ALGEBRAIC K-THEQORY OF SPACES,
A MANIFOLD APPROACH.

Friedhelm Waldhausen

The basic fact relating the algebraic K-theory of spaces to concordance theory,
and hence the geometry of manifolds, is the existence of a natural transforma-
tion A(X) - WhPL(X) whose homotopy fibre is a homology theory. The purpose
of the present paper is to show how this may be described entirely in terms of
spaces of manifolds.

Such a manifold description is of interest for several reasons. Most im-

portantly one can now define a map A(X) - WhDIFF

(X) and this map again turns
out to have the property that its homotopy fibre is a homology theory. By com—
bining this fact with known results one obtains that there is a double splitting

DIFF

AX) = Q7ST(X,) x Who o (X) x u(X)

In other words it turns out that A(X) 1is the product of two well known sbaces
(well known, that is, from the point of view of their definitions) together with
a somewhat mysterious third onme. This u(X) 1is a homology theory. Its nature
will be briefly discussed in section 2 (after theorem 2).

As another application of the manifold models one can see at once that the

composite map BO - BG - A(x) - WhDIFF

(*) 1is trivial, up to homotopy. This has
numerical implications (section 3). 1In fact the map is canonically trivial, so
one obtains a map, well defined up to homotopy,

DIFF

G/0 - Q Wh (*) .

An interesting question is whether or not this map is a rational homotopy equi-

valence.

As a final application of the manifold description (of which we do not
pursue any details here) it should be mentioned that each of the spaces in the
basic fibration admits an obvious involution (up to homotopy) and the involu-

tions are compatible with the maps. (This is of interest for example because
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after localization away from 2 such an involution gives a splitting into eigen-
spaces, and the eigenspaces of the concordance space have geometric meaning,
cf. e.g. [10]).

Here is a brief indication of how the fibration in terms of manifold mo-

dels is obtained.

Unless explicitly stated otherwise, our arguments with manifolds are sup-
posed to be independent of the category of definition and are thus consistently
to be interpreted as being concerned with CAT manifolds where CAT can mean
either of TOP, PL, or DIFF (there is an occasional technical point about cor-
ners in the DIFF case; such matters are dealt with in the appended section 6).
By elementary means, and very explicitly, we will set up a certain diagram in
section 1. The main result is then theorem 1 which asserts that this diagram
represents a homotopy fibration QWhCAT(X) - hCAT(X) - A(X) and that hCAT(X)
is a homology theory. Most of the assertions of theorem ! can be proved rela-
tively easily, and at any rate complete proofs are meant to be given in this
paper (in section 5). The one exception is the assertion that hCAT(X) is a

homology theory.

Briefly, this is handled in the following way. By using results from tri-

angulation theory, resp. smoothing theory, one reduces first of all to proving

the assertion in the PL case only. hPL(X) now may be re—expressed, up to ho-

motopy, in terms of poiyhedra rather than PL manifolds. This is the kind of
translation achieved by the parametrized h-cobordism theorem in the sense of
Hatcher [ 9]; actually we do not refer to Hatcher's theorem but to a version
of it (re-)proved ih [23]. After such translation it is then possible to apply

suitable parts of the machinery of [24],

Here is a list of section headings.

1. The manifold models.

2. The splitting theorem.

3. Properties of the map BG - A(x) .
4, Technical tools.

5. Proof of theorem 1.

6. Appendix: Smooth manifolds with general corners.
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1. The manifold models.

As pointed out in the introduction already, everything in this section is
to be interpreted in terms of CAT manifolds where CAT means either one of DIFF,
PL, or TOP. 1In the DIFF case some of the constructions will create corners.
But such corners may be ignored entirely if one adopts the reformulation of the

DIFF case described in the appended section 6.

Let X be a compact manifold, with boundary 93X . Let I be an inter-
val, say I = [a,b] . We are interested in submanifolds M of XxI as in the

following picture.

|

Nl

Let N denote the closure of the complement of M, and F = MNN . As the
picture suggests, we want F to be disjoint from the bottom Xxa and top Xxb
and we want it to be standard near 3XxI in the sense that there exists a
neighborhood of the latter whose intersection with F 1is equal to its inter-

section with Xxt , for some t € I

We refer to such a triple (M,F,N) as a partition; F will be called its

frontier.

The partitions may be regarded as the O-simplices of a simplicial set
P(X) . A k-simplex in this simplicial set P(X) 1is, by definition, a locally
trivial family of partitions parametrized by the simplex Ak (note that the
number t 1is not required to be constant in such a family; note also that the

local triviality is to be understood in the CAT sense here).
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In particular we have the h-cobordism space H(X) . It is the simplicial
subset of P(X) of those (M,F,N) where M 1is an h-cobordism (rel. boundary)
between Xxa and F . We note that the h-cobordism space H(X) <8 a classi-
fying space for the concordance space C(X) . 1In fact, by definition C(X) is
the simplicial group of those automorphisms of Xx[0,1] which are the identity
near Xx0 and 9XxI . It will suffice to know that the connected component of
H(X) containing the trivial h-cobordism Xx[a,a']l , say, may be identified to
the space of orbits of a free action of C(X) on some contractible space.

Such a contractible space is given by a space of collars of XxI , namely by
the simplicial set of embeddings Xx[0,1] - Xx[a,b] which take Xx0 to Xxa
by the identity map on X , and which are standard near 3Xx[0,1] 1in a suit-

able sense.

The only other partitions that we will be eventually interested in are
those (M,F,N) where each of M and N looks like a handlebody of a particu-
lar type (up to an h-cobordism perhaps). The precise definition will be given

in a moment. It is convenient to discuss another general notion first.

The inclusion relation among the M's allows us to consider P(X) as a
simplicial partially ordered set, and hence as a simplicial category. We are
interested in the simplicial subcategory h'P(X) defined by the condition that
the inclusion map M - M' should be a homotopy equivalence. In fact, we are
more interested in a slight refinement of this condition, thus obtaining a sim-
plicial subcategory hP(X) of h'P(X) . The refined condition is that each of

the two inclusion maps
F—— M' - (M-F) ¢—— F'

should be a homotopy equivalence. 1In the special case of general position,
that is, where F and F' are disjoint, this amounts to asking that F and

F' should cobound an h-cobordism.

I

~—1T ™ h-

TS T

|
g

cobordism
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Definition hPE(X) is the connected component of hP(X) containing the
particular (M,F,N) with

M = Xx[a,a'l U k trivial m-handles.

PE(X) is the simplicial set of objects of hPE(X)

Note that, dually, hPE(X) could also be characterized as the connected

component containing the particular (M',F',N') with
N' = Xx[b,b'] U k trivial n-handles,
where n = dim(X)-m .

A first formulation of our main result may now be given, somewhat loosely,

as follows.

Theorem 1. (1) Approximately (i.e. up to some connectivity tending to infinity
with m and n = dim(X)-m ) H(X) may be identified to the homotopy fibre
of the inclusion map PE(X) - hPE(X)

(2) hPE(X) is an approximation to A(X) .

(3) PE(X) approximates a homology theory.

The proof will be discussed later, in section 5. We derive more precise
formulations of the statements of the theorem now. To do this, we must discuss
some general constructions first, namely a stabilizatiZon map to raise the di-
mension of X , a suspension map to raise m , and a composition law by means

of which the (suitably stabilized) spaces become infinite loop spaces.
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These constructions depend on choices, we therefore discuss such choices

first. We fix a subinterval
I' = [a',b'] < Int(I)
and a submanifold
X' < Int(X)

so that Cl(X-X') 1is a collar on the boundary 95X . Then P'(X) 1is to be the
simplicial subset of P(X) of the partitions (M,F,N) which satisfy

F < xx[a',b'] |, FN XX")xI = (X-X') xt (for some t ),

and hP'(X) 1is the corresponding simplicial subcategory of hP(X) . (Note
that the second of these conditions involves the half-open collar (X-X') ,

not the collar Cl1(X-X') ).

Next we add the condition that the number t actually assumes the minimal
possible value. Thus we define P(X) as the simplicial subset of P(X) of

the partitions satisfying

F < XxXx[a',b'] , FN (X-X")xI = (X-X') x a'
It is clear that the inclusions

PEX) - P'(X) » PX) , resp. hP(X) - hP'(X) » hP(X) ,
are homotopy equivalences.

Likewise we define f(X) by asking that t assumes the maximal possible
value, b' . Then P(X) - P'(X) and H?(X) - hP'(X) are homotopy equiva-

lences, too.

These choices are needed, first of all, in stabilizing with respect to
dimension. Given a partition (M,F,N) , the idea is to take M to its pro-
duct with an interval, J say; this is then to define a partition in (XxJ)xI .
The idea requires modification. For our notion of partition involves conditi-
ons of standard behaviour near 3(XxJ)xI . As a consequence M should not be
multiplied with J but with some subinterval, and some kind of standard choice
should be made near Xx3JxI . Also it is necessary that the latter standard
choice should be compatible with the standard behaviour near 3XxJxI . It fol-
lows, more or less, that M ought to satisfy the conditions for a partition

in P(X)
Thus let J be an interval, equipped with a subinterval
J' < Int(J) .

The lower stabilization is defined as the map
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g PX) - P(XxJ)
which acts on a partition (M,F,N) by taking M to

Xx[a,a']xJ U T MxJ'

Xx[a,a']

or what is the same thing, the union of Xx[a,a']xJ and MxJ' as subspaces

of XxIxJ . The same procedure describes the lower stabilization map hP(X) -
hP(XxJ)

Dually, the upper stabilization is defined as the map
o ?(X) - 'ﬁ(XXJ)
which acts on a partition (M,F,N) by taking N to

Xx[b,b'IxJ U NxJ'

Xx[b,b"']xJ"’
Equivalently o takes M to

MxJ U Xx[a,b']xC1(J-J")

MxC1(J-J")
which is a kind of fibrewise suspension over X .

