Dr. D. Frettlöh

Formal Logic — Exercise Sheet 2

Exercise 5: (Laws of Logic)

(a) Prove the following laws using truth tables, compare Theorem 1.1.

1. $\neg (F \lor G) \equiv \neg F \land \neg G$ (de Morgan's law 2) 2. $F \land (G \lor H) \equiv (F \land G) \lor (F \land H)$ (Distributivity 1)

(b) Show the following equivalences using the laws in Theorem 1.1 and the definitions of \Leftrightarrow and \Rightarrow only (compare Example 1.4). For each transformation state the law you used.

- 1. $F \Rightarrow G \equiv \neg G \Rightarrow \neg F$ (contraposition)
- 2. $F \land (G \Leftrightarrow H) \equiv (F \land G \land H) \lor \neg (\neg F \lor G \lor H)$

Exercise 6: (CNF and DNF)

Transform the following formulas into conjunctive normal form and into disjunctive normal form, using Algorithm 1.1 shown in the lecture.

$$F = A \land \neg (B \lor (C \land D)), \qquad G = \neg (A \Rightarrow (B \Leftrightarrow C))$$

Exercise 7: (satisfiable vs tautology)

Prove or give a counterexample:

- (a) If F is satisfiable and $F \Rightarrow G$ is satisfiable, then G is satisfiable.
- (b) If F is a tautology and $F \Rightarrow G$ is a tautology, then G is a tautology.
- (c) If F is satisfiable and $F \Rightarrow G$ is a tautology, then G is satisfiable.
- (d) If F is satisfiable and $F \Rightarrow G$ is a tautology, then G is a tautology.

Exercise 8: (Switch and or)

Let $F \equiv G$. Let neither F nor G contain any \Leftrightarrow or \Rightarrow . Let F' (respectively G') be the resulting formulas if one changes each \lor in F (respectively G) into \land and vice versa. Prove that $F' \equiv G'$.

Send your solutions until Tue 26.10.2021 at 14:00 to your respective tutor.

Please indicate the name of the tutor on your solution sheet.

Tutors:	Leonard Simon Ellinghaus	lellinghaus@techfak.de
	Jonas Kalinski	jkalinski@techfak.de
	Frederic Alberti	falberti@math.uni-bielefeld.de

19.10.2021