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Friedhelm Waldhausen

This paper represents a first step in applying localization techniques to the compu-—
tation of the algebraic K-theory of spaces, and in particular to the task of reducing

that computation to the computation of the algebraic K-theory of rings.

In order not to obscure the essential points by great generality we shall re-
strict ourselves to the special case of the space A(*) , the algebraic K-theory of
a point. What we would like to do is to reduce the computation of A(*) to that
of K(Z) , the algebraic K-theory of the ring of integers, and in particular to com-

pute fibre( A(x) -» K(Z) ) , the homotopy fibre of the natural map.

That task is not easy. For, as will be explained in an appendix, it follows
from the Lichtenbaum—Quillen conjecture (which is regarded as rather respectable
among experts in the algebraic K-theory of rings) that fibre( A(x) - K(Z) ) must

in some way or other account for all of that formidable object, the cokernel of J .

Here is an outline of what is done in this paper. The space A(x) may be con-
structed according to a certain recipe out of the category of pointed spaces of
finite (homotopy) type; alternatively one could use spectra of finite type for the
purpose (these matters are explained in section 1 below). The recipe is fairly
general and can be applied in the same way to other categories of spaces or spectra.
In particular if p 1is a prime, the recipe can be applied to the category of p-local

spectra of finite type.

Let us denote the result of this construction by A(x,p) . Let Z(p) denote

the ring of integers localized at p . There is a natural map

A(*,p) —— K(Z(p))

and we shall show that its homotopy fibre may be identified to the p-local part of
fibre( A(x) » K(Z) ) . 1In this sense the task of computing the latter has been

broken up into its p-local parts now.



In contradistinction to what one might expect by analogy with the algebraic
K-theory of the ring Z , it is possible here to continue fracturing by localization
methods. This is where the chromatic filtration comes in (there is one such for
each prime p ). By definition, the chromatic filtration is a particular sequence
of localization functors in stable homotopy. The characteristic feature of these
localization functors, as opposed to localization functors in general, is that they
may be defined in terms of acyclic spaces of finite type (these matters are explained
in section 2 below). The existence of the sequence is still conjectural beyond the

first few terms; the relevant conjectures are due to Bousfield and Ravenel.

As will be explained (in section 3) the existence of the chromatic filtration
implies the existence of a localization tower (whose maps are induced by localization

functors)

A(x,p) = A(*,p,x) > ees > A(*,p,2) —— A(*,p,1) —— A(%,p,0) .

The bottom term A(*,p,0) turns out to be the same (up to homotopy) as K(Q) , the
algebraic K-theory of the ring of rational numbers; the next term A(*,p,1) 1is in
some sense the algebraic K-theory of the non-commnective J (image-of-J-theory at

the prime p ). The layers of the tower (the homotopy fibres of the maps of conse-
cutive terms) represent the contributions of what in Ravenel's terminology are the

monochromatic phenomena in stable homotopy theory.

There is a second tower associated to the chromatic filtration, an Zntegral

(or comnective) analogue of the former tower,

A(*’P) = A(*,P,m) > oo > A(*,P,Z) _—)A(*aPQI) _QA(*sP’O) .

The bottom term X(*,p,O) here is KiZ(P)) » the algebraic K-theory of the ring of
p-local integers, and the next term A(*,p,1) 1is the algebraic K-theory of the con—
nective J . The construction of the spaces X(*,p,n) is very much like that of
the algebraic K-theory of rings in the framework of the plus construction. This
means that a certain amount of explicit computation is possible in low degrees.
There does not however seem to exist a direct description of the layers in the
tower. This suggests to try reducing to the former tower in order to obtain infor-

mation about the layers.

There is a natural transformation X(*,p,n) - A(x,p,n) . Modulo certain tech-
nical assumptions we can give an explicit description of the fibre, by localization
methods again. For n = O the map is the natural map K(Z(p)) - K(Q) , and in that
case our description of the fibre reduces to a case of Quillen's localization theo-

rem.

It is a pleasure to acknowledge that discussions with Marcel Bdkstedt have been

helpful in the preparation of this paper.



1. Review of algebraic K-theory.

We recall the definition of A(x) from the category viewpoint [14], [5 1, [16].
Let C be the category of pointed spaces of finite type, that is, pointed spaces
having the homotopy type of a finite CW complex (as a technical point, C 1is not a

"small' category, but we can replace it by one). Then A(*) is defined as the loop
space of the CW complex
U wscx ™" /o~
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the geometric realization of the bisimplicial set [m],[n] » menC , Where menC

is the set of commutative diagrams in C ,
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in which the horizontal arrows >—— denote cofibrations, and the vertical arrows

——> denote (weak) homotopy equivalences.

The face and degeneracy maps in the vertical direction are given by omission
and reduplication of data. This may conveniently be summarized by saying that the
bisimplicial set arises as the nerve of a simplicial category; namely of [n] r wS C ,
the category of the diagrams ‘

* = YO,O >——)YO’] >——>Y0,2>———-) >———>Y0’n

and their weak homotopy equivalences.



The face structure in the horizontal direction is slightly more complicated.
All but one of the face maps are still given by omission of data, but the face map

numbered O involves a quotient space construction. It takes the above object to

* = Y Y .. Y s where Y =

1,1 1,2 1,n 1,k Yo,k /Y

0,1 *
(As a technical point, quotient spaces are only well defined up to canonical isomor-
phism. This need not concern us very much, however. One just rearranges the con-

struction a little by including the choices of quotients Y. . =Y. ./Y. . 1in the

l’J O,J 0’1
data of the diagrams, cf. [14], [16]).