In view of the homotopy equivalence ‘E(X) ziﬁ(X) the map o can be used
to define a map I: P(X) » P(XxJ) which is well defined up to homotopy; simi-
larly we can obtain a map hP(X) » hP(XxJ) . It would not be difficult, in
fact, to write down an explicit representative of I . We shall not do this,
however. For it is apparently not possible to make a choice which is natural.
Concretely, P(X) 1is a functor on the category of compact manifolds X and
embeddings of codimension O between such, and o 1is a natural transformation
of functors. But I 1is only a natural transformation up to homotopy. To make
I more explicit it would be of little use to just make a choice for I on
objects. One should go on and choose commuting homotopies for morphisms, then

coherence homotopies for commutative triangles, and so on. We shall not enter

this matter.
The stabilization with respect to dimension is defined as
lim P(xxJ")
30 =

where the maps in the direct system are given by the lower stabilization map.

In order to define a composition law let us say that a partition

(MI’FI’NI) of P(X) has support in X, if

M < Xx[a,a'] U XIX[a',b'] .

We can regard P(X) as a partial monoid [17] where two partitions are compos-

able if, and only if, they have disjoint support. If (MI’FI’NI) and
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(MZ’FZ’NZ) are composable then their sum is defined as the partition given by

M = M] UXx[a’a'] M2

or what is the same, the union of M] and M2 as subspaces of XxI ; it 1is

a manifold in view of the assumption of disjointness of support.

Stably it is always possible to move to disjoint support (by a kind of

general position homotopy). It follows that the composition law makes
lim P(XxJ"™) the underlying space of a (special) I'-space in the sense of [18].
- — .
The classifying space construction with respect to that structure is the sim-—
plicial object

[q] —— simplicial set of composable gq-tuples in lim B(XXJn)
which we denote

N (lim P(xxJ™) ) .
s -

Similarly we can make this construction with hP instead of P .

We turn to reformulating theorem 1 now (cf. also section 5). For every m

we have a commutative diagram

lim H(xxJ™) lim PE(XXJH)
> - - -

n k,n

. n
lim hEE(XXJ )

lim hH (xxJ™)
im bt
n k,n

where the direct system in the k-variable is given by adding handles in some
standard way, and the maps from left.to right are induced by the identification
ﬂ(X) = EE(X) . The lower left term in the diagram is contractible (it is a
simplicial object of categories with initial objects), and assertion (1) of the
theorem says that (for every k , and hence also in the limit with respect to

k ) the diagram is homotopy cartesian in the dimension range up to m-e where

€ 1is some constant (about 3 ). This is proved in proposition 5.1.

Except for questions on how to add more handles, the diagram is natural
in X (with respect to codimension O embeddings). There is a suspension map,
well defined up to homotopy, from the m—th diagram to the (m+1)-th. The sus-
pension map can be a map of commutative diagrams, but it is not natural with

respect to codimension O embeddings, only natural up to homotopy.

From the diagram we obtain another by performing the plus construction [14]
on the two spaces on the right. The resulting diagram is homotopy cartesian in

the same dimension range; this is also proved in proposition 5.1.
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The composition law on _E(X) restricts to one on

PP = o P

and this in turn restricts to one on H(X) . Similarly with hP(X) . We ob-

tain a commutative diagram

N (Lim H(XxI") ) ——— N (1in P"(0a™) )
n n

N (lim hH(XxJ%) ) ————5 N_(1im hP™(xxJ™) )
' s — | —
n n

This diagram is homotopy cartesian in the same dimension range still (one
better, actually). For by taking loop spaces, and restricting to a connected
component, we obtain from it a diagram homotopy equivalent to the preceding

diagram of plus constructions, thanks to results of Segal [18].

In this diagram the maps from left to right are given by inclusion, not
the addition of handles or the like. The construction of the diagram does not
therefore involve choices depending on X . Hence the diagram is natural for

codimension O embeddings.

As the NP construction can be iterated, it also results that theorem 1

really is a theorem about infinite loop spaces.
Part (2) of the theorem says that there is a natural transformation (natu-
ral, that is, for codimension O embeddings)
Q N.(lim hP"(XxJ") ) —— A(X)
n
which is highly connected, depending on m (it is actually (m~1)-connected).

This is proved in proposition 5.4.

Given this we obtain, by looping the fibration of theorem 1, a map QA(X)
- lim H(XxJ™) (or rather an approximation to such a map). To avoid the dimen-
im
sion shift it involves, it is convenient to introduce the Whitehead space (de-
pending on the category under consideration) as
WAt ) = N im Hxa™) )
n

By looping the de-looped version of the fibration of theorem | we then obtain

(an approximation to) a map A(X) - WhCAT(x)

Part (3) of the theorem finally says that the functor

2 N.(Lim P"(x<3") )
n
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behaves like a homology theory in a stable range of dimensions (the range is
that of dimensions up to m-c where c is some constant, about 3 or 4). This
means that, in addition to the homotopy property, the functor also has the ex—

eision property: if

is a (pushout) diagram of codimension O embeddings of manifolds then, denoting

the functor by ¥ for short, the induced diagram

¥ (X)) —— ¥(X,)

W(X]) _— W(XIUXOXZ)

will be homotopy cartesian (in the range in question).
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2. The splitting theorem.

We have to begin by recalling a few generalities on functors and their
stabilizations. If & 1is a functor from pointed spaces to pointed spaces,
with suitable homotopy properties, its stabilization is given by

$5(X) = lim " fibre( o(s"AX) » 0(x) )
n
where, up to homotopy, the n-th map in the direct system is the map of n-th
loop spaces of the vertical homotopy fibres in the following diagram associated

to the decomposition of the (n+1)-sphere into its upper and lower hemispheres

o (s"Ax) —— 22 Ax)

| l

o (O™ Ax) — o(s™Ax)

As formulated, the construction of @S is well defined up to homotopy
only since it involves identifications of homotopy equivalent spaces. But we
can reformulate it a little to remove that ambiguity. Let us define an opera-
tion on functors taking & to @1 say, where by definition QI(X) is the

homotopy inverse limit of the diagram

s (0Ax) —5 8(s'Ax) —— s (0}Ax)

[0,1]
XCB

(recall that holim(A - Ce—B) 1is defined as AXCC , the space of

paths in C with chosen 1iftings of endpoints to A and B , respectively).

There is a natural transformation ¢ (X) - @l(X) , and the construction can be

iterated, say & X) = (2),(X) . Letting ¢ _(X) = 1lim & _(X) we can then
n+l n’ 1 > n

define @S as an honest functor by
2°(X) = fibre( 8,(X) - o (%) )
We adapt the construction to functors from unpointed spaces to pointed

spaces in the usual way by adding a basepoint. That is, if F 1is such a func-

tor then its stabilization is defined as
) = oS (xuw)
where ¢ denotes the restriction of F to the category of pointed spaces.
We will assume that it is possible to define a map

F(X) —> fibre( F(XUx) - F(*x) ) .
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For example in our applications, below, F will take values in group-like
H-spaces, so this is certainly possible. It follows then that we can define

a map

F(X) —> FS(X)

Let F be a functor from spaces to (pointed) spaces. We say F 1is
connective if it takes n-connected maps to n-connected maps for every suffi-
ciently large n (in our applications this will be the case for n > 2 ). We
say F 1is strongly connective if in addition it has the property that for
every pushout diagram of cofibrations in which the horizontal and vertical maps
are m-connected and n-connected, respectively, the square resulting by applica-
tion of F will be homotopy cartesian in the dimension range up to m+n-¢
where ¢ 1is some constant (about 3 , 1in our applications). This is an exci-
sion condition on F . For example, the homotopy excision theorem of Blakers

and Massey says that the identity functor is strongly connective in this sense.

If F 1is connective, resp. strongly connective, then its stabilization
FS is so, too. But more is true: if F 1is strongly connective then FS
actually is a homology theory, that is, when it is applied to a pushout diagram
of cofibrations it will produce a homotopy cartesian square. If F itself
should happen to be a connective homology theory then the stabilization does
not really change it, that is, the natural map F - FS is a homotopy equiva-
lence in this case.

We will take the liberty now to speak of the Whitehead space WhCAT(X) as

if it were a functor on the category of topological spaces and continuous maps
rather than just a functor on CAT manifolds and their codimension O embeddings.
This can be justified in two ways.

The first is to actually construct such a functor, homotopy equivalent to

WhCAT(X) if X 1is a CAT manifold. This is done by a homotopy theoretic ver-

sion of the left Kan extension: one evaluates WhCAT on each manifold over
the given topological space, and then takes the homotopy direct limit of the
resulting diagram. (As a technical point, one should use only manifolds of
some fixed dimension and then pass to the limit with respect to dimension;
also, because of the way we have defined the stabilization with respect to di-
mension (i.e. pullback with ¢rZvial disk bundles) one should use only manifolds

of some fixed tangential type over the space, for example the parallelizable

ones).

The second justification is in the remark that all the necessary suspen-—
ding involved in stabilization can be very explicitly represented in terms of

manifolds, and the resulting construction can be natural, say, on the partially
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ordered set of codimension O submanifolds of euclidean space (this construction
also presupposes that one systematically allows for stabilization with respect

to dimension).

There is a concrete reason why the process of stabilizing functors is
relevant to concordance theory. Namely a certain property of the Whitehead
space functor in the DIFF case implies a statement about stabilization (and is,
conversely, more or less implied by that statement). The fact is that for an

DIFF DIFF

n-connected space X the map Wh (%) » Wh (X) 1is not just n-connected

as one expects, it is about (2n)-connected [ 4]. As a consequence, the stabi-
lized functor (WhDIFF)S is actually trivial, up to homotopy.

To apply this let us suppose that F 1is a functor, and F(X) - WhDIFF

(X)
a natural transformation having the property that its homotopy fibre, h(X)
say, is a connective homology theory. By stabilizing we obtain a fibration

B (X) — PP (®) — @S (x)

and hence, since (WhDIFF)S(X) ~ x , a homotopy equivalence hS - FS . On the

S . . . .
other hand, h - h is a homotopy equivalence, too, in view of the assumed
fact that h 1is a connective homology theory. On combining the various stabi-
lization maps we will therefore obtain a homotopy commutative diagram, with

homotopy equivalences as indicated,

DIFF

h(X) —— F(X) —— Wh (X)

RS (x) 225 FS (x) —— P15 (x)

and we conclude that F(X) actually splits as

F(X) =~ Fo(X) x whPTF(x)

DIFF

Essentially now theorem 1| provides such a map A(X) - Wh (X) whose

homotopy fibre is a homology theory. There are a few technical points. First

DIFF

the loop space QWh (X) in theorem 1 should be replaced by the homotopy

fibre of the right vertical map (in the diagram of theorem 1 after the plus
construction). By looping the fibration we obtain a map QA(X) - QWhDIFF(X) ,
but it is a map of infinite loop spaces, so the Q may be suppressed. Finally
the spaces in theorem 1 are not quite the correct ones, they are the correct
ones only in some finite, though arbitrarily large, range of dimensions. To
summarize: after replacing of all the spaces by homotopy equivalent ones, and
of these in turn by terms in their Postnikov towers, we can have a map A(X) -

DIFF . - .
Wh (X) , the map can be natural (not just up to homotopy), and its homotopy
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fibre is a homology theory.

