Dr. D. Frettlöh 28.10.2025

Formal Logic — Exercise Sheet 3

Exercise 9:

Is \Rightarrow associative? Is \Leftrightarrow associative? That is, is $F \Rightarrow (G \Rightarrow H) \equiv (F \Rightarrow G) \Rightarrow H$ true; and/or is $F \Leftrightarrow (G \Leftrightarrow H) \equiv (F \Leftrightarrow G) \Leftrightarrow H$ true? If 'yes', please provide a proof. If 'no', please provide a counterexample.

Exercise 10: (Horn formula algorithm)

Apply the Marking Algorithm for Horn formulas to the following three formulas F, G and H. Is F (resp. G, resp. H) satisfiable? If yes, please give all valuations \mathcal{A} with $\mathcal{A} \models F$ (resp. $\mathcal{A} \models G$, resp. $\mathcal{A} \models H$).

$$F = \neg A \land (\neg B \lor \neg D) \land (\neg C \lor \neg E \lor B) \land (\neg D \lor C) \land D \land (\neg C \lor \neg D \lor E)$$

$$G = (A \land B \Rightarrow C) \land (B \land D \land E \Rightarrow C) \land (1 \Rightarrow A) \land (A \Rightarrow B) \land (D \land C \Rightarrow E) \land (1 \Rightarrow E) \land (D \Rightarrow 0)$$

$$H = (\neg A_1 \lor \neg A_2 \lor \neg A_3 \lor A_4) \land (\neg A_1 \lor \neg A_3 \lor A_6) \land \neg A_6 \land A_4 \land (\neg A_4 \lor \neg A_5 \lor A_1) \land (\neg A_1 \lor \neg A_2 \lor A_3) \land (\neg A_5 \lor \neg A_1 \lor A_2) \land (A_5 \lor \neg A_4)$$

Exercise 11: (DisneyTM PrincessesTM)

The fiveTM DisneyTM princessesTM ArielleTM, BelleTM, CinderellaTM, DianaTM and ElizaTM are invited to a partyTM. Again. They state strict opinions, again:

- ArielleTM: If CinderellaTM and DianaTM are coming to the party I will not come.
- BelleTM: If ElizaTM is coming I will come as well.
- CinderellaTM: If BelleTM and ElizaTM are coming I will come, too.
- DianaTM: If CinderellaTM and ElizaTM will come I will come, too.
- ElizaTM: I will go to the party anyway.

Translate their statements into a single HornTM formula F. (Yes, it is possible! Maybe you need some trick.) Is F satisfiable? If yes, please give all valuations \mathcal{A} such that $\mathcal{A} \models F$.

Exercise 12: (Easy decisions)

- (a) Show that any Horn formula F (in CNF) is satisfiable if each disjunctive clause contains at least one \neg .
- (b) State a formula G that does not have an equivalent Horn formula. Justify your answer. (Congratulations if you found one: you just proved that not each formula has an equivalent Horn formula.)
- (c) Show that DNFSAT is in P. That is, let F be in DNF, and let n denote the length of F (that is, the number of symbols). Describe an algorithm that decides in polynomial time with respect to n whether F is satisfiable or not. What is the exact complexity? (in Big O notation with respect to n.)

Send your solutions until Tuesday 4.11.2025 at 14:00 to your tutor.