The construction is formal in the sense that it uses little knowledge about the
category C . 1Indeed, the only thing required (apart from the technical point con-
cerning the existence of an object in C which is both initial and terminal) is the
fact that there are singled out two particular kinds of morphisms which are called
cofibrations and weak equivalences, respectively, and which have suitable properties

(e.g. cofibrations have quotients, and the weak equivalences satisfy a gluing lemma).

This suggests defining the notion of a category with cofibrations and weak
equivalences. This is a category C equipped with subcategories co(C) and w(C) ,
and the data are subject to a short list of plausible axioms (which will not be re-
peated here, cf. [14], [16]). The definition of the simplicial category [n] + wS_C
(or wS.C , for short) now carries over word for word. We think of this simplicial
category (or rather of the loop space of its geometric realization) as the algebraic
R-theory of the category C or better, to be precise, as the K-theory of C with

respect to the chosen notions of cofibration and weak equivalence.

In practice it turns out that the notion of cofibration is usually fixed once
and for all. That is, it just doesn't occur in practice that some category C is
considered as a category with cofibrations in more than one way. In particular, for
the spaces and spectra in the present paper the term cofibration will always have
its usual meaning. By contrast, it is not at all pathological nor even exceptional
that some category C 1is considered as a category with weak equivalences in more
than one way. For example if E 1is a spectrum, and C the category of pointed
spaces (resp. of spectra) then the notion of E-equivalence is a perfectly acceptable
notion of weak equivalence in C . In fact, the interplay between different notions
of weak equivalence arising in this way is one of the things that localization

theory is going to be about.

It may be appropriate to say a word about the ever recurring finite type condi-
tion. One could take it as one of the facts of life that in connection with alge-
braic K-theory there is always some finiteness condition around, be it explicit or
implicit. But one can also give a simple explanation: in the absense of a finite-
ness condition algebraic K-theory just isn't interesting and therefore is not consi-

dered. For as soon as, say, infinite sums are allowed in the category C one can



go through a version of the Eilenberg swindle. Namely if the endofunctor F(A) =
Av Av ... 1is defined then one certainly has an isomorphism Id vF ~ F . On
the other hand the sum in C induces a composition law on |wS.C| making it an in-
finite loop space in the manner of Segal [10] and in particular therefore a group-
like H-space (cf. [16] for details). 1In the homotopy Id VF =~ F one can then

cancel F to conclude that the identity map on [wS.C| 1is null-homotopic.

There is one general computation that is easy to do. This is the determination
of K0 » the class group, in terms of generators and relations. By definition this
group 1is nOQIWS.Cl or what is the same thing, the fundamental group of the CW com-
plex |wS.Cl . There is a well known recipe on how to compute the fundamental group
of a reduced CW complex in terms of the cells of dimension | and 2. Applying the
recipe in the case at hand one obtains that the class group is the.abelian group ge-

nerated by the objects A € C , and subject to two kinds of defining relatioms,
[AO] = [A]] if there is a weak equivalence A0 =, ! , and

[AOI] + [AIZ] = [ ] if there is a cofibration sequence Ay) ™ Ay —» A

02 02 12
In particular, in the case of the pointed spaces of finite type and their weak homo-
topy equivalences one obtains the group ﬁOA(*) ~ 7Z , and the integer represented by
a space is just its (reduced) Euler characteristic. Other cases will be considered

later.

To conclude this review we shall outline an argument now to justify the fact
that the space A(*) may not only be defined in terms of pointed spaces of finite
type but also in terms of spectra of finite type. We will need to know about some

general results for this.

A functor between categories with cofibrations and weak equivalences, say
F: C» C' , is called exact if it preserves all the relevant structure. In that

case it induces a map wS.F: wS.C -» wS.C' .

A weak equivalence between exact functors C - C' 1is a natural transformation
F > F' so that for every A € C the map F(A) » F'(A) 1is a weak equivalence in
C' . Not very surprisingly there results a homotopy between wS.F and wS.F' in
this case. For example the cone functor on the category of pointed spaces is exact,
so it induces a self-map on A(%) , and it is weakly equivalent to the trivial map,

so the self-map is null-homotopic.

A cofibration sequence of exact functors C = C' 1is a sequence of natural
transformations F' > F > F" , or F'>>F—»F" as we shall write, having the pro-
perty that for every A € C the map F'(A) » F(A) 1is a cofibration in C' , and

F(A) » F"(A) represents the associated quotient map. A basic technical tool about
the construction C & wS.C 1is the additivity theorem. One of several equivalent

formulations says if F'»>—F —»F'" 1is a cofibration sequence of exact functors



then there exists a homotopy between wS.F and the sum of the maps wS.F' and

wS.F"

To come back to the situation at hand, there is a cofibration sequence of exact

functors on the category of pointed spaces,
identity >—— cone ——» suspension .

In view of the additivity theorem therefore the self-map Id v & of A(*) 1is null-
homotopic, thus the suspension represents a homotopy inverse for the additive H-space
structure on A(*) . In particular the suspension induces a homotopy equivalence of

A(x) to itself.

Now C = wS.C 1is compatible with direct limits, so we obtain that (up to homo-
topy) A(x) 1is also definable in terms of the category with cofibrations and weak

equivalences C say,
C = lim C ,
- n

where each Cn is the category of pointed spaces of finite type, and Cn - C

n+l
is the suspension map. C 1is a category of spectra containing the full subcategory

of the finite spectra but it is somewhat smaller than C , say, the category of
spectra of finite (homotopy) type. We will therefore want to know that the inclu-
sion wS.C » wS.C 1is a homotopy equivalence. While this is certainly plausible it
is not self-evident, and an argument is required. The argument is provided by the
following useful criterion whose applicability in the present situation is straight-

forward to check.