This homology theory is connective. In fact, each of A(X) and WhDIFF(X)

respects n-connected maps (if n>2), by [21] and [ 4]. It follows that the ho-
mology theory, if not connective, is at least (-1)-connective. To rule out
that possibility it suffices to know that the map of fundamental groups n]A(X)

F . . . . . .
- n'IWhDI F(X) 1s surjective in the case where X 1is the circle. By the h-co-

DIFF

bordism theorem n]Wh (X) 1is isomorphic to the Whitehead group Wh](ﬂ]X) ,

and this is well known to be trivial in the case where wIX is an infinite
cyclic group. The surjectivity is thus clear.

We conclude that we can split A(X) , at least after passage to any term
in its Postnikov tower. Putting these splittings together, we obtain one of

A(X) 1itself, natural up to weak homotopy,

DIFF

A =~ ASx) x T F(x) .

Remark. The construction of this splitting was indicated in [21], modulo a
verification that the map A(X) - WhPL(X) could be factored through WhDIFF(X)
in a sufficiently natural way (which implies that theorem 1 holds in the DIFF
case). It seemed at the time that the verification required thé use of yet
another functor, the combinatorial Whitehead space [21]. As the present
account shows it is not however necessary to use the functor thomb(X) for

that purpose. This makes the verification a lot easier.

The functor AS(X) in turn also splits [22],
A0 = 0%57(x,) x u®

say. (A different account of such a splitting will be given below). By com-

bining the two splittings we obtain

Theorem 2. There exists a splitting, natural up to weak homotopy,

DIFF

AX) =~ QmS“(X+) x Wh (X) x p(X) .

Remark. Given a double splitting such as this, with little apparent reason for
even a single splitting, one may wonder if perhaps the third factor is trivial.
It is known that up(X) 1is rationally trivial - this is equivalent [21] to the

theorem of Farrell-Hsiang [ 7] and Borel [ 1] on the vanishing of
H, (GL(2) ,M'(Q)) ,

the homology of GL(Z) acting by conjugation on rational matrices of trace O.
The argument does not extend to prove the triviality of wu(X) because mod p

versions of that vanishing theorem are not currently known. It turns out,
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however, that the triviality of wu(X) can be proved directly. We will not

discuss any of the proof here. But let us note the following addendum.

Addendum. The following four statements are mutually equivalent to each other:
(1) upX) 1is trivial,

(2) the composite map QmSm(X+) - AX) - AS(X) is a homotopy equivalence,

Comb DIFF

(3) the map Wh (X) » Wh (X) 1is a homotopy equivalence

(i.e. concordances can be 'handled', stably),

. n
(4) A(%) =~ I%m Q T°pn+l/TOpn .

In fact, the equivalence of (1) and (2) results from the definitions:
u(X) 1is the cofibre (in the sense of stable homotopy theory) of the composite

map in (2). As to (3), we will just say that thomb(X) has the property that

Comb

there exists a homotopy fibration QWSM(X+) - A(X) » Wh (X) (the proof is

an elementary, though non-trivial, application of the additivity theorem [21],
suffice it to say that thomb(X) was designed so that it has this property);
the equivalence of (2) and (3) then results by comparing this fibration with
the splitting of theorem 2. To obtain the equivalence of (1) and (4) finally,
one compares the splitting of theorem 2 with the main result of Kuiper and
Lashof [13] a known reformulation of which says that 1im Q" Topn+l/Topn o~
WhDIFF(*) x Q¥s* , cf. [ 31, [10]. Note that the implication (4) = (1) is
valid even without reference to any particular map to 13@ o Toan/Topn s
thanks to Dwyer's theorem that the homotopy groups of A(x) are finitely gene-
rated [ 6]. Nevertheless an explicit description of such a map is desirable,

and we will give omne now.

This map, as well as the splitting map on AS(X) , can be described in

terms of a derivative.

To define that, let Qd denote the space of germé of normally oriented
d-planes in Rd+1 . In the DIFF case this space is homotopy equivalent to
Od+l/0d ~ Sd . In the TOP case it is homotopy equivalent (in view of the theo-

rem that microbundles are represented by bundles) to the analogous Tode/Topd
where Topd = Top(Rd) denotes the space of homeomorphisms of R (preserving
the origin, say). 1In either case Qd is (d-1)-connected (cf. the stability
theorem 5.2 of Kirby and Siebenmann [12] in the TOP case).

The Qd form a spectrum. To describe the map Qd - QQd+] it will suf-

d+l obtained by adding

) +
a common factor Rl to both the d-plane and the ambient space Rd ! . To

fice to describe two nullhomotopies of the map Qd - Q

describe these we replace the space Qd of germs of normally oriented d-planes
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by the homotopy equivalent space of germs of d-planes with a collar on one side.
Given such a germ of half-collar then, after taking the product with a closed
interval, the front (d+1)-face may be moved to either side by pushing it around
the corner. This gives two ways of moving it to standard position, and thus
two nullhomotopies (cf. the end of section 6 for a reformulation in the DIFF
case, making it clear that the spectrum is indeed the sphere spectrum in that

case).

Let X be a manifold of dimension d . For simplicity we assume that X
is a codimension O submanifold of euclidean space Rd . Let PE(X) be the
simplicial set of the partitions of type (m,k), as in section 1. There is a
tautological bundle over PE(X) : the fibre over the partition (M,F,N) is
given by the triple of manifolds (M,F,N) . The derivative now is, by defini-
tion, a bundle map from this bundle to the bundle with fibre Qd (which is the
trivial bundle in view of our assumption that X is a codimension O submani-
fold of Rd » and hence framed). The map is first defined on the frontier F ;
it takes each point of F to the germ of normally oriented d-plane represented
by F at that point. Extending of the map requires a connectivity considera-
tion. Namely M can be obtained from X by attaching of trivial m-handles
(up to h-cobordism), by definition of what Pﬁ(x) is; up to homotopy therefore
N can be obtained from F by attaching of (m+l1)-cells. Since Qd is (d-1)-
connected, it follows that the map can be extended to N over the (d-m-2) -ske-
leton of PE(X) . Similarly the map can be extended to M over the (m-2)-ske-
leton. Putting the two extensions together we obtain, in the stable range of
dimensions up to min(m,d-m)-2 , a bundle map from the trivial bundle Xx[a,b]
to the trivial bundle Qd . The assumed fact that all partitions are standard
near 9Xx[a,b] implies that the map can be trivial near 3Xx[a,b] . By re-
stricting to Xxa , say, the derivative thus provides a map, in a stable range

from PE(X) to the space of maps X/9X - Qd

b

This map is compatible with the stabilization with respect to dimension.
That is, if J denotes an interval, and EE(X) the simplicial subset on which

the (lower) stabilization map is defined (section 1) then the diagram

() ——————— Map (x/3%,Q%)

PR(xx3) ———— ap (xx3/3 (xx3),03* 1)

commutes up to homotopy where the vertical map on the right is obtained by

means of the isomorphism XxJ/3(XxJ) =~ X/3X A J/3J from the structural map
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J/3J A Qd - Qd+] ; this results at once from the definitions of these maps.

The map is also compatible with stabilization with respect to m . To see
this, one simply uses that the two kinds of stabilization correspond to each

other under the flip map which interchanges the M and N of a partition.
It results that we can obtain a map from
lim fz(XXJn) R
b

or better, from the corresponding homotopy direct limit, to

n.d+n

Map (X/3X, lim QQ )

or what is the same up to homotopy, by Poincaré duality,
lim @"(x,AQ™) .
5 +

Now in the TOP case if X 1is a disk then EE(X) approximates A(x) by

theorem | since WhTOP(*) is trivial. So the procedure gives a map

. .n
A(x) — 1im.9 Topn+]/Topn .

In the DIFF case fz(x) approximates AS(X) by theorems | and 2. So we

obtain a map

AS(X) — lim Q™ (S™AX,)

5 +

To see that this map is a retraction, up to homotopy, we note that in the above
definition of the map it is not really necessary for the derivative to be ex-
tended from the frontier F of a partition to both of the complementary parts
M and N . It would suffice to extend the derivative to N , say (and re-
strict to Xxb subsequently). But this means that the map can be regarded as
being defined on PE(X) in the case where m = O . Taking X to be a high-

dimensional disk now, it is not difficult to check that the latter map is equi-

valent to the standard map [17] inducing the homotopy equivalence

+ o _
(Bz)) —— ('S )(o)

To conclude we note that it may be difficult to prove directly that the
retraction here constructed is related to that of [22] in any particular way.
But if we assume the fact that QmSw(X+) - AS(X) is a homotopy equivalence
(the remark after theorem 2) then it follows of course that the two retractions

are the same, up to homotopy.
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3. Properties of the map BG - A(x) .

Let a tube of type (m,n) mean a codimension O submanifold of euclidean
+ .
space Rm+n+1 which contains the lower halfspace R™ n><(—°°,0] and which, up
to an isotopy with compact support, is obtainable from this lower halfspace

by the attaching of an unknotted m-handle.

We let T™™ denote the simplicial set in which a k-simplex is a locally
trivial family of such tubes, parametrized by the simplex Ak .

Up to a technical modification, this space of tubes is really the same
. + . .
thing as the space EE(Dm ™) of section | in the case k = 1 . In fact T™0
can be obtained from the latter by a limiting procedure, namely by letting

m+n . m+n__ 1 .
D x[a,b] increase to R XR* , and at any rate the two are homotopy equi-

valent.
As in section 1 there are stabilization maps from- T8 o Tm,n+] and
+
™ b . We let
T = lim 70,
-
m,n
. . . CAT .
If we want to emphasize the framework we will write T instead.
.. . . TOP
Proposition 3.1. There is a homotopy equivalence T =~ BG . Further there
is a fibration up to homotopy
Q WhDIFF(*) N TDIFF -~ BG ,

and there is a homotopy cartesian square
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TDIFF e

L]

AS(h) — 5 A(x) .

