Formal Logic — Exercise Sheet 10

Exercise 37: (Undecidable problem II: Mortal Matrices)

Decide which of the following sets of matrices are sets of mortal matrices. Give either an example for a product yielding the zero matrix, or give a convincing reason why this is not possible.

(a) $A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, A_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$ (b) $B_1 = \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}, B_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, B_3 = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}.$ (c) $C_1 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, C_2 = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, C_3 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$

Exercise 38: (Undecidable problem III: Wang tiles)

For each of the two collections of four Wang tiles below, prove that they can tile the plane (according to the rules: squares are placed vertex-to-vertex, adjacent edges carry the same colour, tiles are not rotated or reflected), or show that there is no such tiling.

Exercise 39: (Decidable first-order logic)

Monadic first-order logic is first-order logic without function symbols, and where all predicates have only one input. Let F be a formula in monadic first-order logic containing n predicates P_1, \ldots, P_n .

(a) Show that if F is satisfiable, then there is a model $\mathcal{A} = (U_{\mathcal{A}}, I_{\mathcal{A}})$ for F such that $U_{\mathcal{A}}$ has 2^n elements. (*Hint: identify elements in* $U_{\mathcal{A}}$ with respect to their values in $P_1^{\mathcal{A}}, \ldots, P_n^{\mathcal{A}}$.)

(b) Use (a) to show that the problem "is a given formula F in monadic first-order logic satisfiable" is decidable.

Exercise 40: (Violate the Peano axioms!)

Peano axioms refers here to the Peano axioms in the lecture notes on page 37.

(a) Find a structure satisfying all Peano axioms except number 1.

(b) Find a structure satisfying all Peano axioms except number 6.

(c) Find a structure satisfying all Peano axioms except number 2.

You may tweak anything, e.g. $U_{\mathcal{A}} = \{0, 1, 2, 3\}$ rather than $U_{\mathcal{A}} = \mathbb{N}_0$, or f(x, y) = 2x - y rather than x + y.

Hand in your solutions until 6.1.2020 at 11:00 in post box 2183 in V3, or via email to your tutor.

Tutors:	Oliver Tautz	otautz@techfak.uni-bielefeld.de	Wed 8-10
	Jonas Kalinski	jkalinski@techfak.uni-bielefeld.de	Tue 16-18
		J	