Algebraic K-theory of topological spaces. II

Friedhelm Waldhausen

The purpose of this paper is to explore the relation between stable homotopy
theory and the functor A(X) of the title. The relation turns out to be very simple:

The former splits off the latter.

This splitting of A(X) 1is an unexpected phenomenon. Consider the case where

X = %
a point. In this case we may (and will) take as the definié&gn
A = 2 x (1lim B Awt(vsh )
n,K
where
VkSn = wedge of k spheres of dimension n
Aut(..) = simplicial monoid of pointed homotopy equivalences
B Aut = 1its classifying space
(...)+ = the + construction of Quillen
132 : by suspension, and by wedge with identity maps, respectively.
",

The artificial factor Z 1is required to avoid disagreement with other definitions
of A(*). Thanks to a theorem of Barratt-Priddy, Quillen, and Segal on the other hand

stable homotopy is definable in terms of the symmetric groups,

ee]

Q"s

R

Zx (1lim B %
>

<+
) .
Z k

Since Zk IS Aut(VkSO), the map

Aut(VkSO) —_— 1im Aut(VkSn)
n
therefore induces a map Q5" - A(*). It is this map for which the splitting theorem

provides a left inverse, up to homotopy.

Let us compare with known facts from algebraic XK-theory. There is a map from



A(¥) to the algebraic K-theory of the ring of integers,

K(2) = 2z x (1im B GL(2) )",
k

it is induced from
At (VESYy —s Awt(Hn(Vk.Sn)) N 6L, (2)

This map is a rational homotopy equivalence [14] (an easy consequence of the finite-

ness of the stable homotopy groups of spheres n?, i>0).

The composite map
Q78" —> A(x) —> K(2)

is the usual map resulting from identification of a symmetric group with a group of
permutation matrices. This map has been studied by Quillen [10]. The main result

is that

1TS
4k+3

is injective on the image of the J-homomorphism, the subgroup ImJ4k+3; in fact, the

—> K4k+3(Z)

map is split injective on the odd torsion, and also on the 2-torsion in half the cases
(k odd). In the other half it is not. For, Lee and Szczarba [5] have computed K3(Z)

and as a result the map ImJ4k+3 - K4k+3(Z) is, for k = 0, the inclusion

S
3

Browder [3] has deduced from this that the map is not split for all even k. It also

7/24 =~ ImJ3 ~oT. —> K3(Z) ~ 7/48

follows from the Lee-Szczarba computation that ﬂ? - Ki(Z) is not in general injec-

tive, and specifically [3] that

72/2 = "2

. . S . . .
is the zero map. To sum up, the relation between ™y and Ki(Z) 1s very 1nteresting,

— K6(Z)

but apparently also very complicated. Certainly the map Q~8” -» K(2) does not split.

One may wonder here how possibly a result can be provable in the 'non-linear'
case (the splitting theorem for A(X) ) but fail to hold in the 'linear' case (alge-
braic K-theory). The answer is of course that the proof does not really break down
in the linear case, it just proves a different result. This result will be discussed

at the end of the paper.

Returning to the splitting theorem, to prove it we must in fact prove a stronger

result involving the stabilization of A(X) ,

AS(x) = 1lim Q" fibre( 4(SAX,) - A(¥) )
m
where
X, = X with a disjoint basepoint added
fibre(..) = the homotopy theoretic fibre
m
Q = the m—-th loop space,



and where the direct system involves certain naturally defined maps.

There is a natural transformation
AK) — A°(X)

of which one should think of being induced from the identification of A(X) with
the O-th term in the direct system defining AS(X). (There is a technical point here.
The definition of A(X) we use requires that X be connected. So the O-th term in

the direct system is not defined. So the map
A(X) —> Q fibre( A(S'AX,) » A(%) )

must be artificially produced. We have to introduce the external pairing for that

purpose).

Theorem. There is a natural map, well defined up to weak homotopy,
ASx —s 2757,
so that the diagram

2”5” (X,)

\

AK) —> A5(X) — 2757 (X,)

commutes up to (weak) homotopy.