The criterion gives a sufficient condition for an exact functor F: C - D to
induce a homotopy equivalence wS.C - wS.D . We refer to it as the approximation
theorem. The idea behind is that the homotopy type of wS.C should only depend on

' (whatever that may be). The approximation the-

the 'homotopy theory underlying C
orem makes this precise in the form of three axioms [16]. The first axiom says,
roughly, that the general setup should be as in homotopy theory (in particular this
rules out some fancy notions of weak equivalence and asks that mapping cylinder con-
structions should be available). The second axiom says if A > A' is amap in C
then if F(A) » F(A') 1is a weak equivalence in D it follows that A - A' 1is a
weak equivalence in C (the converse is implied by the exactness of F , of course).
The third axiom finally insists that objects of D are 'homotopy equivalent' to ob-
jects coming from C , and morphisms too; the precise formulation is that given
objects A€ C and BED, and a map f: F(A) > B in D , then there exist a
cofibration g: A - A' in C and a weak equivalence h: F(A') > B in D so that

the resulting triangle commutes, i.e. £ = hF(g)



2. Review of localization.

The main references are to papers by Adams [ 1], Bousfield [ 21, and Ravenel

[8].

Let E be a spectrum. A spectrum X 1is called E-acyclic if the E-homology
groups E.X = m,(EAX) are trivial. Likewise a map X' - X" 1is called an E-equiva-
lence if it induces an isomorphism E.X' - E,X" . A spectrum Y 1is said to be
E-local if it does not admit any non-trivial map from an E-acyclic spectrum; an
equivalent condition is that for every E-equivalence X' - X" the induced map of

sets of homotopy classes [X",Y] -» [X',Y] is an isomorphism.

By an E-localization of a spectrum X 1is meant any E-local spectrum Y toge-
ther with an E-equivalence X - Y . It follows from the definitions that the E-lo-
calization is unique up to (weak) homotopy equivalence under X . Bousfield has

shown that it always exists, in fact that there exists an E-localization functor L

[2].

E

There is a correspondence between localization functors and acyclicity types.
For on the one hand the E-localization depends only on the class of the E-acyclic
spectra: if E' and E" happen to have the same acyclic spectra then their associ-
ated localization functors are the same, by definition. And on the other hand the
E-acyclic spectra may be recovered from the localization functor LE as the 'pre-
image of zero'; that is, the E-acyclic spectra are precisely the ones whose E-loca-
lization is trivial (up to homotopy). The correspondence allows us to formulate a
finite type condition on the localization functor LE in terms of the associated
acyclicity type. The condition is simply that Cl(LE) , the class of the E-acyclic

spectra, is in some sense generated by finite spectra.

To make this precise let us say that a class of spectra is saturated if it is

closed under
- homotopy equivalence and shifting (suspension and de-suspension)
- the formation of (possibly infinite) wedges
- the formation of mapping cones.

For any spectrum E the class of the E-acyclic spectra is saturated. Conversely
it is known [ 2] that any saturated class occurs in this fashion from a suitable E .
If M 1is any collection of spectra let the saturation of M mean the smallest sa-

turated class of spectra containing M ; we denote it sat(M) . We will say that a



localization functor L , resp. the associated acyclicity type C1(L) , is generated

by a collection of spectra M if Cl1(L) = sat(M) . And we will say that a localiza-
tion functor is of finite type, or that it is a finite localization functor, if it

is generated by some collection M any member of which is a finite spectrum. (Note

that the number of spectra in M may well be infinite, however).

A finite localization functor has an important property which we refer to as
the convergence property. It says that for every X the localization LE(X) may
be obtained, up to homotopy, as the direct limit of a sequence of E-equivalences
each of which has finite homotopy cofibre. 1In particular if X is finite then

LE(X) is the direct limit (up to homotopy) of a sequence of finite spectra E-equi-

valent to X .

The proof may first of all be reduced to the assertion that the E-acyclic spec—
trum LE(X)/X , the (homotopy-)cofibre of X - LE(X) , 1s the direct limit (up to
homotopy) of a sequence of finite E-acyclic spectra. (For LE(X) can be recon-
structed by attaching LE(X)/X to X ). By hypothesis now Cl(LE) is generated by
some collection M any member of which is finite and therefore certainly has the
property asserted of LE(X)/X . Inspection of the individual constructions per-
mitted in generating sat(M) out of M now shows that each member of sat(M) must

have the property also; in particular therefore LE(X)/X does.

The following properties of a spectrum E and of the associated localization

functor L_ are particularly desirable. It is known that these four properties are

E
mutually equivalent [ 8].

Every direct limit of E-local spectra is E-local,

- L, commutes with direct limit (up to homotopy),

E
- LE = LT where T = LE(S) , the localization of the sphere spectrum,
- LE(X) = XAT (up to homotopy), in particular T = LS = LFLES = TATAS = TAT .

A spectrum (resp. localization functor) having these properties is called smashing

[8].

Finite localization functors are smashing. For if Lp is any such then for
every X the localization LE(X) is obtainable from X by repeated attaching of
finite E-acyclic spectra (the convergence property). It follows that LE(X) is the
direct limit of the localizations of the finite subspectra of X , thus L, com-

mutes with direct 1limit and is therefore smashing.

It has been conjectured by Bousfield [ 2] and Ravenel [ 8] that, conversely,
all smashing localization functors should be of finite type. Furthermore Ravenel
has formulated some spectacular conjectures which assert a complete classification

of the smashing localization functors. We shall discuss these conjectures below.



One defines a partial ordering on localization functors by saying that L' > L"
if L' retains at least as much information as L" does; in other words if every
L'-trivial spectrum is also L"-trivial. One knows that, up to homotopy, L'L" = L"

= L"L'" 1in this situation.