Remark. 1If we assume the fact that Q7S” - AS(*) is a homotopy equivalence
(cf. the remark after theorem 2) we may reformulate the last assertion to say

that TDIFF is the homotopy pullback of the diagram of the natural maps

o oo
QS — A(x) «e— BG .

Proof of proposition. This results from the DIFF and TOP versions of theorem 1.

For each m and k we have a sequence

. . . +
lim H(Dm+n) —> 1lim Pm(Dm+n) —> 1lim hPm(Dm n)
- - 5 —k - —k
n o
which is a homotopy fibration in a certain stable range, depending on m . The

first two assertions of the proposition are obtained from this by taking k=1 .
The base of the fibration then represents BG (in a stable range), regardless

of the category, the total space approximates TDIFF , resp. TTOP , and the

fibre is QWhDIFF(*) s Tresp. QWhTOP(*) ~ % .

To obtain the third assertion we compare the fibration in the case k=1
with the one that results by letting k tend to infinity, and applying the
plus construction. In either of the two fibrations the fibre is QWhDIFF(*) ,
so the square formed by the total spaces and bases is (approximately) homotopy
cartesian. The square of the proposition is obtained from it by letting m
tend to infinity, and by rewriting of two of the terms as A(x) and AS(*) ,
respectively, using theorems 1 and 2.

DIFF DIFF
-

Proposition 3.2. There is a map BO - T whose composite with T BG

is the J-homomorphism BO - BG .

Proof. The map may conveniently be described as an inclusion map of a subspace

of rigid tubes (this formulation is due to Goodwillie, it simplifies another

. m+n . . .
less direct one). Let Gm denote the Grassmannian manifold of m-planes in
m+n . . . m+n m,n . .
R . We define an inclusion map Gm > T by associating to each m-plane

a rigid tube in some standard way, for example like this. Take the m-plane to
its unit sphere and this in turn to the half-sphere which it bounds in the
half-space RmX[O,M) . Then take the half-sphere to its tubular neighborhood

of radius 1/2 , 1in gt , and add that as an m-handle to Rm+nx(—w,0]
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DIFF

Corollary 3.3. The composite map BO - BG - A(*) - Wh (*) 1is nullhomotopic.

Proof. BO - BG factors through TDIFF (the preceding proposition), and

TDIFF - A(x) factors through As(*) ~ fibre(A(x) - WhDIFF
3.1 above).

(x)) (by proposition

DIFF

Corollary 3.4. There is a map G/O0 - Q Wh (%) .

Proof. Using propositions 3.1 and 3.2 this is obtained as the map of homotopy
fibres, fibre(BO - BG) =~ fibre(TDIFF - BG)

An interesting question is whether or not the map

6/0 - o whPHF(x)

is a rational homotopy equivalence.

Remark. A map of this kind has been constructed earlier by Hatcher in the
framework of the Cerf function space approach to concordance theory. 1In parti-

cular, the question goes back to Hatcher.

Remark. It should not be assumed that the map is a homotopy equivalence. For

by using the triviality of wu(*) (the remark after theorem 2) one obtains that
DIFF(*)

for every prime p there is a stable range j < 2p-3 1in which anh
is isomorphic, at p , to njA(*) and therefore also to Kj(Z) . According
to Soulée [19] now K22(Z) contains an element of order 691 ; but HZI(G/O)

does not.

The following result is due to Tom Goodwillie.

Proposition 3.5. The following diagram is homotopy commutative

BO » BG > A(x)
[ 0o oo
0 > G > QS

where the vertical map on the left is the Bott map.

Goodwillie has proved this by using a version of the splitting map from
A(x) to Q”s” that he can construct by fixpoint methods. The argument below

uses the splitting map described in the preceding section.
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Remark. The Bott map BO - O can be extended to a map BG - G (it may be
defined in terms of multiplication by n , where n € v? ) and it has been
more or less verified, by Marcel Bdkstedt and myself, that the diagram remains

commutative if that map is filled in and if the splitting map is that of [22].

Proof of proposition. We use the following description of the composite of the
Bott map BO - O with 0 -> G - Q7s” . We represent a point of BO by an
m-plane in R The map then takes this to (the one-point—compactification
of) the self-map of R which is the antipodal map on the m-plane, and the
identity map on its orthogonal complement. We will show that the other compo-

site map in the diagram admits the same description.

We can rewrite this map somewhat by using the following diagram provided

by theorem 2 and propositions 3.1 and 3.2,

DIFF

BO —— T _— AS(*)

|

BG — A(%x) —> A (%) — 75~ .

By definition of the splitting map AS(*) > Q78" (the preceding section) the
map from TDIFF to 98" is given by the derivative in the sense that we must
take the actual derivative (GauB map) on the frontier of the tube, and then
extend to the tube itself, and its complement, in more or less arbitrary
fashion. The map BO - TDIFF in turn is represented, in a stable range, by

a map which takes each m-plane in R to a rigid tube in a certain standard
way (cf. the proof of proposition 3.2). Our task is thus to show that by eva-
luating the derivative on rigid tubes we do recover the Bott map, or rather its

composite with 0 - Q°s" .

We proceed in two steps. In the first step we show that the Bott map may
be recovered by means of a map on the space of rigid tubes which is closely
related to the derivative. In a second step we then verify that this map is

actually equivalent to the derivative.

The frontier F of a rigid tube may be naturally decomposed into three
parts. The flat part F_ 1is that part of F which lies in the plane Rm+nXO
(it is all of that plane except of the part where the handle is attached). The
upper part Fl is that part on the boundary of the handle which is visible
from very high up. And the lower part F_., finally is the rest. This turns

1
out to be the part which is of most interest to us.
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+ . . +n+1 .
Let Sm o denote the unit sphere in Rm n , and D+ and D_ 1its

upper and lower hemispheres, respectively. The GauB map takes both Fo and
F, into D, . Hence, for homotopy purposes, the derivative may be identified
to the map of quotient spaces

F_,/3F_ = F/(FUF) —— s"/p_ = Dp_/op_

(we are ignoring here the corner at the place where F, meets F] or F—l H

taking it into account, 4 la section 6, does not alter anything in an essential

way).
The projection Rm+n+] - Rm+n induces an embedding u: F_l » pR™ . We
obtain a map
R U w — D _/3D_
by using the map v u—] on the image u(F_l) , and then extending by the

constant map.

Identifying the Grassmannian manifold G$+n with the space of rigid tubes

. +n m+n _m+n . . . .
we obtain thus a map GE - Q S . This map is homotopic to the composite
map

m+n m+n _m+n
G — 0 —> Q S
m m+n

In fact this is clear from the remark that the map F_l/aF_ - D_/3D_ is com-

1
posed of an identification and a reflection: an identification in the n-direc-

tion, and a reflection in the m—-direction.

We are left to show that, up to homotopy, this map represents the deriva-
tive on the space of rigid tubes. To do this it will suffice to show that, in
a stable range of dimensions, the map F - D_/3D_ can be extended to a map on

+ .
the complement of the tube in such a way that at the slice RM" x 3 (say) it
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. + .
restricts to the above map R S D_/3D_ . We will show that such an exten-

. m+n
sion can be found over the n-skeleton of Gm .

The easiest way of obtaining the extension is by an appeal to the Thom-—
Pontriagin construction. We think of G$+n as the simplicial set in which a
k-simplex is a parametrized family, over ak , of rigid tubes of the type we
are discussing. By means of the derivative we have for each such family a
locally trivial family of maps F/(FOUF]) - D_/3D_ . The family is transverse
to the south pole in D_ , and by taking the pre-image of the south pole we
obtain a k-parameter family of framed points, one such point for each point
of Ak . We now choose a k-parameter family of framed intervals with the fol-
lowing properties: the above family of points gives the initial points of the
intervals, the family of endpoints is in the slice R™ « 3 ,» and each of the
intervals is disjoint to F (and also R & 3 ) except for its endpoints.
Such a choice is possible, relative to an earlier choice over aAk , 1f k
is not bigger than n . The required extension of the map is now obtained in
the usual way: a néighborhood of the line in question is mapped to a neighbor-
hood of the south pole, using the framing, and its complement is mapped (arbi-
trarily) into the complement.

As a final point, note that each of those lines has to bend around: it
goes down from F first, and then up to Rm+n x 3 ., This affects the framing,
and therefore it would contribute a minus sign if it were not for the fact that

the Bott map is concerned with 2-torsion phenomena only. a

As an application we can obtain information on how the image of the
J-homomorphism is mapped to the K-theory of the integers. Quillen has shown
that most of it injects, cf. [16]. We show here that in the cases not covered
by Quillen the map is in fact trivial. (In the argument we have to know.that

u(x) is trivial, cf. the remark after theorem 2).

Corollary 3.6. If j = 8k or 8k+l , where k > 1, then the map
T.0 - n? - K. (2)
] J J

is trivial.

Proof. If y € ij where j 8k or 8k+l then y 1is in the image of the

Bott map b: BO >0, say y = by(x) . The image z of x under the map

BO -» BG > A(*)
is in the kernel of the map to Kj(Z) , provided that j # O, 1 . Using

theorem 2 we can decompose 2z as z, + z, + zg where
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S DIFF
z, € “j , z, € anh (*) Z4 € wju(*)
Now zy = 0 if we assume that u(*) 1is trivial (the remark after theorem 2),
and by corollary 3.3 we have z, = O . It results that z, is in the kernel

of the map to Kj(Z) . But z, = J(bye(x)) = J(y) by proposition 3.5.

As a final application we show how for every prime p the first deviation
of A(x) and K(Z) may be determined exactly (this also presupposes the vani-

shing of u(x) ).

Corollary 3.7. For every prime p ,

coker ( nzp_lA(*) - sz_l(z) )(p) ~ Z/p .

