiltonian cycle” is in NP. (A graph has a Hamiltonian cycle if it contains a cycle
that contains each vertex of G exactly once.) In this example a solution is such a Hamiltonian cycle,
and it is easily checked whether a given solution is correct. On the other hand, finding a Hamiltonian
cycle can be pretty hard in general.

Similarly, the prime factorization of integers with n digits is in NP: it might be hard to tell what the
prime factors of 1003 are, or of 1007 (are they prime numbers or composite numbers?) But a witness
for the factorization of 1007 is (19,53), since 19 ·53 = 1007. (And 1003 = 17 ·59.)

It is a big open problem whether P=NP. It is generally assumed that NP is a bigger class than P.
A problem is called NP-hard if a solution of this problem can be translated into a solution for any
problem in NP in polynomial time. A problem that is both in NP and NP-hard is called NP-complete.
Figure 2 illustrates the situation (for both cases, P=NP and P6=NP). It is known that the Hamiltonian
cycle problem is NP-complete, but prime factorization of integers is not. Usually such results are
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Figure 2: The situation if P6=NP (left) and if P=NP (right).

shown by reducing a problem to SAT, the question whether a formula in propositional logic in CNF
is satisfiable, compare Remark 1.4. SAT was the first problem known to be NP-complete.

Beyond NP Are there problems that are even harder than problems in NP? Yes. Later we will see
undecidable problems. As a side remark, a class of problems that is harder than NP problems is the
class NEXP. This is the class of problems having instances where all witnesses are of exponential size.
It is known that NP 6=NEXP (more precisely, NP is a proper subset of NEXP). The examples for this
look somehow artificial. For instance, the question whether a non-deterministic Turing machine will
stop after n steps is in NEXP, since each witness is already of size O(2n). In a similar manner, it is
known that certain graphs with 2n vertices can be encoded into logical circuits with O(n) logic gates
(”succinct circuits”). If one asks for a Hamiltonian cycle in such a graph this problem is in NEXP,
since each witness is of size O(2n). In the sequel we will see that there are even harder problems,
namely, undecidable problems. One is the question whether a given formula in first-order logic is
satisfiable.
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