If a smashing localization is not trivial it is > L(O) , the rationalization.
On the other hand every rationally trivial spectrum decomposes into its p-primary
parts. There is therefore no essential loss of generality in restricting attention
to localization functors which are < L(p) , the localization at a prime p . The

conjectures of Ravenel, below, assert that there is precisely a sequence of smashing

(P (0)

Lipy =L@ > oo > L(p,2) > L(p,1) > L(p,0) =

this (conjectural) sequence is the chromatic filtration.

(or indeed, finite) localization functors between L and L

Loy 3

Following Ravenel, but adapting the notion a little, let us say that a spectrum
is disharmonic (at p , to be precise) if it is trivial with respect to all finite
localization functors < L(p) . Examples of disharmonic spectra are provided by the
bounded-above p-torsion spectra (I am indebted to Btkstedt for pointing out this

fact and for contributing the following argument) :

Let L be a finite localization functor < L(p) . Then L 1is smashing and it
trivializes at least one bounded-below spectrum X mnot trivialized by L(P) .
Since X 1is bounded below the Hurewicz theorem applies, and X A Z/p contains as
a summand a (shifted) copy of the Eilenberg-MacLane spectrum Z/p . The triviality
of L(X) = TAX thus not only entails that of T A X A Z/p but also that of T A Z/p

= L(Z/p) . We conclude by a cofibration argument that L trivializes every p-tor-
sion spectrum bounded both above and below, i.e. having only finitely many non-zero

homotopy groups. A bounded-above spectrum, finally, is a direct limit of such, so

it is trivialized by L , too.

Here is an interesting special case. Let L be a finite localization functor,

and SL = L(S) the localization of the sphere spectrum. Then S - SL is a SL-equi—
valence since L 1is smashing. Let EL be the connected cover of SL . Then SL/EL
is bounded above and hence disharmonic. It follows that EL - SL and S - EL are

also SL—equivalences.

To conclude this review we will now describe in more detail the conjectures of
Ravenel [ 8] as far as they are relevant to the present context. The conjectures
were motivated by the manifestation of certain algebraic phenomena in the context of
the Adams-Novikov spectral sequence associated to the Brown-Peterson spectrum BP .
The conjectures seek to say that the algebraic phenomena are there for geometric

reasons.

Let BP(p) denote the p-localization of BP ; it is a ring spectrum (in the



sense of stable homotopy theory — no coherence conditions asserted) and its homotopy
groups form a polynomial ring Z(p)[v],vz,..,vn,...] where the generator v = has
grading 2pn—2 ; it is convenient to let Vo =P s the prime at hand. The multipli-
cation by v gives a (graded) self-map of BP(p) , and one defines BP(p)[vn_l]
as the telescope of this self-map; that is, the homotopy direct limit of the sequence

oV oV
BP, ,——5BP, . — 25 ... .

(p) (p)
The spectrum BP(p)[Vn—l] admits the multiplication by v as an automorphism, it

is thus a periodic spectrum (if n>0).

Following Ravenel we let Ln denote the localization functor associated to

BP )[vn_]] , the prime p being understood.

(p
The smashing conjecture [ 81 asserts that L is smashing. This is known to

be true for n < p-2 as well as for n=1 if p=2 [8].

When combined with the finiteness conjecture of Bousfield and Ravenel (that
smashing localizations are necessarily finite) it asserts that Ln is finite. This

is known to be true for L [ 2] (and of course for L The situation is slight-

1 0 ).
ly better with regard to the existence of finite Ln-trivial spectra. Such spectra
have been obtained for small values of n 1in connection with the construction of

the so-called periodic families in the stable homotopy of spheres [ 81, [31].

The class invariance conjecture [ 8 1 finally asserts that, as far as finite

spectra are concerned, there are no acyclicity types beyond those provided by the Ln

It is known [ 8] that the functors Ln form a sequence with respect to the par-

-1 The three conjec-

tures taken together then say that the sequence of the Ln is the aforementioned

tial ordering of the localization functors, namely Ln > Ln

chromatic filtration.

Independently of the conjectures one knows that all finite spectra X are har—
monic [ 8], that is, they are local for the homology theory given by the wedge of
all the BP(p)[vn—]] 5 in particular if X 1is finite and non-trivial then Ln(X)

is non-trivial for sufficiently large n .

On the other hand one also knows many (infinite) X which are dZssonant, that
is, they are trivialized by each of the Ln (if the conjectures are true then
"dissonant'" is the same as 'disharmonic"). For example the p-torsion Eilenberg-

MacLane spectra are known to be dissonant [ 81].



3. The local counterparts of A(x)

Let C denote the category of spectra. Let L: C > C be a localization func-
tor. Associated to L there is a category of weak equivalences wC where, by de-
finition, a map in C 1is in wC (or is a w-map, as we shall say) if the homotopy

cofibre is trivialized by L .

A spectrum is finite up to w-equivalence if it is in the same connected compo-
nent, in wC , as some finite spectrum; we denote the subcategory of the w-finite

spectra by wa . Let C(L) denote the category of the L-local spectra, and

C nec .

Cwye @ N Cut

. . . L'
If L' 1is a second localization functor, coarser than L , we let C denote

the category of the L'-trivial spectra, and

L' L'
Chy = CayNC -

Let the h-maps, finally, mean the weak homotopy equivalences.

Localization theorem. Let L and L' be localization functors of finite type,

and L > L' . There is a homotopy cartesian square

1
hS.CY.. — 5 hs.C

L)f (L)f

L'
_—
hS‘C(L')f hS'C(L')f

where the term on the lower left is contractible.

