Dr. D. Frettlöh 14.10.2025

Formal Logic — Exercise Sheet 1

Exercise 1: (Satisfiable, tautology, equivalent)

Consider the formulas

$$F_1 = (A \land \neg B) \lor C, \quad F_2 = A \Rightarrow (B \Rightarrow C), \quad F_3 = (A \Rightarrow B) \Rightarrow C$$

List all partial formulas of F_1 . Then decide for each of the three formulas: is the formula a tautology? Is the formula satisfiable? If it is, give a satisfying valuation \mathcal{A} for the respective formula. Are F_1 and F_2 equivalent? Are F_1 and F_3 equivalent? Are F_2 and F_3 equivalent?

Exercise 2: (Trigger sensitive formulas))

- (a) Find a formula F containing two atomic formulas A, B with the following property: For every valuation A, changing any of the values of A(A), A(B) also changes A(F).
- (b) Find a formula F containing three atomic formulas A, B, C with the following property: For every valuation A, changing any of the values of A(A), A(B), A(C) also changes A(F).

Exercise 3: $(Disney^{TM} Princesses^{TM})$

(a) The three DisneyTM princessesTM ArielleTM, BelleTM and CinderellaTM are invited to a party. They make the following statements:

ArielleTM: If CinderellaTM will not come to the party then I will come to the party.

BelleTM: If ArielleTM will come to the party then I will not come.

CinderellaTM: I will come to the party if BelleTM and ArielleTM will come as well;

otherwise I will not come.

Translate the statements into one single formula F in propositional logic. Is F satisfiable? If so, give a valuation \mathcal{A} such that $\mathcal{A} \models F$.

(b) Do the same for the following statements.

ArielleTM: I will not come to the party.

BelleTM: I will come to the party if CinderellaTM will not come, and I will not come

to the party if CinderellaTM will come.

CinderellaTM: I will come to the party if BelleTM or ArielleTM (or both) will come as well;

otherwise I will not come.

Exercise 4: (Sufficient sets of operators)

- (a) Prove that for each formula F there is an equivalent formula G using only \neg and \Rightarrow . (Hint: if you can express \land and \lor by combinations of \neg and \Rightarrow then you are done.)
- (b) Prove that there is some formula F such that there is no formula G equivalent to F, where G uses only \wedge and \oplus . (\oplus means XOR, the exclusive or, see lecture notes).
- (c) Prove that for each formula F there is an equivalent formula G using only \Rightarrow and \oplus .

Send your solutions until Tuesday 21.10.2025 at 14:00 to your tutor.