Formal Logic — Exercise Sheet 3

Exercise 9: (Horn formula algorithm)

(a) Apply the Marking Algorithm for Horn formulas to the following two formulas F and G. Is F (resp. G) satisfiable? If yes, please give all valuations \mathcal{A} with $\mathcal{A} \models F$ (resp. $\mathcal{A} \models G$).

$$F = (A \land B \Rightarrow C) \land (B \land D \land E \Rightarrow C) \land (1 \Rightarrow A) \land (A \Rightarrow B) \land (D \land C \Rightarrow E) \land (1 \Rightarrow E) \land (D \Rightarrow 0)$$

 $G = (\neg A_1 \lor \neg A_2 \lor \neg A_3 \lor A_4) \land (\neg A_1 \lor \neg A_3 \lor A_6) \land \neg A_6 \land A_4 \land (\neg A_4 \lor \neg A_5 \lor A_1) \land (\neg A_1 \lor \neg A_2 \lor A_3) \land (\neg A_5 \lor \neg A_1 \lor A_2) \land (A_5 \lor \neg A_4) \land (A_5 \lor \land A_4) \land (A_5 \lor A$

(b) The fiveTM DisneyTM princessesTM ArielleTM, BelleTM, CinderellaTM, DianaTM and ElizaTM are invited to a partyTM. Again they state strict opinions:

- ArielleTM: If ElizaTM and DianaTM are coming to the party I will come, too.
- BelleTM: If CinderellaTM is coming I will come as well.
- CinderellaTM: I will go to the party anyway.
- DianaTM: If $Eliza^{TM}$ and $Cinderella^{TM}$ will come I will come, too.
- ElizaTM: If BelleTM and CinderellaTM are coming I will come, too.

Translate their statements into a single HornTM formula F. Is F satisfiable? If yes, please give a valuation \mathcal{A} with $\mathcal{A} \models F$. What is the minimal satisfying valuation?

Exercise 10: (Borromean formulas)

(a) Find three formulas F_1, F_2, F_3 such that $F_i \wedge F_j$ is satisfiable for all choices of $1 \le i < j \le 3$, but $F_1 \wedge F_2 \wedge F_3$ is not satisfiable.

(b) Find four formulas F_1, F_2, F_3, F_4 such that $F_i \wedge F_j \wedge F_k$ is satisfiable for all choices of $i, j, k \in \{1, 2, 3, 4\}$, but $F_1 \wedge F_2 \wedge F_3 \wedge F_4$ is not satisfiable.

Exercise 11: (Easy decisions)

(a) Show that any Horn formula F (in CNF) is satisfiable if each disjunctive clause contains at least one \neg .

(b) State a formula that does not have an equivalent Horn formula. (Congratulations if you found one: you just proved that not each formula has an equivalent Horn formula.)

Exercise 12: (Infinitely many formulas)

Find all valuations for A_1, A_2, \ldots satisfying the infinite set of formulas

$$M = \{A_1 \lor \neg A_2, A_2 \lor \neg A_3, A_3 \lor \neg A_4, A_4 \lor \neg A_5, A_5 \lor \neg A_6, \ldots\}$$

(*Hint: there are more than three.*) Give a reason why your answer includes all satisfying valuations.

Send your solutions until Tue 2.11.2021 at 14:00 to your respective tutor.

Please indicate the name of the tutor on your solution sheet.

Tutors:	Leonard Simon Ellinghaus	lellinghaus@techfak.de
	Jonas Kalinski	jkalinski@techfak.de
	Frederic Alberti	falberti@math.uni-bielefeld.de