In other words, if one considers the K-theories of the L-local and of the
L'-local spectra, respectively, then their difference (i.e. the homotopy fibre of
the natural map) is explicitly describable, namely it is represented by the K-theory

of the category of those L-local spectra which are L'-trivial.

Proof. There is a similar looking result which is valid in a much more general con-
text. In the situation at hand we check that the terms may be re-written in the

desired form.

Namely if a category with cofibrations is equipped with two notions of weak



equivalence, one finer than the other, then under rather general hypotheses which
we will not spell out here, there results a homotopy cartesian square of the associ-
ated K-theories [14], [ 51, [16]. 1In particular there is such a square in the case

of the category C of the homotopy-finite spectra, equipped with the two notions

hf
of weak equivalence w and w' given by L and L' , respectively. It reads

1

\
wS.Chf _— wS.Chf
15.cY 5 w's.C
w .hf w .hf .

In order to put this square into the desired form we will need to know of the
finiteness of the localization functors, and of the ensuing smashing property (sec—

tion 2).

Since L 1is smashing we can replace it, if necessary, by the functor given by
smash-product with a L-localization T of the sphere spectrum. The L-localization

can thus be an exact functor in the technical sense, so it induces a map in K-theory.

Similarly L' can be replaced, if necessary, by smash-product with T' . But
it can also be replaced by smash-product with T A T' (since L > L' ). It results
that we can define a natural transformation from the above square to the square of
the theorem: On the upper terms the map is induced by smash-product with T , and
on the lower terms it is induced by smash-product with T A T' . (We are using here

that hS.C = wS.C in view of the fact that h-maps and w-maps are the same

(L)t (Lf
in C(L) ; and similarly with the other terms).

To conclude we check that the map of squares is a homotopy equivalence on each

term. We treat only the case of the map wS.C £ hS.C The other cases are

h et -

similar.
The map factors as

wS.Chf _ wS.wa —_— hS.C(L)f s

so it suffices to show that these two maps are homotopy equivalences.

The inclusion wS.C, . - wS.Cw is a homotopy equivalence because of the appro-

hf f
ximation theorem (section 1) which applies in view of the convergence property (sec-

tion 2) of the finite localization functor L .

The localization map wa - C(L)f is left inverse to the inclusion C(L)f - wa
up to a natural transformation which is a w—equivalence. It results that the loca-
lization map induces a deformation retraction from wS.wa to wS.C(L)f = hS.C<L)f .

This completes the proof of the localization theorem. m



Let now P be a set of primes. We denote by A(%,P) the analogue of A(x*)

constructed from P-local spaces or spectra; that is, thS.C(P)fl .

Lemma 1. There is a natural map A(%*,P) - K(Z(P)) which is an equivalence away
from P . More precisely, the homotopy groups of the homotopy fibre are P-torsion,

and the first p-torsion, p € P , occurs in dimension 2p-2

Proof. The map is given by l<nearization (this involves a definition of the alge-
braic K-theory of rings analogous to that of the algebraic K-theory of spaces, but
in terms of abelian-group-objects, resp. module-objects, cf. [16]). To obtain the
numerical statement we have to know that A(*,P) can also be defined in other terms.
This is one of the main results about the algebraic K-theory of spaces, the argument
is given in [16] for the case where P 1is the set of all primes, i.e. the case of
A(x) . It is not difficult to modify the argument so as to apply to the case of ge-

neral P . The outcome is that A(*,P) may be redefined, up to homotopy, as

. k +
7 % 1im BH(V S(P))

where VkS(P) denotes a wedge of k P-local sphere spectra, H(..) 1is the sim-
plicial monoid of homotopy equivalences, BH(..) 1its classifying space, and (..)+
denotes the plus construction of Quillen. Given that, under the translation, the
map A(*,P) - K(Z(P)) corresponds to the natural map BH(VkS(P)) - Ble(Z(P)) , the
asserted numerics now follows easily from the fact that the higher homotopy of S(P)

is P-torsion only and the first p-torsion occurs in dimension 2p-3 . ®

Lemma 2. The map A(x,(0)) » K(Q) 1is a homotopy equivalence.

Proof. This is the special case P = @ of the preceding lemma. m

Let F(*,P) denote the K-theory of the P-local torsion spaces, or what is the

same, the P-torsion spaces.

Lemma 3. There is a homotopy equivalence
F(x,P) =~ T' F(*,p)
pEP
where TI' denotes the restricted product, the direct limit of the products indexed

by the finite subsets of P .

Proof. Every P-torsion spectrum decomposes, up to homotopy, into its p-primary
parts, and only finitely many of these parts are non—trivial because of the finite
type condition on the spectrum. This shows that the approximation theorem (section
1) applies to the reconstruction map TI' cP > CP which takes a finite collection

pEP £ f
of p-primary spectra to the wedge of these spectra. m



Lemma 4. There is a diagram of homotopy fibrations

ﬂ;EP F(*,p) —— A(*,p) —— A(%,(0))

R

K(zZ/p) —> R(Z y) T K@ .

|
Moep (P

In particular the square on the left is homotopy cartesian.

Proof. The upper row is given by the localization theorem applied to the rationali-
zation map A(*,P) - A(x,(0)) , together with the rewriting provided by lemma 3.

