Formal Logic — Exercise Sheet 1

Exercise 1: (Satisfiable, tautology, equivalent)

Consider the formulas

$$F_1 = (A \land \neg B) \lor C, \quad F_2 = A \Rightarrow (B \Rightarrow C), \quad F_3 = (A \Rightarrow B) \Rightarrow C$$

Decide for each of them: is the formula a tautology? Is the formula satisfiable? If it is, give a satisfying valuation \mathcal{A} for the respective formula. Are F_1 and F_2 equivalent? Are F_1 and F_3 equivalent? Are F_2 and F_3 equivalent?

Exercise 2: (DisneyTM PrincessesTM)

(a) The three DisneyTM princessesTM ArielleTM, BelleTM and CinderellaTM are invited to a party. They make the following statements:

$Arielle^{TM}$:	I will come to the party only if Belle TM and Cinderella TM will come as well;
	otherwise I will not come.
$Belle^{TM}$:	If Cinderella TM is coming I will not come.
Cinderella TM :	If $Arielle^{TM}$ will not come I will come to the party.

Translate the statements into a formula F in propositional logic. Is F satisfiable? If so, give a valuation \mathcal{A} such that $\mathcal{A} \models F$.

(b) Do the same for the following statements.

$Arielle^{TM}$:	I will come to the party only if Belle TM or Cinderella TM (or both) will come as well;
	otherwise I will not come.
$Belle^{TM}$:	I will come to the party only if $Arielle^{TM}$ will not come, and I will not come to
	the party if Arielle TM will come.
Cinderella TM :	I will not come to the party.

Exercise 3: (exclusive or)

The "exclusive or" $A \oplus B$ is defined via $\mathcal{A}(A \oplus B) = 1$ if and only if $\mathcal{A}(A) \neq \mathcal{A}(B)$. (This is the same as $\neg(A \Leftrightarrow B)$). Find a formula including \oplus that is a tautology; and find a formula including \oplus that is unsatisfiable.

Exercise 4: (Minimal sets of operators)

(a) Prove that for each formula F there is an equivalent formula G using only \neg and \land .

(b) Prove that there is some formula F such that there is no formula G equivalent to F, where G uses only \lor and \land .

(c) Prove that for each formula F there is an equivalent formula G using only NAND (meaning "not and"), where the NAND operator \uparrow is defined by $A \uparrow B := \neg (A \land B)$.

Hand in your solutions until Mon 14.10.2019 at 11:00 in post box 2183 in V3, or via email to the respective tutor.