Proof. The first p-torsion in BG occurs in and the map

2p-2 °

Zlp & m fibre( A(x) -» K(2Z) )

2p-2

is bijective on p-torsion by an elementary computation [21]. On the other hand

the map “Zp—ZBG - ﬂzp_zA(*) is trivial as we now show. Let x € ﬂzp_zBG and
let z denote 1ts image in nzp_zA(*) . Put z = z, *z, + zg where
S DIFF
z, € “2p-2 , z, € nzp_ZWh (*) Z4 € ﬂzp_zu(*)

Then zy = 0 1if we assume u(%) 1is trivial, and Z,y 0 by corollary 3.3
since x 1is in the image of the J-homomorphism. If p 1is odd then z, must
be zero since it is in the image of the Bott map and hence 2-torsion (alterna-

. S
tively we could use that "2p—2 1
be zero because on the one hand it is in the kernel of the map to K-theory

has no p-torsion). If p =2 then 2z, must

(because =z 1s) and on the other hand the map ng - KZ(Z) is injective.
Remark. 1In the case p = 2 the result is not new. There must be at least

three other proofs in that case. The map

K3(Z) — 7,BG

2
is what Kiyoshi Igusa calls the Grassmamn invariant. There was an erroneous
belief at one time that it was the zero map. This belief led to the conclusion

that CDIFF(*) should map onto KS(Z)/n§ [10, section 3] which in turn led

1
to a contradiction as explained in [10, section 8]. Closer scrutiny has subse-
quently led Igusa to the discovery of his famous picture describing an element

of K3(Z) with non-zero Grassmann invariant.
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4. Technical tools.

In the next section it will be convenient to use versions of Quillen's

theorems A and B [15] for simplicial categories. We record these here.

Recall that if f: A > B 1is a map of categories then for each object
B € B the left fibre f/B is defined as the category of pairs (A,a) where
A €A and a: f(A) > B is a morphism in B . Dually the right fibre B/f

is defined as the category of pairs (A,a) where a: B - f(A)

Suppose now that f: A > B 1is a map of simplicial categories. Let

([n],B) be an object of B , that is, B € Bn . We define the left fibre
£/([n],B)

as the simplicial category

[m] ¢ > , l fm / u*(Bi

u: [m] » [n]

where, as the notation suggests, the coproduct (disjoint union of categories)

is indexed by the set of (monotone) maps u from [m] to [n]

Example. Let f = IdB . Then f£/([n],B) 1is contractible for every ([nl],B)

Indeed, each of the categories Idg /u*(B) 1is contractible since it has a
n
terminal object. 1In view of the realization lemma therefore IdB/([n],B) maps

by homotopy equivalence to

] — | | "

u: [m] - [n]

which is the n-simplex considered as a simplicial category in a trivial way.

Returning to the general case we note that a map b: B - B' in Bn

induces a map
([nl,b)y = £/([nl,B) - £/([n],B") ;

similarly a map v: [n] » [p] induces, for every B" € Bp , a map
ve ¢ £/nl,v*@BM) - £/([p],B") .

These two kinds of maps will be referred to as transition maps.
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Theorem A'. Let f: A-> B be a map of simplicial categories. If for every
object ([nl],B) of B the left fibre £/([n],B) 1is contractible then the map

f 1is a homotopy equivalence.

Theorem B'. Let f: A > B be a map of simplicial categories. If all transi-
tion maps of left fibres are homotopy equivalences then for every object

([n],B) the square
f/([n],B) — A
.
IdB/([n],B)-————+ B

is homotopy cartesian.

The theorems admit dual formulations in terms of right fibres.

Before coming to the proof, we note an addendum which is useful in appli-

cations of the theorems.
Addendum. 1f every object of B 1is O-dimensional (up to isomorphism) then the
hypotheses of theorem A' or B' need be checked only in the case [n] = [0]

Indeed, suppose that ([n],B) is O-dimensional, that is, B = v*(B') say,
where v 1is the unique map from [n] to [0] . Then u*(B) = (vu)*(B') is

independent of u , so we obtain an isomorphism of f/([n],B) with the product

( [m]—> | | x) x (Il £_/(u)*(8") )

u: [m] - [n]

= A" x £/(lo]l,B")
Hence the transition map vy: £/([n],B) » £/([0],B') 1is a homotopy equivalence.
It follows that if w denotes any of the maps [0] - [n] then w,: £/([0],B")
- £/([n],B) , being a section of Vy » 1s a homotopy equivalence, too. In
view of the assumption that each object is isomorphic to one which is O-dimen-
sional, we can therefore conclude that every left fibre is homotopy equivalent
to one of the type f£/([0],B") , and that every transition map is homotopy

equivalent to one of the type ([0],b), where b 1is a morphism in B, .

Proof of theorems A' and B'. We reduce to theorems A and B of Quillen. Namely
to a simplicial category A one can associate a category simp(A) whose

objects are the pairs ([m],A) , A € Am ; the morphisms from ([m],A) to
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([m'],A") are the pairs (u,a) where u: [m] » [m'] and a: A > u*(A') .
To a map of simplicial categories f: A > B 1is associated a natural isomor-

phism
simp(f) / ([n],B) =~ simp( £/([n],B) ) .

In view of this fact, theorems A' and B' follow at once from theorems A and B

of Quillen [15] together with the following lemma.

Lemma. There is a natural chain of homotopy equivalences between a simplicial

category A and the associated category simp(A)

A proof of this lemma may be found in the (unpublished) thesis of Thomason.
(The published excerpt [20] contains a closely related result called there the
homotopy colimit theorem. When specialized to the simplicial category A ,
that theorem says that simp(A) 1is homotopy equivalent to a kind of barycen-
tric subdivision of A . It is not so difficult then to relate the latter to

A itself; the requisite arguments may be found in the appendix to [18].)
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5. Proof of theorem 1.

In the propositions to follow we will take up the parts of theorem 1, one

after the other.

Proposition 5.1. The diagram

H(X)

PR(®)

|

BH(X) ———— hP}(X)

is homotopy cartesian in the dimension range up to q - 3 where
q = min(m,n) , n = dim(X) - m .

When stabilized with respect to dimension, the diagram will remain homotopy .

cartesian, in that range, under the plus construction.

Note that in order to stabilize with respect to dimension, in the second
part, one should really replace P(X) by P(X) (section 1). In the DIFF case
the stabilization in the sense of section | creates corners, so one should work
with manifolds with general corners as in section 6. The plus construction
does not create additional trouble, the diagram can be kept strictly commuta-
tive (of course the plus construction need be applied to the two terms on the

right only since it would not alter the terms on the left anyway).

Proof of proposition. We begin by showing that theorem B' (the preceding sec-

tion) applies, in its version for right fibres, to the inclusion map
i P —— nPL)

The argument involves an application of the isotopy extension theorem (cf. [11]
and [12] for the PL and TOP cases, respectively). We first check that although
the addendum to theorem B' does not apply directly, still its conclusion holds

true. An object of hPE(X) in degree p 1is, by definition, a locally trivial

family of partitions over the simplex AP

AP

. Such a family is trivializable
since is contractible, but in general the trivializing isomorphism is not
. . . . m . .

in the category (the only isomorphisms in th(X) are the identity maps).

Fortunately however the isotopy extension theorem tells us that there is a
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p-parameter family of automorphisms of XxI to trivialize the family. This
family of automorphisms of XxI induces an isomorphism from the right fibre
under consideration to the right fibre over some totally degenerate object. As
in the addendum we can now conclude that it suffices to check the hypotheses of

theorem B' in degree O only.

Since PE(X) is really a simplicial set, not simplicial category, the
same is true of the right fibre ([O],(M,F,N))/j , say. Unravelling of the
definitions shows it is the simplicial set of the partitions (M',F',N') ha-

ving the property that M < M' and that each of the inclusions
F —— M' - (M-F) «—— F'

is a homotopy equivalence. Applying a general position argument in a collar
neighborhood of F we obtain that this simplicial set contains as a deforma-
tion retract the simplicial subset of the partitions having the additional pro-
perty that F' 1is disjoint to F ; the region between F and F' 1is thus an

h-cobordism.

Fixing arbitrarily some collar neighborhood of F , we define a still
smaller simplicial subset by insisting that F' should be contained in that
collar neighborhood. This simplicial subset is a deformation retract, too, as
we see by application of the theorem of uniqueness of collars (i.e. the theorem
which says that the space of collars is contractible). We must apply the theo-
rem twice, in fact. Namely h-cobordisms are invertible (in dimensions at least
5, say), so a first application of the uniqueness of collars theorem shows that
it is a contractible choice to pick for each F' a collar containing it; a se-

cond application then moves this collar to the chosen one.

We conclude that ([0],(M,F,N))/j 1is homotopy equivalent to the h-cobor-
dism space H(F)

To show that the transition map ([0],b)* induced from a morphism
b: (MO,FO,NO) - (M],Fl,N]) in hPE(X) is a homotopy equivalence, it suffices
to treat the case where F_  and F1 are disjoint (for if necessary we could
find a suitable F2 disjoint to both). Using the invertibility of h-cobor-
disms again, we can further reduce to the case where the h-cobordism between
F, and F] is trivial. 1In this case the transition map corresponds, under
the above homotopy equivalence, to the map H(F]) - H(FO) obtained by adding
to each h-cobordism some fixed external collar from below. Certainly this map

is a homotopy equivalence.

Having verified the hypotheses of theorem B' we conclude that for every

(M,F,N) the square
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(fol, 0,F, W) / ] > Pr(X)

([ol, M,F,N)) / 1d ———-—»hPE(X)

hP{f(X)

is homotopy cartesian. To obtain the first part of the proposition we compare
this square with a corresponding one for the case k = O . Assuming as we may
that X has non-empty boundary we have a map from H(X) = P?(X) to PE(X)
which adds handles in some standard way near the boundary (if the boundary is
empty it is still possible to apply essentially the same argument, by punctu-
ring X first). Choose any pair of objects which correspond under this handle

addition process, with frontiers F(o) and F say. The corresponding

(k) °

homotopy cartesian squares are then mapped to each other, and the map of upper

left terms is the same, up to homotopy, as the map
H(F — H(F
( (o)) ( (k))

induced from an inclusion F c F . This inclusion is (q—1)-connected

(o) (k)

where q = min(m,n) , n = dim(X)-m , because F(k) is a connected sum of

F(o) with k copies of s™s™ . A fundamental property of the concordance
space functor now says that the functor essentially preserves connectivity [ 4 ].
So H(F(O)) - H(F(k)) is (gq-2)-connected (provided that q>3 ). From this

connectivity of the map of upper left terms, and the fact that the lower left
terms are contractible, we conclude that the square formed by the right columns

is homotopy cartesian in the range stated.