The lower row is the analogous case of Quillen's localization theorem for the map
K(Z(P)) - K(Q) . To obtain the map from top to bottom it is necessary to rewrite
the lower row suitably, namely as the analogue of the upper row in the framework of
abelian-group-objects, cf. [16]. The map on the right is a homotopy equivalence by

lemma 2. ®

Theorem. The square

A(*) —————> TT A(*,p)

|

K(Z) ————> T K(Z, )
(p)
p
is homotopy cartesian, and for every prime p there is a homotopy equivalence
fibre( A(*) - K(Z) )(p) ~ fibre( A(*,p) - K(Z(p)) ) .
Proof. By lemma 4 there are homotopy cartesian squares
]I;I' F(*,p) —— A(¥) F(*,p) — A(*,p)
ll')l' K(Z/p) ———— K(2) ~ K(z/p) ————>K(Z(p))

and the localization at p induces a map from the former to the latter. We take

the product of all these maps. Then the square formed by the right hand columns
gives the square of the theorem. To show it is homotopy cartesian it suffices to
show that the square formed by the left hand columns is homotopy cartesian. That is,

we want to show that the map

fibre( ﬂ; F(x,p) - ﬂ; K(Z/p) ) —— fibre( ﬂp F(x,p) - ﬂp K(Z/p) )



is a weak homotopy equivalence; equivalently (by lemma 4 and since the homotopy fibre

commutes with products and direct limits, up to homotopy) that the inclusion map

g' fibre( A(x,p) - K(Z(p)) ) —— g fibre( A(*,p) - K(Z(p)) )

is one. But by lemma 1 the homotopy group T fibre( A(x,p) - K(Z(p)) ) 1is zero

for sufficiently large p (depending on n ). So the map induces an isomorphism on

homotopy groups.

The second part of the theorem follows from the first by taking p-localizations

of the vertical fibres and noting that

H fibre( A(*,q) - K(Z fibre( A(x,p) - K(Z

@’ e = @’ )

in view of lemma 1. m

Let us fix a prime p now. Recall from section 2 the localization functors

L(p) =Lm > .. > Ln > tee > Ll > LO

where Ln is associated to BP(p)[Vn—l] (and L is the same as rationalization).

0
Following the conjectures of Bousfield and Ravenel discussed in section 2 we make the

Hypothesis. L is a finite localization functor.
Let us denote the category of the Ln—local spectra by C(p n) We define
b

A(x,p,n) to be its K-theory,

A(x,p,n) = QI|hS.C [

(p,0) £
where as usual the subscript £ indicates the finite type condition. Localization

induces maps between these spaces, so we obtain a tower of spaces and maps,

A(x,p) = A(*,p,®) —> ... —> A(*,p,n) —> ... —> A(%,p,0)

b

interpolating between A(x,p) and the K-theory of the rational numbers.

Next, let C?;]n) be the subcategory of C of the spectra which are
R .

(p,n)
Ln_l—trivial; this is what Ravenel calls the n—-th monochromatic category [ 81. By
the localization theorem its K-theory

n-1 |

(p,m) £

represents the n—th layer in the localization tower,

M(%,p,n) = QIlhS.C

M(*,p,n) o~ fibre( A(*,p,n) - A(*,p,n-1) ) .

The following argument, due to BSkstedt, can be used to prove the non-triviality

of M(%,p,n) 1in certain cases. Suppose hy 1s a homology theory coarser than Ln



(that is, Ln—triviality implies hy-acyclicity). Suppose further that for finite
Ln_l—trivial X the groups hiX are finite and periodic of period 2s , say.

Let CiX denote the order of hiX . Then, as one checks, the rational number given
by the alternating product

-1 -1
cX = cOX -(ch) . ch e 'CZS—ZX '(czs_]X)

is multiplicative for cofibration sequences. It results that c defines a homomor-

phism from the class group nOM(*,p,n) to the multiplicative group of rational num-

bers.

The argument applies in the case of wOM(*,p,l) and shows that this group is
not trivial. For it is known [ 8] that the localization functor L, 1is definable
in terms of p-local complex K-theory, and KUi applied to a finite torsion spectrum
is certainly finite and periodic. It suffices then to note that the number cX is

not 1 in the case of the Moore spectrum S/p .

It is likely that a similar argument can be applied to show that WOM(*,p,Z)
is not trivial, and more specifically that the Toda spectrum V(1) represents an
element of infinite order. (Recall that V(1) 1is the mapping cone of a certain
graded self-map on the Moore spectrum S/p ; the self-map induces multiplication by
(a power of) \ in BP-homology). Assuming this is so, we can deduce a strange
looking consequence. Namely the element [V(1)] in WOM(*,p,Z) projects to zero
in nOA(*,p,Z) because the cofibration sequence Zk(S/p)>——§S/p —» V(1) (where k
is even) implies a relation [V(1)] = [s/p] - [S/p] . Therefore [V(1)] must be
the image of some element v, » say, in ﬂlA(*,p,l) . Thus the periodicity operator
\2 € W*BP(p)[V]—l] somehow corresponds to a 'phantom unit' vy in algebraic

K~theory.

As to a general attack on the spaces M(*,p,n) , the first (and perhaps main)
step should be the search for a devissage theorem. Its content would be that for

the purpose of constructing M(*,p,n) one does not really need all of the mono-
n-1

(p,n)
candidate for the elementary objects would seem to be the spectra in C

but only a subcategory of elementary objects. A good

=l hich

(p,n)

chromatic category C
are periodic of minimal period.

We proceed to the construction of the <ntegral localization tower X(*,p,n)

Recall our standing hypothesis that Ln is a finite localization functor. As
a consequence Ln is smashing (section 2), and S(n) , the Ln—localization of the
sphere spectrum, satisfies S(n) A S(n) =~ S(n) and is thus a very particular kind
of ring spectrum. In particular the associated infinite loop space QS(n) is a

ring space.

Let Mk(QS(n)) denote the space of k x k matrices. It is a multiplicative

H-space and, if n > 1 , the monoid of connected components is Mk(Z(p)) . Define



éik(QS(n)) as the union of connected components given by pullback with the inclu-

i f GL, (Z i Z .
sion o k( (p)) in Mk( (p))
Lemma. The H-space éik(QS(n)) has a canonical (up to homotopy) classifying space.

