<u>Formal Logic</u> — Exercise Sheet 3

Exercise 9: (Satisfiable vs tautology)

Prove or give a counterexample:

(a) If F is a tautology and $F \Rightarrow G$ is a tautology, then G is a tautology.

(b) If F is satisfiable and $F \Rightarrow G$ is satisfiable, then G is satisfiable.

(c) If F is satisfiable and $F \Rightarrow G$ is a tautology, then G is satisfiable.

(d) If F is satisfiable and $F \Rightarrow G$ is a tautology, then G is a tautology.

Exercise 10: (Horn formula algorithm)

Apply the Marking Algorithm for Horn formulas to the following three formulas F, G and H. Is F (resp. G, resp. H) satisfiable? If yes, please give all valuations \mathcal{A} with $\mathcal{A} \models F$ (resp. $\mathcal{A} \models G$, resp. $\mathcal{A} \models H$).

$$F = (\neg A \lor \neg B \lor \neg D) \land \neg E \land (\neg C \lor A) \land C \land B \land (\neg G \lor D) \land G$$

 $G = (E \land C \Rightarrow F) \land (B \land C \land D \Rightarrow A) \land (1 \Rightarrow F) \land (A \land B \land E \Rightarrow C) \land (B \land C \Rightarrow D) \land (A \land F \Rightarrow B) \land (D \Rightarrow 0) \land (A \land B \Rightarrow E) \land (F \Rightarrow A) \land (F \land A)$

 $H = (\neg A_1 \lor \neg A_3 \lor \neg A_5 \lor A_6) \land (\neg A_2 \lor \neg A_3 \lor A_6) \land \neg A_7 \land (\neg A_6 \lor \neg A_2 \lor A_7) \land A_4 \land (A_5 \lor \neg A_4) \land (\neg A_4 \lor \neg A_5 \lor A_1) \land (\neg A_1 \lor \neg A_2 \lor A_3) \land (\neg A_5 \lor \neg A_1 \lor A_2) \land (\neg A_5 \lor A_5 \lor A_5) \land (\neg A_5 \lor A_5 \lor A_5 \lor A_5) \land (\neg A$

Exercise 11: (DisneyTM PrincessesTM)

The fiveTM DisneyTM princessesTM ArielleTM, BelleTM, CinderellaTM, DianaTM and ElizaTM are invited to a partyTM. They state strict opinions:

- ArielleTM: If CinderellaTM and DianaTM are coming to the party I will not come.
- BelleTM: If ElizaTM is coming I will come as well.
- CinderellaTM: If BelleTM and ElizaTM are coming I will come, too.
- DianaTM: If CinderellaTM and ElizaTM will come I will come, too.
- ElizaTM: I will go to the party anyway.

Translate their statements into a single HornTM formula F. (Yes, it is possible!) Is F satisfiable? If yes, please give all valuations \mathcal{A} such that $\mathcal{A} \models F$.

Exercise 12: (Easy decisions)

(a) Show that any Horn formula F (in CNF) is satisfiable if each disjunctive clause contains at least one \neg .

(b) Show that DNFSAT is in P. That is, let F be in DNF, and let n denote the length of F (that is, the number of symbols). Describe an algorithm that decides in polynomial time with respect to n whether F is satisfiable or not. What is the exact complexity? (in Big O notation with respect to n.)

Send your solutions until Tue 8.11.2022 at 14:00 to your respective tutor.

Please indicate the name of the tutor on your solution sheet. Your solutions have to be in a single file (pdf or similar). Multiple jpeg files (photos) do not count.

Jakob Niermann	Tue 16	janiermann@techfak.de
Constantin Lefeld	Tue 16	clefeld@techfak.de
Frederic Alberti	Wed 8	falberti@math.uni-bielefeld.de
Hannah Schweizer	Wed 16	hschweizer@techfak.de
Luigi Esercito / Enrico di Gaspero	Thu 12	lesercito@techfak.de / edigaspero@techfak.de