We are left to check the behaviour of the square under the plus construc-—
tion. Let the right vertical map of the square be denoted V » W , for short.
Then fibre(V » W) 1is (q-2)-equivalent to an H-space (namely H(X) ), and
fibre(V+ - w+) is an H-space (because vioowt is a map of infinite loop
spaces; cf. the end of section 1). It suffices therefore to show that the map
fibre(V-> W) - fibre(V+ - W+) induces an isomorphism in homology (in the
range stated). Now V - vt oand wo w' are isomorphisms in homology. So we
can draw the desired conclusion from the comparison theorem for spectral se-
quences provided we know that, for each of the fibrations, the fundamental
group of the base acts trivially on the homology of the fibre (in that range).
This is clear in the case of V+ > . In the case of the map V- W we

proceed as follows.

Returning to our earlier discussion we have a graph (namely the l-skeleton
of th(X) ) and a local coefficient system over it (namely the homology of

H(F) ) and we want to show that the local coefficient system 1s trivial in the
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range in question. To show this it will suffice to show that for every F
(and not just certain assorted ones) we can define a (q-2)-connected map
H(X) » H(F) 1in such a way that these maps are compatible with transition maps

(up to homotopy, and in the range in question).

F is homotopy equivalent to the wedge of X with some spheres of dimen-
sions m and n , and it comes equipped with a structural map to X (in view
of the inclusion in XxI ). We may assume that X 1is homotopy equivalent to
a complex of dimension m-2 (for if necessary we could have replaced X by a
neighborhood of an (m-2)-skeleton). As n may be assumed to be very large
anyway, we obtain that the map F -» X has a section (up to homotopy) and the
section itself is unique up to homotopy. But it is the stable case which we
are discussing here, so the homotopy class of maps is represented by a unique
isotopy class of codimension O embeddings (the stable tangent bundle of F
pulls back from X , using immersion theory therefore the homotopy class lifts
to a unique regular homotopy class; that in turn lifts to a unique isotopy
class by general position). It results that we obtain a map H(X) - H(F)
which is unique up to homotopy. We conclude with the remark that the unique-
ness of the map automatically implies that its construction is compatible with

transition maps. a

For the purposes of the next proposition it will be useful to know how the
simplicial category P(X) relates to other simplicial categories of manifolds.
Recall that an object in P(X) 1is a partition (M,F,N) (resp. parametrized
family of such) subject to the technical condition that M contain a certain
standard part Xx[a,a']l of Xx[a,b] and that, in a specified neighborhood of

3xx[a,b] , M 1is not bigger than that standard part.

We define M(X) to be the simplicial category of the manifolds M (resp.
parametrized families of such) which arise when a partition (M,F,N) 1is strip-
ped of everything but M as an abstract manifold containing Xx[a,a']l] . 1In
other words, an object of M(X) 1is a manifold M (resp. parametrized family
of such) containing Xx[a,a'] , subject to the condition that there exists at
least one embedding of M in Xx[a,b] (rel. Xx[a,a'l ) making it the M-part
of some partition (M,F,N) in .E(X) . The morphisms in M(X) are the embed-
dings (resp. parametrized families of such) restricting to the identity map on
Xx[a,a'] ; the prefix h will be used to denote the subcategory of those
which are homotopy equivalences. In analogy to our earlier notation, hME(X)
will denote the connected component containing a handlebody of type (m,k), and

MQ(X) will denote its simplicial set of objects.
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Finally suppose X 1is a euclidean manifold, that is, it is a codimension
O submanifold of euclidean space Rd », d =dim(X) . In this case we can de-
fine a simplicial category of euclidean manifolds EM(X) which is about half-
way between P(X) and M(X) . An object is a codimension O submanifold M
of Rdx[a,b] containing Xx[a,a'] (resp. a parametrized family of such). As
before it is convenient to ask the technical condition that, in a specified
neighborhood of 38X , M be not bigger than Xx[a,a'] ; and we also ask that
M be disjoint to (Rd—X)X[a,a'] . Morphisms in EM(X) are given by inclusion,
and the prefix h singles out those which are homotopy equivalences. hEME(X)
denotes a certain connected component, and EME(X) its simplicial set of ob-

jects.

We are interested in the forgetful maps between these simplicial catego-
ries in the stable case, that is, the maps
Lim hPP (00— Tim hEM® (™) —8 5 1im B (xxd™)
z - S z K
We denote by f' and g' the maps of simplicial sets obtained by restricting

f and g , respectively, to objects. If M€ ME(X) we denote by
fibre(g,M)

the homotopy fibre of g at M.

Lemma 5.2. Let X be a euclidean manifold, and M € ME(X) . There are homo-

topy equivalences

fibre(g,M) =~ fibre(g',M)

=~ space of stable framings of M (rel. X ) ,

and
fibre(gf,M) =~ fibre(g'f',M)
=~ product of this space of framings with
the space of retractions M- X .
Proof. We treat only the case of the map gf . The threé other cases result

by straightforward modification and some omission of detail.

We apply theorem B' (the preceding section) in its version for right
fibres. The addendum does not apply directly (because a locally trivial family
of M's over AP is not necessarily trivializable relative to the constant
family Xx[a,b] ) but as in the proof of the preceding proposition we can
still justify the conclusion of the addendum by an appeal to the isotopy exten-

sion theorem.
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Let M€ hMi(XXJn) represent an objéct of degree O in the direct limit on
the right. Given an object of the right fibre ([0],M)/gf then, after enlar-
ging of n if necessary, the object is represented by a partition (M',F',N')
of hEE(XXJn) (resp. parametrized family of such) together with an embedding

i: M> M' (rel. ZXx[a,a'] ) which is a homotopy equivalence.

Now stabilization kills knotting phenomena. After enlarging n some more,
if necessary, we can therefore assume firstly that the image 1(M) defines a
partition in hBE(XXJn) » and secondly that the inclusion i(M) » M' defines

a morphism in hfﬁ(XXJn) .

By taking M',F',N';i) to (i(M),...;Id) we can thus define a functor
of ([0],M)/gf into a certain subcategory, and the latter is a deformation re-

tract in view of the homotopy given by the natural transformation i(M) - M' .

But the simplicial category in question is really a simplicial set, namely
the simplicial set of embeddings M - Xx[a,b] (rel. Xx[a,a'] ). Actually
there is a technical condition here, namely the image of the embedding should
be contained in a certain subspace Xx[a,a'l U X'x[a,b'] (cf. section 1). A
more than technical condition is also required at first glance, namely that the
image of the embedding define a partition; however, as noted before, this un-

knotting condition is automatically satisfied because of stabilization.

Stably, the space of embeddings M - Xx[a,b] may be replaced by the space
of immersions which in turn, in view of the Smale-Hirsch theorem and its PL and
TOP analogues, may be replaced by the space of tangential maps. By using the
canonical framing of Xx[a,b] we can decompose the latter space as the product

of the two spaces given in the lemma.

From this translation, up to homotopy, of right fibres ([0],M)/gf it is
immediate that all transition maps are homotopy equivalences. For any map re-
sulting from restricting a mapping space to a deformation retract is a homotopy
equivalence. Thus theorem B' applies, and the right fibre represents the homo-

topy fibre, as claimed. =]

Let RE(X) be the category of retractive spaces over X of type (m,k).
An object is a triple (Y,r,s) where r: Y- X is a retraction with section
s, and Y 1is a topological space which can be obtained, up to homotopy equi-

valence relative to the subspace s(X) , by the attaching of k m-cells to

X . Let the prefix h denote the subcategory of the (weak) homotopy equiva-
lences.
We shall admit that hRE(X) is an approximation to A(X) : a connected

component of A(X) can be obtained by the plus construction on
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lim hRT(X) ,
>. k
m,k
equivalently A(X) arises as the loop space of the classifying space
N, (Lim hR™(X))

where

R (X) = 1 0 hRy. (X)

and where the composition law is given by gluing at X . The numerical value
for this approximation mentioned earlier, amounts to the fact that the map
hRE(X) - hRE+l(X) is (m—1)-connected. To see this one can, say, translate
into the simplicial monoids used in [22], and the connectivity then results

from the Freudenthal suspension theorem.

In order to define a forgetful map from hEE(X) to hRE(X) we must first
replace the latter by a suitable simplicial category. Such a simplicial cate-
gory may be obtained from hRE(X) by admitting parametrized families (over

simplices) which are locally fibre homotopy trivial; we denote it by hRE(X).
Lemma 5.3. The inclusion hRE(X) - hRE(X). is a homotopy equivalence.

Proof. It will suffice to show that, for every p , the (degeneracy) map
m m
d: th(X) —_— th(X)p

is a homotopy equivalence. Let f be the map in the other direction obtained
by restricting to the last vertex of AP . Then d f is an identity map, so

it will suffice to show that f d 1is homotopic to the identity map on hRE(X)p'
The required homotopy will be represented by a functor from hRE(X)p to itself
together with two natural transformations to this functor: one from the iden-

1 AP

tity map, and one from the map f d . To obtain the functor, let APxA
be a homotopy from the identity map on AP to the projection into the last
vertex. Pullback with this map takes any parametrized family over AP to one
over Apr] . The latter family may be regarded, in turn, as one over AP (it
is necessary at this point that we are working with fibre-homotopy-triviality
rather than just local triviality). This defines the functor. The two natural

transformations are induced by the two maps AP 5 APXA1 . a

Proposition 5.4. The maps

lim hPM(xxJ™) ——— 1im BRT(xxJ™) . e—— nmR™(X)
H —k 3 k k

(M,F,N) + —> M

are homotopy equivalences.
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Proof. The map on the right is included here for book-keeping only. To show
it is a homotopy equivalence, it suffices to show that the map g: hRE(X) -
hRE(XXJ) given by product with the interval J 1is a homotopy equivalence
(actually the stabilization process uses a technical modification of the map

g , cf. the discussion of stabilization in section 1). We admit that the map
j: hRE(X) - hRE(XXJ) given by pushout with an inclusion X - XxJ 1is a homoto-
Py equivalence. But there is a natural transformation from j to g , namely
YUXXXJ - YxJ . Therefore g is homotopic to j and thus a homotopy equiva-

lence, too.

