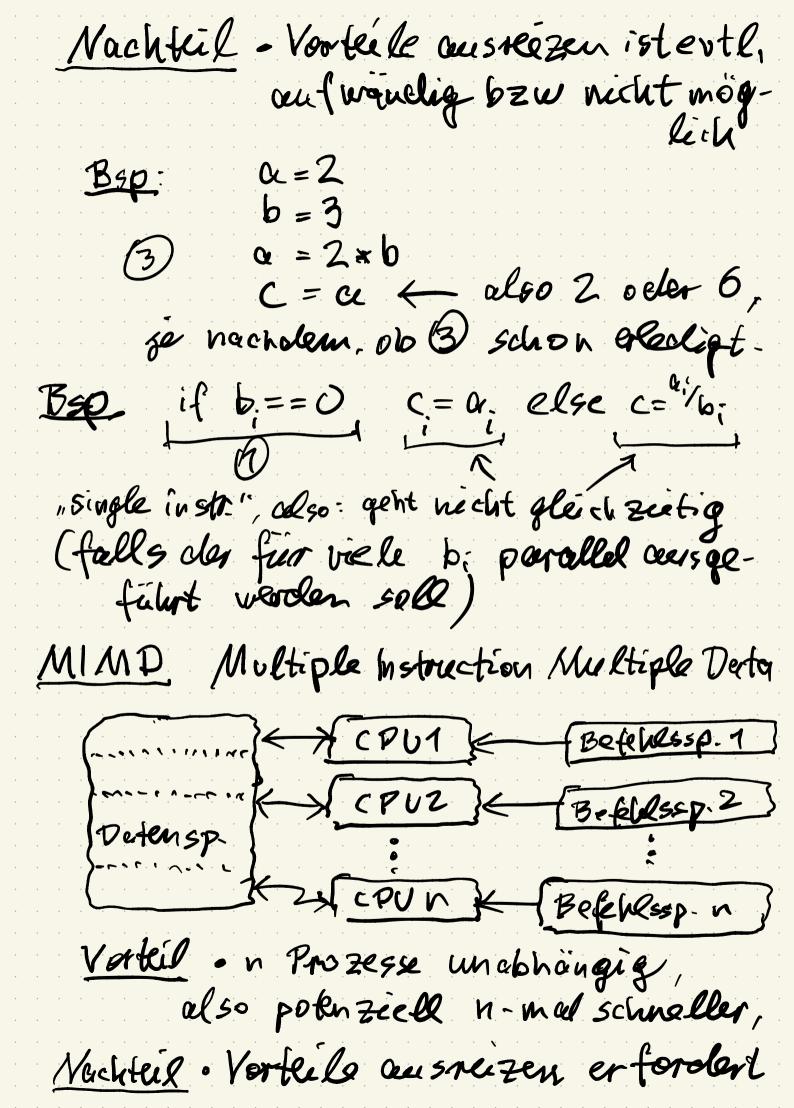

Vektonechner
1.1. 7 2.8. 64-bét CPU nutzen, cun
8 Operationen gleichzeitig ausz
fulsen.
1.21 Pipelining (instruction pipelin
1 Maschineentefell (Z.B. 12 ADD \$64 [REG]
12 ADD \$64 [REG]
sind in real melitere CPU-Takte, 2.7
Fetzh: lese Befehl
Decode: de Kodille
Execute hole Defen œus speicher und filme œus
Write: 6 derei de Ergebnis
Trick: diese schrikk verschachteln


 			F4		
 			-		
 			D3		W3
 	F2	D2	EZ	W2	
 F1	D1	CA	W1		

Probleme bendbiet bei [1.1]: • Datentiansport wird zeem Engpass Dafen mussen hintereinander im speicher stehen (oeber so teen alsob) # Hin- & Herschalten zwischen Stever-& Daten-Operationen (IF vs. ADD) bei [1,2] . Woerten bei a:= a:-1+5 worten, bis a i-1 geschrieben ist Crays losen das, indem somelle Steverbefehle realistert werden; und optimiert speichtzugriff durch viele Registerspeicher; CPV RAM ((a 10 B) (billing) Reg. 8 (Rechly-48ng 6ng & sey encly) Zugnffszect (teuer)

Aufden 20ben Daku: 2.B a; = 20; 1+5-0:-2

Also Doky longe in Register hollen Treal stockt in Crays noch viel weber; aber ok]
Freal steckt in Crays north viel well, aber ok]
[Melwere Prozessoren bzw. Karne
Oben lait ja zunechst immer noch nur ein Programm ab- Verzoche das
vir oblin zu beschleumpen: • Experimente Zugen, doss jenseits
von 4 Prozessoren Kaum Verbesserun-
ger ent seven
· Erfordort Komplexes Scheduling
Also: Melykemprozessoren
(melutre vollwertige CPUs auf
einem chip)
Flynnsche Klassifiziereng Ein Votschlag der Klassifizierung (SISD, SIND.)
Ein Vorschlag der Klassifizierung
(SISD, SIMD.).)
(a) SISD Single Instruction Single Dota
Datenspeida (PU) Refebbs- speida
(von-Neumann-Architekter) Vorteil: « einfoch zu benutzen & reclisique

Klufe Organisation.

Proktisch alle Gerate (PC, Laptop, Hundy) heat sind MIND-: Cluster mit Auch "Supercomposer" met 1000en GPUS

2. Netzwerktopologee

Beispiele oben zeigen bereitz, clæss der Speicherzugriff Klug organistert verdon huss.

Teil dessen: Wie genou CPUs mit don speicher vernetzt sind.

· Ideal peler mit jeden: physisch nicht machber.

Also anders regelu:

- Topologie (Gestalt)
- Routing (wer wo læng)
 Switching (stückeln, Ampeln",
 Weichen")

Zur Topologie: Lnich ste Vorlesung)