Recall that two maps are called weakly homotopic if their restrictions to every
compactum are homotopic. 'Weak homotopy' is the price we have to pay for working

with stable range arguments.

To produce the required map on AS(X) is equivalent more or less, in view of
the definition of AS, to producing for highly connected Y a map, defined in a

stable range,
AY) — 275 (V) .

It is not obvious that such a map should exist, and considerable work goes into its

construction.

Our method to produce the map is to first manipulate A(Y) in a stable range
(section 3). A curious construction of simplicial objects is needed here which will
be referred to as the cyclic bar construction. The idea for this construction comes
from unpublished work of K. Dennis (talk at Evanston conference, January 1976), in
fact, the Hochschild homology that Dennis uses may be regarded as a linear version
of the cyclic bar construction. General facts relating to the cyclic bar construction

are assembled in section 2.

Given the manipulation of A(Y) 1in the stable range, a map A(Y) - Q" s7 () ,



defined in a stable range, may simply be written down (section 4, there are however
some technicalities involved here) and it is entirely obvious that this map admits
some section.

We are then left to show (section 5) that the section is what we want it to be.
This requires some preparatory material which is scattered through earlier sections,

particularly section 1 which gives a review of some general properties of A(X) and

of material involved in the Barratt-Priddy-Quillen-Segal theorem.

§1. Review of A(X) and stable homotopy.

Let X be a simplicial set. We assume X is connected and pointed, so the
loop group G(X) 1in the sense of Kan [4] is defined. The geometric realization
IG(X)| 1is a topological group which will be called G for short.

Letting G, denote G with a disjoint basepoint added, and VkSn the wedge

of k spheres of dimension #»n, we form the G-space

VkSnAG+ (=~ VkSnxG ]/ *xG ) — -
which should be thought of as a free pointed G-cell complex with k G-cells of
dimension n.

We consider the simplicial set (= singular complex of the topological space) of

G-equivariant pointed maps

" [ k

Mp(6) = Mapg(V s'ac,, V*S'ac,)
which may be given the structure of a simplicial monoid, by composition of maps.
Further we consider the simplicial monoid of G-equivariant pointed weak homotopy
equivalences

@ = Aut,(vVs'ac,)

There is a stabilization map from #n to #n+l, by suspension, hence we can form the
direct limit with respect to 7. We can also consider a stabilization map from k
to k+1; 1in the case of HZ(G) it is given by adding the identity map on a new

summand in the wedge.

Using the identity element of G we have a canonical map s0 - G,. By restric-

tion along this map we obtain an isomorphism
MapG(VkSnAG+, VES'ac,) —2s Map(Vis?, vEsTac,) .

This isomorphism in turn restricts to an isomorphism from the underlying simplicial

set of HZ(G) to a union of connected components of Map(VkSn, VkSnAG+).

It is suggestive to think of MZ(G) as a space of kxk matrices of some kind.

The suggestion is particularly attractive in the limiting case #n = «, for in this



case MZ(G) is actually homotopy equivalent, in the obvious way, to the product of
kxk copies of

MT(G) = 1im Map(s®, s'aG,) = @75 (6,) ,
n

and the composition law on MZ(G) corresponds, under the homotopy equivalence, to

matrix multiplication.

Let NHZ(G) denote the nerve (or bar construction) of the simplicial monoid

HZ(G); it is the simplicial object
[m] HZ(G) X ... X HZ(G) (m factors)

with the usual face structure. Let B HZ(G) = INHZ(G)I be its geometric realization.
Then, by definition,
AX) = Zx (1lim B HZ(G) y*
n, K
where (..)+ denotes the + construction of Quillen [9] (recall that G denotes the

geometric realization of the loop group of X ).

This definition is essentially the same as the first definition of A(X) in [14].
To make the translation one verifies that the space BHZ(G)‘ uséd here is homotopy
equivalent to the classifying space of the category used there (this is the content
of [14, lemma 2.1], essentially). The requisite arguments are probably well known,

a detailed account will be in [15].