Proof. QS( y may be defined as the space (or better, simplicial set) of maps
S - S( y and Wk(QS )) may be 1dent1f1ed to the mapping space Map(VkS,VkS(n))

The latter is homotopy equivalent to Map(V S( ),V S( )) which is a monoid by com-

position of maps; the requisite homotopy equivalences are given by restriction along

VkS - VkS(n) on the one hand and by smash product with S

on the other, using
N (n)
that S(n) A S(n) o S(n) . It results that GLk(QS(n)) is homotopy equivalent,

as H-space, to a monoid. =

We define

N . o +
A(x,p,n) = Z x lém BGLk(QS(n))

The factor Z 1is the class group of the ring ﬂOQS(n) , it has to be taken care of
in this artificial way since the class group is invisible to the plus construction.

The case n = 0 1is exceptional from the present point of view, we can include it

by defining X(*,p,O) as 7 x lim BGLk(Z(p))+

By exploiting the plus construction one can arrive at a certain amount of nume-
rics (as in [14], [16]). There is one general result which can be obtained in this

way, namely the fact that the map
A(*,p,n) E— A(*,P,n"l)

is an equivalence away from p (this uses that QS(n) - Qs(n—l) is an equivalence
away from p , as well as l-connected). Note this is in sharp distinction from the

situation with the other localization tower.

Beyond that it is possible to obtain quantitative results in (very) low dimen-
sions. For example the first homotopy in fibre( A(x,p,1) » A(*,p,0) ) occurs in
dimension 2p-2 and is cyclic of order p . But it seems unreasonable to expect

that one can go much further in this way.

Perhaps the best approach eventually will be to compare the two localization

towers. The idea is that in order to obtain information about
fibre( A(*,p,n) - A(*apan—]) )

one should first try to compute with fibre( A(*,p,n) - A(*,p,n-1) ) as well as the

fibres of a natural transformation

A(*x,p,n) ——> A(x,p,n) .



There is no problem in defining a map X(*,p,n) > A(x,p,n) . Briefly, one can
also construct A(*,p n) out of llk BGL (QS( )) by group completion (with respect
to block sum). - And lik BGL (QS( )) is practically contained in |hS C( ,n)f'
(there are some technicalities; in particular the category hS C(p, )E should be
blown up to a homotopy equivalent simplicial category in order that one can have an
honest inclusion, cf. corresponding constructions in [16]). The inclusion of
ilk BGL (QS( )) into |hS C( p,n )f , the geometric realization of the category in
degree 1, now induces an inclusion of the suspension Z(lik BGL (QS( ))) into

|hS.C » the geometric realization of the full simplicial category. The

(P,n)f

adjoint of the latter inclusion then extends, by the group completion principle, to

the desired map of A(*,p,n) into the loop space QI|hS.C .

(p,n)f

We will describe a localization theorem for the map A(kx,p,n) - A(%,p,n) now.
We need a further hypothesis. 1In fact we need the further hypothesis even for

formulating the theorem.

The hypothesis is that there exists a category of modules over the ring spec-
trum E(n) , the connected cover of S(n) (for n>1). The hypothetical part
about it is that the morphisms in the category should be actual maps, not homotopy
classes of maps. (There has been done some work on module spectra in this sense by
Robinson [ 9]; recent unpublished work of Schwinzl and Vogt is also relevant). Let
the hypothetical category be denoted Mod(g(n)) . It will be a category with cofi-
brations and weak equivalences in the technical sense of section 1. In fact there
are two notions of weak equivalence, the h-maps and the w-maps, where the former are
the weak homotopy equivalences and the latter are the maps which become equivalences
upon changing the ground ring from S( ) to S(n) (or what amounts to the same,

cf. below, the maps which become homotopy equivalences by Ln—localization).

An object of Mod(g(n)) is said to be finite if there is a finite filtration
(sequence of cofibrations, that is) any quotient of which is free of rank 1, i.e.
a perhaps shifted copy of g(n) . Somewhat more generally we can also speak of
finiteness up to h—equivalence (resp. w-equivalence); we indicate this by the sub-
script hf (resp. wf ). The coarser notion of weak equivalence gives rise to the

subcategory Mod (S of the w-trivial modules, or torsion modules as we will

W
(n))

say.
The desired localization theorem says that the homotopy fibre

fibre( A(*,p,n) - A(*,p,n) )

~

is represented by the K-theory of the category of torsion modules over S(n)

The argument of proof is similar to that given in the proof of the localization
theorem in the beginning of this section. Namely for general reasons there is a

homotopy cartesian square



~y w ~o
thS.MOd(S(n))hfl —_— thS.MOd(S(n))hf|

~ W ~
Q|wS.Mod(S(n))hf| —— QIWS.Mod(S(n))hfl

in which the lower left term is contractible. The upper left term is the K-theory
of the category of torsion modules over S(n) . It only remains to be shown, there-

fore, that the map on the right may be identified to the map A(*,p,n) - A(*,p,n)

The identification of the upper right term with A(x,p,n) comes from the main

result of [16]; cf. the proofs of lemmas 1 and 4 above for similar points.

The identification of the lower right term with. A(*,p,n) 1is similar to the
argument at the end of the proof of the localization theorem (the last three para-
graphs). Two points deserve mentioning. The first is that one can construct a
Ln—localization of a given.g(n)—module by (infinitely) repeated attag&ing of finite
Ln—acyclic modules; this uses B8kstedt's lemma (section 2) that S - S(n) iswa S(n)_
equivalence. It results that there exists a Ln—localization functor on Mod(S(n))
which is of finite type (in view of its construction) and therefore also has the
convergence property (section 2). The second point is that a Ln—local spectrum has

a unique S(n)—module structure which may therefore be suppressed or resurrected

according to the need of the moment.