To handle the map on the left, we first reduce to working with euclidean
manifolds. There exists a closed disk bundle over X whose total space X'
is a euclidean manifold (to obtain X' embed X in high-dimensional euclide-
an space and take a tubular, resp. regular, neighborhood; in the PL case this
needs the Haefliger-Wall theorem [ 8] on the existence of stable normal disk
bundles; similarly in the TOP case [12]). Pullback with the disk bundle (or
rather a technical modification, as in the definition of the stabilization map)
defines a map 13@ hBE(XxJn) - lim hEE(X'XJn) » and this map is a homotopy

equivalence in view of the fact that disk bundles admit inverses.

In proving the proposition there is therefore no loss of generality if we
assume that X itself is a euclidean manifold. We assume this from now on.

The simplicial category 1lim hEME(XXJn) is then defined.
-

Let hSE(X) denote the simplicial category obtained by stripping the ob-
jects (Y,r,s) of hRE(X). of their structural retractions r . An object of
hSE(X) is thus a pair (Y,s) (resp. a parametrized family subject to a condi-
tion of local fibre homotopy triviality). An argument with right fibres, as in
the proof of lemma 5.2, shows that thg homotopy fibre at (Y,s) of the forget-
ful map hRE(X) - hSE(X) is homotopy equivalent to the space of retractions
Y > X . On comparing with lemma 5.2 we obtain that the homotopy fibres of the

vertical maps in the diagram

lim hP"(XxJ™) ————— 1im hR(XxJ™) |
3 oy 3™ Mk

lim hEM™(xxJ") ——————— 1im hS™(xxJ™)
K -

are mapped to each other by homotopy equivalence. Hence the upper horizontal
map in the diagram will be a homotopy equivalence if and only if the lower

horizontal map is. We have thus reduced to showing that the forgetful map
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lim hEM" (XxJ%) ——— 1im hS™(xxJ™)
5 k > k
n n

is a homotopy equivalence.

Call this map f . By theorem A' (the preceding section) f will be a
homotopy equivalence if for every object of the simplicial category on the

right, the right fibre over this object is contractible. We will show this.

Let such an object be represented by a family (Y,s) in hSE(XXJn)q ,
say. An object of ([q],(Y,s))/f 1is then a tuple

ur [pl~lql , M, &P xq7 "o

where M € EME(XXJn)p (perhaps after enlarging of n ) and t 1is a map of

p-parameter families, and in fact a homotopy equivalence.

We note at this point that we are free to deform the structure maps t ;
it is for this purpose that it was necessary to get rid of the structural re-

tractions Y- X , 1i.e. to replace hRE(X). by hSE(X) .

As a first application of this remark, let us suppose that Y' 1is a de-
formation retract of Y , as q-parameter family. The deformation induces a
deformation of the structural maps t which, in turn, we may re-interpret
as a simplicial homotopy of the identity map on ([ql,(Y,s))/f . This shows

that the latter contains ([q],(Y',s'))/f as a deformation retract.

But the category hSE(XXJn)q is connected and (what is slightly stronger)
any two objects can be related by a chain in which consecutive members are re-
lated by deformation retraction. It follows that the contractibility of

([q],(Y,s))/f need only be checked in the case of a single object.

As we are free to choose this object as we please we may in particular
assume that it is totally degenerate. The addendum to theorem A' therefore
applies, reducing our checking to degree O. We conclude that it is enough to
pick a single object (Y,s) , 1in degree O, and show the right fibre over this

object is contractible.

Again we can pick the object (Y,s) as we please. In particular we can
pick it as an object of hEME(X) . There is a little trick here. Namely we
can focus attention to things far out in the direct system n + hEME(XXJn) ,
which amounts to working with manifolds of very large dimension. But still

(Y,s) can be in hEME(X) , that is, a manifold of small dimension.

By a general position homotopy it can therefore be achieved that the
structural maps are embeddings in a certain range of parameters (depending on
how far out the above n has been chosen); also it can be assumed that the

images of the structure maps are disjoint to the frontiers of the manifolds.
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If, after this step, we compose a structural map YxAP > M with the in-
clusion M c Rd+n><[a,b]><Ap we obtain a p-parameter family of embeddings of Y
in Rd+HX[a,b] (rel. xx[a,a'] ). But stably the space of these embeddings is
contractible. In a stable range we can therefore deform into the natural in-
clusion of Y (by assumption Y 1is a submanifold of Rdx[a,b] ). The defor-
mation can be done by ambient isotopy, in view of the isotopy extension theorem.
It induces therefore a further deformation retraction of our simplicial cate-

gory.

With the latter deformation we have achieved that, in a stable range of
dimensions, the structure maps YxaP 5 M are precisely the same as the natural
inclusions. The simplicial subcategory we have deformed into now admits the
following description: in a stable range it is the full simplicial subcategory
of hEME(XXJn) of the partitions having the property that M contains Y ,

the image of Y misses the frontier, and the inclusion of Y 1is a homotopy

equivalence.
By thickening Y a little we can obtain an object of hEME(XXJn) . We
conclude that (in an appropriate range of parameters p < p' , say) any finite

subcategory C of the category in degree p may be equipped with an initial
object. Thus the inclusion of C into the category in degree P 1is nullhomo-
topic. This is true for every finite C , so the category in degree p is
contractible. It results that our simplicial category ([0],(Y,s))/f is
p'-connected. But p' is as large as we please, so the simplicial category

is contractible. We are done. u]

Let us put

RATEO™ = o N (in PRaa™)
n

It is a functor on the category of codimension O embeddings of CAT manifolds.

The functor respects homotopy equivalences (in a stable range); this results,

for example, from proposition 5.1 together with the fact that the other func-

tors there have this property.

Proposition 5.5. The functor hCAT(X)m has the excision property in a stable

range of dimensions up to m-c (here c¢ 1is a constant, about 3 or 4 ).

As pointed out in the introduction, the proof uses many things. First the
TOP and DIFF cases are reduced to the PL case by using results from triangula-
tion theory and smoothing theory, respectively. The proof in the PL case then

uses all of the results of [23] and almost all of those in [24].
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Here is an outline of the argument.

It is known [ 2] that for PL manifolds X the forgetful map from WhPL(X)
to WhTOP(X) is a homotopy equivalence. By using propositions 5.1 and 5.4 in
the PL and TOP cases, and comparing the diagrams of 5.1, it results then that
(in a stable range) the forgetful map from hPL(X)m to hTOP(X)m is a homoto-

Py equivalence, too.

Similarly it is known [ 3] that, for DIFF manifolds X , the functor

DIFF

fibre( WhTFF (x) - whI%F(x) )

has the excision property. By using propositions 5.1 and 5.4 in the DIFF and
TOP cases, and comparing the diagrams of 5.1, it follows then that (in a stable
range) the functor

fibre( hPTEE ()™ » nIOP (9™

has the excision property, too. It results that, in a stable range, hDIFF(X)m

will have the excision property as soon as hTOP(X)m has.

We have thus reduced to the PL case.

This case, too, is handled very indirectly. The first step is to trans-
late into non-manifolds. Let R(X). denote the simplicial category of the re-
tractive spaces (Y,r,s) considered above (the proof of proposition 5.4). But
let us switch here to the PL viewpoint, that is, we suppose Y 1is-a compact
polyhedron (resp. locally trivial parametrized family of such) and r and s
are PL maps. Let a simple map in R(X). denote a map (Y,r,s) » (Y',r',s')
having the property that Y - Y' has contractible point inverses, and let
sR(X). denote the simplicial category of the simple maps. By taking a PL sub-
manifold of X*XI to its underlying polyhedron, one obtains an inclusion map
from the simplicial set P(X) to the simplicial category sR(X) , and one
shows that stably there results a homotopy equivalence

Lim P(XxJ") ——— 1lim sR(X<J").

n n
This is very closely related to the main result of Hatcher [9]. A proof inde-

pendent of Hatcher's is given in [23]. By restricting the homotopy equivalence
to a union of connected components one obtains a homotopy equivalence
lim Pl (xxJ") ——— lim sR™(xxJ™). ,

n n
from which in turn one obtains another

2 N, (lim PM(XI) —— 2 N (Lim sR™ (0™ L)
— -
n n
Note that the direct limit on the right serves only a book-keeping function.

It is very easy to get rid of.
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Next, it is necessary to get out of the polyhedral framework (because the
category of polyhedra does not admit quotient space constructions). Leaving
aside some technicalities with the retractions (in essence they are to be
gotten rid of, as in the beginning of the proof of 5.4), this involves two
steps. The first step is to pass from polyhedra to triangulated polyhedra
(this step is surprisingly difficult), the second step is to admit mild singu-
larities now, i.e. to pass from triangulated polyhedra to simplicial sets (this

step is not so difficult). These matters are dealt with in [23], too.

Let us keep the notation R(X). , but let it be understood that we are
dealing with simplicial sets now. Then a certain bisimplicial category
sS.R(X). 1is defined [21], and it is possible to show that this does satisfy
the excision property [24]. Leaving aside some technicalities with suspensions,

one can define a natural map
N (lim sR™(X).) ——— s5.R(X). ,
-
m
so it will suffice to show this is a homotopy equivalence.

This is proved indirectly again. Namely one does not just translate
hPL(X)m » as we have been doing up to now, one translates in effect the whole
diagram of proposition 5.1. By stabilizing, and de-looping, one obtains in

this way a homotopy cartesian square

Nr(sRh(X).) ——— N (lim sR™(X).)
m

Nr(th(X).) —— N (Lim BR™ (X))
m

where the superscript h on the left indicates that we are dealing with a cer-—
tain bisimplicial subcategory, the condition on (Y,r,s) is that s: X = Y
should be a weak homotopy equivalence. For general reasons on the other hand

[21] the square

sS.RM(X). —— $S.R(X).

J l

hS.RP(X). —— hS.R(X).

is also homotopy cartesian, and the former square maps to it. To show the map
of upper right terms is a homotopy equivalence it will therefore suffice to
show that each of the other three maps is a homotopy equivalence. This is tri-

vial in one case (the lower left terms are contractible) but it is certainly
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not trivial in the other two cases.
In fact, that the map
N, (lim hR™(X).) ——— hS.R(X).
-
m

is a homotopy equivalence, is really the main result of [24], and most of the

material in that paper is used to prove it.
The case of the map
h h
NP(SR (X).) ——— sS.R(X).

on the other hand is much easier. In this case one shows directly that cofi-
bration sequences may be moved to split ones [24]. This is closely related to
a geometric fact concerning h-cobordisms in the stable case, namely that a com—

position of such may be moved to a sum.
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6. Appendix: Smooth manifolds with general corners.

