Formal Logic — Exercise Sheet 1

Exercise 1: (Satisfiable, tautology, equivalent)

Consider the formulas

 $F_1 = (A \land \neg B) \lor C, \quad F_2 = A \Rightarrow (B \Rightarrow C), \quad F_3 = (A \Rightarrow B) \Rightarrow C$

Decide for each of them: is the formula a tautology? Is the formula satisfiable? If it is, give a satisfying valuation \mathcal{A} for the respective formula. Are F_1 and F_2 equivalent? Are F_1 and F_3 equivalent? Are F_2 and F_3 equivalent?

Exercise 2: (DisneyTM PrincessesTM)

(a) The three DisneyTM princessesTM ArielleTM, BelleTM and CinderellaTM are invited to a party. They make the following statements:

$Arielle^{TM}$:	If Cinderella TM will not come to the party then I will come to the party.
$Belle^{TM}$:	If $Arielle^{TM}$ will come to the party then I will not come.
Cinderella TM :	I will come to the party if Belle TM and Arielle TM will come as well;
	otherwise I will not come.

Translate the statements into one single formula F in propositional logic. Is F satisfiable? If so, give a valuation \mathcal{A} such that $\mathcal{A} \models F$.

(b) Do the same for the following statements.

$Arielle^{TM}$:	I will not come to the party.		
$Belle^{TM}$:	I will come to the party if Cinderella TM will not come, and I will not come		
	to the party if Cinderella TM will come.		
Cinderella TM :	I will come to the party if Belle TM or Arielle TM (or both) will come as well;		
	otherwise I will not come.		

Exercise 3: (Truth tables upside down))

Let F be a formula. Let F' be the formula arising from F by replacing all atomic formulas by their negations. That is, each A in F is replaced by $\neg A$, each B in F is replaced by $\neg B$ and so on (hence $\neg A$ in F becomes $\neg \neg A$ in F'). Show that the truth table of F' is obtained from the truth table of F by turning the column under F upside down.

(For this the truth table needs to be in the correct binary order; for instance 000, 001, 010, 011, 100, 101, 110, 111 in the case of three atomic formulas.)

Exercise 4: (Sufficient sets of operators)

(a) Prove that for each formula F there is an equivalent formula G using only \neg and \Rightarrow . (*Hint: if you can express* \land and \lor by combinations of \neg and \Rightarrow then you are done.)

(b) Prove that there is some formula F such that there is no formula G equivalent to F, where G uses only \wedge and \oplus . (\oplus means XOR, the exclusive or, see lecture notes).

(c) Prove that for each formula F there is an equivalent formula G using only \Rightarrow and \oplus .

Send your solutions until Tue 19.10.2021 at 14:00 to your respective tutor.

Please indicate the name of the tutor on your solution sheet.

Tutors:	Leonard Simon Ellinghaus	lellinghaus@techfak.de
	Jonas Kalinski	jkalinski@techfak.de
	Frederic Alberti	falberti@math.uni-bielefeld.de