It is a matter of checking the definitions, finally, to see that under these

identifications the two maps correspond as desired.



4. Appendix: An implication of the Lichtenbaum-Quillen conjecture.

We give a quick review of the Lichtenbaum-Quillen conjecture, a homotopy theo-
retic reformulation, and finally the application to obtaining a kind of lower bound

on the difference of A(x) and K(2Z)

- The content of LQC is that for many rings (and schemes) the algebraic K-theory
ought to be expressible in terms of etale cohomology and thereby computable. With
the advent of the etale K-theory of Dwyer and Friedlander [4 ] a simpler, and more
explicit, formulation became possible. The new formulation is that the natural

transformation
et
Ky (R,Z2/p) — Ky R,Z/p)

should be an isomorphism for suitable R . Actually this is conjectured only for
odd primes p , and for sufficiently high degrees; it is known that some such re-

striction is necessary, cf. [12].

As usual here K (R,Z/p) denotes the K-theory of R with coefficients in Z[p .
We think of it in terms of spectra, namely as the homotopy of K(R,Z/p) , the smash

product of the K-theory spectrum K(R) and the Moore spectrum S/p .

The necessity of working with finite coefficients comes from the fact that the
etale homotopy, and therefore also the etale K-theory, does not behave properly

unless one restricts to working with finite coefficients.

We will not define the etale K-theory here. We don't have to, in fact. For
Thomason has proved the amazing result that etale K-theory is the same, in many
cases, as "Bott periodic" algebraic K-theory [13]. 1In view of this result LQC trans-

lates into the conjecture that the map
-1
is an isomorphism (for suitable R , odd p , and in sufficiently high degrees).

As to the Bott periodic algebraic K-theory, we find it convenient to use the
definition given by Snaith [11]. Namely the Moore spectrum S/p supports a self-
map known as the Adams map; if p 1is odd the map is of degree 2p-2 . It induces
a graded self-map of K(R,Z/p) , and K(R,Z/p)[B_]] is now defined as the mapping

telescope of the latter, the homotopy direct limit of the sequence
K(R,Z/p) —— K(R,Z/p) ——> ...

in which each map is the map in question.



Actually Snaith's procedure is slightly different in that he defines K(R,Z/p)
as the spectrum of maps S/p » K(R) , so the self-map on K(R,Z/p) is given by com-—
position with the Adams map. However the distinction is minor since the Moore spec—

trum and the Adams map are self-dual with respect to Spanier-Whitehead duality.

At any rate, the definition is equivalent to letting

1 l]

RR,2z/p)[8 1 = K(R) A s/plg”
where S/p[B—l] is the mapping telescope of the Adams map.
Recall the localization functor L] (section 2). It is known [ 2] that
s/pls™'] = L,(s/p) .
Since L] is smashing (section 2) we obtain

R®R,2/p)(87'] = K®) A S/pAL(S) = L, (K(R)) A S/p .

So LQC translates into a conjecture saying that the homotopy cofibre, F say, of

the localization map
RK(R) ——> L, (K(R))

is annihilated by smash product with S/p (for suitable R and odd p , that is,

and in sufficiently high degrees). 1In view of the cofibration sequence

S ‘P, — S/p

this means that the self-map of F given by multiplication by p is an equivalence
(in high degrees), so F may be identified (in high degrees) to the telescope of

the self-map; that telescope is F[p—]] , the localization away from »p .

Replacing K(R) by K(R)(p) now (the localization at p ) we conclude that
the homotopy cofibre of

R () = 1, (KW (1))

is unchanged (in high degrees) by inverting p , that is, by the rationalization
functor LO . Since LO = LOL] it follows that the homotopy cofibre is trivial (in
high degrees).

We have thus translated LQC into a conjecture saying that, for suitable R ,

should be an equivalence of sufficiently highly connected covers; in other words
that, apart from some bounded piece, the p-local K(R)(p) should already be
L]—local; in still other words that, in terms of the chromatic filtration, K(R)(p)

should support first order phenomena only.



Before discussing any implications of LQC we must briefly comment on which
rings R are supposed to be 'suitable'. Etale homotopy requires all coefficients
to be finite, as pointed out before, but it also requires them to be prime to the
residue characteristics at hand. As a result the etale K-theory Kit(R,Z/p) is
only defined if p 1is invertible in R , and there can't possibly be any conjecture

about it otherwise.

On the other hand the homotopy theoretical reformulation of LQC makes perfect
sense for general R . A standard argument shows that for some R the validity of
LQC in this sense is equivalent to its validity for the ring of fractions R[p—]] .
In particular this is so for Z , the ring of integers. Namely by the theorems of
Quillen, the difference of K(Z) and K(Z[p—]]) is given by K(Z/p) , and that is

trivial at p except in degree O .

By naturality of localization applied to the map QS0 - K(Z) now there is a

commutative diagram

0
QS 5y > K(2) 5y

|

0
L S ——— L. (K(Z .
1 (p)) 1 (K( )(p))
If the right hand vertical map is assumed to be an equivalence it follows that,

at p , the map QS0 - K(Z) factors through J , the connective cover of LI(QSO) .

On the other hand the map QSO - K(z) factors through QSO - A(%) which is
known to be a split injection [15], [17]. If one assumes the validity of LQC it
thus follows that (at least for odd p and in sufficiently high degrees) the diffe-
rence between A(x) and K(Z) must in some way or other account for the difference

between QSO and J .
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