Since some of the constructions used in this paper take one out of the ca-
tegory of smooth manifolds, it is necessary to either modify the constructions
or else enlarge the category. The latter seems to be the lesser evil, and the

purpose of this section is to describe a simple way of doing it.

The method is really well known, it is closely related to the usual pro-
cess of smoothing the corners [ 5]. Whitehead has used a more elaborate ver-

sion of the same method, with different aims [25].

What we achieve is that the spaces of smooth manifolds of interest to us
may be blown up to larger spaces involving manifolds which are by no means
smooth anymore, but the enlarged spaces are still homotopy equivalent to the
original spaces. After explaining this we indicate how our earlier constructi-

ons are to be adapted, if any.

Let Y be a smooth manifold (think of it as the XxI of section 1), and
let F Dbe a topological submanifold of Y of codimension 1 (think of it as
the frontier of a partition). Let x € F and let v be a non-zero tangent
vector of Y at x . We say that v 1is normal to F if for one (and hence
for every) smooth chart of Y around x the following is true: there exist
constants ¢ >0 and C > O so that for all s with |Is|l € C the distance

function satisfies a Lipschitz inequality
d(x+sv, F) > c Isl ;

in other words, near x the points on the line in direction v stay well away

from F

Remark. Whitehead [25] uses a slightly more restrictive notion: a normal vec—
tor in his sense is to be normal still when translated to nearby points of F

We do not ask this condition here (we could, though).

By a smooth normal field to F will be meant a smooth vector field on Y
(all of it, not just a neighborhood of F ) so that for every x € F the vec-

tor at x 1is non-zero, and normal to F in the above sense.

Example. Suppose that F is a smooth submanifold of Y , and suppose it is
normally oriented. Then the smooth normal fields (in the above sense) subordi-
nate to the given normal orientation, form a convex set. In particular the

space of such vector fields is contractible.
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Let a normalized submanifold of Y denote a pair consisting of a topolo-
gical submanifold F of codimension 1 in Y , and a smooth normal field to F
in the sense just defined. There is a notion of locally trivial family of such
data (the vector field must vary smoothly), so we obtain a space (i.e. simpli-

cial set).

Remark. 1f we were using a more restrictive notion of normal field, such as
Whitehead's, we could relax the notion of normalized submanifold a little.
Namely it would be enough to ask the continuity of the vector field rather than
its smoothness since it would be possible to approximate a continuous normal

field by a smooth one.

We say that a normalized submanifold is smooth if the underlying manifold
F 1is a smooth submanifold of Y . The forgetful map which takes a smooth nor-
malized submanifold to the underlying normally oriented manifold F , is a ho-
motopy equivalence; this is a slightly more elaborate version of the remark in

the above example.

We now show how a normalized submanifold may be moved to one which is
smooth. We shall ignore, for simplicity, that F may have a boundary. We
pick for each point x € F a smoothly embedded disk DX in Y of the same
dimension as F which has x as its center and which is transverse to the
vector v_ . If DX is sufficiently small it is transverse everywhere to the
vector field, so we can construct a flowbox BX by integrating to distance €
in either direction. After restricting €y and Dx some more, if necessary,
we can assume that the flowbox Bx is transverse to F , that is, every flow-

line in it meets F exactly once (in an interior point).

By projecting D along the flow we obtain an embedding P * Dx - F .
Given two cﬁ?rts as this then, if D' denotes the overlap px(DX) n py(Dy) R
and D = 1 (D') , we obtain two functions on D , namely the bijection D -
py_l(D') on the one hand, and the real-valued function on the other which
measures the distance of DX to Dy along the flow. Both these functions are
smooth. 1In the first case this means that the (DX,pX) define an atlas of a
smooth structure on F . 1In the second case we can conclude that, by tapering
off such distance functions to zero, we can construct a smooth embedding of

that particular smooth manifold near F

Given two smooth embeddings obtained in this fashion we can measure their
distance along the flow. By restricting to embeddings sufficiently close to
the original topological embedding (to avoid pathologies arising from moving
too far) and by selecting one of the embeddings as a basepoint, we can thus

establish a bijection of the set of embeddings to a convex set of real-valued
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smooth functions. Since the construction is also compatible with parameters,
we conclude that the space of normalized submanifolds contains as a deformation

retract the subspace of those which are smooth.

Here is a summary of how the constructions of section ! may be formulated
in the DIFF case. Let a partition mean a triple (M,F,N) as before, but it is
to be understood now that its frontier F 1is a normalized submanifold of XxI
in the sense discussed above. In other words, we include as additional data
a smooth vector field on XxI , and we suppose it is normal to F in the
above sense (as a technical condition we have to ask that the vector field is
standard in some neighborhood of 93XxI , that is, equal there to the velocity
vector field of the I coordinate). In speaking of the partial ordering which
underlies the construction of the simplicial category hP(X) we insist that,
for any two partitions to be related at all, it is necessary that the associ-
ated vector fields are the same. To define the lower stabilization map g we
assume that the interval J 1is equipped with a smooth vector field which is
outward normal at the boundary of the subinterval J' and which is zero near
the boundary of J . The map o 1is defined just as before, the requisite vec-
tor field on XxJxI is obtained by adding the vector fields on the XxI and
J factors. A further condition is needed on the objects of B(X) in order
for g to make sense, namely at the points of the slice Xxa' the vector
field must be pointing upward in the I-direction. In connection with the com—

position law, .finally, we include in the definition of when X, is a support

1

of (M,F,N) that the vector field should be standard outside of X1

As the target of the derivative map, in sections 2 and 3, we used the
space Qd of germs of normally oriented d-planes in Rd+1 . Such a thing here
means the germ of a d-plane together with an (everywhere defined) vector field
normal to it. Equivalently, if the germ is at x , the data consist of a
smooth vector field which is non-zero at x together with the germ of a trans-
versal to the associated flow (a topological transversal, that is; with a Lip-
schitz condition). By convexity arguments we see that we may forget first the
plane and then all of the vector field except for its value at x . This gives
a homotopy equivalence Qd - Sd . Under this homotopy equivalence the two
nullhomotopies of the map Qd - Qd+1 in section 2 correspond to the two null-

d+1 d S Dd+1

homotopies induced from the two inclusions s¢ 5 p and S _ + In
d+1

+

fact, what we did amounts to taking the image of a vector of R and tilt it

d+lx 1

either to left or right in R R° , thus moving it to the velocity vector of

1 . . .
the added R factor or to its inverse, respectively.




44 FRIEDHELM WALDHAUSEN

References.

1. A. Borel, Stable and L?-cohomology of arithmetic groups, Bull. A.M.S. 3
(1980), 1025-1027.

2. D. Burghelea and R. Lashof, The homotopy type of the space of diffeomor-
phisms. I, 11, Trans. A.M.S. 196 (1974), 1-50.

3. —————, Stability of concordances and the suspension homomorphism,
Ann. of Math. 105 (1977), 449-472.

4. D. Burghelea, R. Lashof, and M. Rothenberg, Groups of automorphisms of
manifolds, Springer Lecture Notes in Math. 473 (1975).

5. A. Douady et L. Hérault, Arrondissement des variétés 4 coins, Comm. Math.
Helv. 48 (1973), 484-489.

6. W.G. Dwyer, Twisted homological stability for general linear groups,
Ann. of Math. 111 (1980), 239-251.

7. F.T. Farrell and W.C. Hsiang, On the rational homotopy groups of the
diffeomorphism groups of disks, spheres, and aspherical manifolds, Proc. Symp.
Pure Math., vol. 32, part I, A.M.S. (1978), 325-337.

8. A. Haefliger and C.T.C. Wall, Piecewise Linear bundles in the stable
range, Topology 4 (1965), 209-214.

9. A. Hatcher, Higher simple homotopy theory, Ann. of Math. 102 (1975),
101-137.

10, —————, Concordance spaces, higher simple homotopy theory, and appli-
cations, Proc. Symp. Pure Math. vol. 32, part I, A.M.S. (1978), 3-21.

11. J.F.P. Hudson, Piecewise linear topology, Benjamin, New York, 1969.

12, R.C. Kirby and L.C. Siebenmann, Foundational essays on topological mani-
folds, smoothings, and triangulations, Ann. of Math. Studies, Nr. 88 (1977).

13. N.H. Kuiper and R.K. Lashof, Microbundles and bundles. II, Invent. math.
1 (1966), 243-259,

14. D.G. Quillen, Cohomology of groups, Actes, Congrés Intern. Math. 1970,
t. 2, 47-51.

15, —————, Higher algebraic K-theory. 1, Springer Lecture Notes in Math.
341 (1973), 85-147.

16, ———————— (Letter to Milnor), Springer Lecture Notes in Math. 551
(1976), 182-188.

17. G. Segal, Configuration spaces and iterated loop spaces, Invent. math. 21
(1973), 213-221.

18, ——————, Categories and cohomology theories, Topology 13 (1974),
293-312.

19. C. Soulé, K-théorie des anneaux d'entiers de corps de nombres et cohomo-
logie étale, Invent. math. 55 (1979), 251-295.

20. R.W. Thomason, Homotopy colimits in the category of small categories,
Math. Proc. Camb. Phil. Soc. 85 (1979), 91-109.

21. F. Waldhausen, Algebraic K-theory of topological spaces. I, Proc. Symp.
Pure Math. vol. 32, part I, A.M.S. (1978), 35-60.

22, ————, Algebraic K-theory of topological spaces. 11, Springer Lecture
Notes in Math. 763 (1979), 356-394.

23, —————, Spaces of PL manifolds and categories of simple maps, to ap-
pear.

24, ————, Algebraic K-theory of spaces, to appear.

25. J.H.C. Whitehead, Manifolds with transverse fields in euclidean space,
Ann. of Math. 73 (1961), 154-212; Collected works, vol. IV, Pergamon Press
(1962).

FAKULTAT FUR MATHEMATIK
UNIVERSITAT BIELEFELD
4800 BIELEFELD, FRG.



