<u>Formal Logic</u> — Exercise Sheet 7

Exercise 25: (Reflexive, symmetric, transitive)

Consider the formulas

 $F_1 = \forall x \ P(x, x), \quad F_2 = \forall x \ \forall y \ \left(P(x, y) \Rightarrow P(y, x)\right), \quad F_3 = \forall x \ \forall y \ \forall z \ \left((P(x, y) \land P(y, z)) \Rightarrow P(x, z)\right).$

Show that none of these formulas is a consequence of the other two by constructing structures where F_1 and F_2 are true, but F_3 is not; respectively where F_1 and F_3 are true, but F_2 is not; respectively where F_2 and F_3 are true, but F_1 is not.

Exercise 26: (Small universes)

(a) Find a formula F of first-order logic without free variables such that F is satisfiable only if U_A has at least three elements. (I.e., F is unsatisfiable for all U_A where U_A has only one or two elements.)

(b) Find a formula F of first-order logic with identity (see Remarks 2.1 and 2.4), and without free variables, such that for all \mathcal{A} with $\mathcal{A} \models F$ holds that $U_{\mathcal{A}}$ has at most two elements.

Exercise 27: (Big universes)

Let F be a formula and \mathcal{A} a model for F with $|U_{\mathcal{A}}| = n$. (The notation $|\mathcal{M}|$ means the number of elements of some set \mathcal{M} .) For each m > n construct a model \mathcal{A}_m for F with $|U_{\mathcal{A}_m}| = m$. Construct a further model \mathcal{A}' for F such that $U_{\mathcal{A}'}$ has infinitely many elements.

This exercise seems to contradict 26 (b). Explain why this is not a contradiction.

Exercise 28: (Not a law)

Show that the two formulas in (a) (respectively, in (b)) are not equivalent to each other by providing a (counter-) example for each.

(a) $(\forall x \ F) \lor (\forall x \ G) \neq \forall x(F \lor G),$ (b) $(\exists x \ F) \land (\exists x \ G) \neq \exists x(F \land G).$

Hand in your solutions until 2.12.2019 at 11:00 in post box 2183 in V3, or via email to your tutor.

Tutors:	Oliver Tautz	otautz@techfak.uni-bielefeld.de	Wed 8-10
	Jonas Kalinski	jkalinski@techfak.uni-bielefeld.de	Tue 16-18