The above construction can also be made for any finite n, giving a kind of
unstable approximation to A(X). In particular, the case n = 0 gives stable homo-

topy. Indeed, H?(G) ~ S(G) (the singular complex of G ) and in general
0 ~
Hp(6) ~ I [ S(G)

(wreath product with the symmetric group on k 1letters). Hence the theorem of
Barratt-Priddy, Quillen, and Segal [11] gives a homotopy equivalence
( 27s7Ix

o=y 2757ES©e) = zx (1im B HIG) )T .

k
The map

0 . 4
Hk(G) —> 1%m Hk(G)
therefore induces

Q751X | — AX) .

We will need a different description of this map, in a stable range.

Lemma 1.1. The following diagram commutes up to weak homotopy (homotopy on compacta)
in which the homotopy equivalence on the right is that of the Barratt-Priddy-Quillen-

Segal theorem and the map on the bottom is the natural stabilization map:



BHO (6) ——> BHO(6) — 2 x BHO(G)"

| |

X1 > QS 1%,

The lemma is, essentially, a quotation from Segal [11]. Before making this
explicit we review some material on I'-spaces. We do this in some detail as the material

will also be needed for other purposes, particularly the treatment of pairings below.

(1.2). T-spaces. Our reference is Segal [11]; cf. also Anderson [1] for some re-
formulation. Let s denote the basepointed set with s non-basepoint elements

1, ..., s. We recall that a (special) T-space is a covariant functor F from the
category of finite pointed sets to the category of spaces (respectively, the category
of (multi-)simplicial sets in our case) which satisfies that F(Q) = x, and which
takes sums to products, up to homotopy; this means, if p;: X;VvX, = X, is the re-

traction which takes X, to the basepoint, and p, similarly, then
(Pl*’pz*): F(lexz) — F(X]_) x F(Xz)

is a weak homotopy equivalence. The space F(1) is called the underlying space of
the I'-space F.

In our present situation we have for every =n =0, I, ..., or ©, a I'-space

F*  whose underlying space 1is
G

n _ n
FoD 11 5 N (6)
The higher terms can be obtained by a general procedure of Segal [11, section 2]; the

next term is
Fa@ = 1lg g C(ERZ© x EHJ@ x EHE (@) ) [ H(©) x Hj(©

where E denotes a universal bundle (one-sided bar construction) and '/' means

quotienting out of the action, and the general term is
n
FG(E) - .LI_ k

where k = I k.
o} T€EC T

ek, (Toes B (©) ) [ Hy (©) x..x H (@)
= o )

Returning to the general notion of T'-space, we can extend the functor F, by
direct limit and degreewise extension, to a functor defined on the category of pointed
simplicial sets. For example if the original functor took values in the category of
simplicial sets, the extended functor will take values in the category of bisimplicial
sets.

\J

In the special case of a I'-space which is 'group-valued' (for example this holds

if the underlying space is connected) the extended functor is a (reduced) homology



theory; that is, it preserves weak homotopy equivalences, and it takes cofibration
"sequences to fibration sequences up to homotopy, cf. [1] and e.g. [13] for a more
detailed account. In view of a natural transformation XAF(Y) - F(XAY) it therefore

gives rise to a (connective) loop spectrum

IF() 1 -=s IFSYH 1, IFEH 1T lFEH) ], ...

Our TI'-spaces FZ are not group valued in the above sense. In this general
case the list of properties must be weakened a bit, namely the extended functor F
will not in general produce a fibration sequence from a cofibration sequence unless
the latter involves connected spaces only. Thus the spectrum m# F(S™) 1is a loop
spectrum only after the first map. The space F(Sl) is equivalent to the underlying
space of the T-space which in Segal's notation would be called BF, and one of the
main general results about I'-spaces says that it is computable by means of the + con-
struction. Specifically in our situation we have

QUFR(SH1 = 2 x ( 1%m BHI(G) )T .

Thus in the cases n =0 and % = © we recover QwSm|X+| and A(X), respectively.

Remark. The latter homotopy equivalence is well defined up to weak homotopy only
(for it is obtained by means of an isomorphism of homotopy functors on the category
of finite CW complexes [11]). This kind of ambiguity (weak homotopy instead of homo-
topy) arises frequently in connection with the + construction. It would be tempting
to avoid the ambiguity by avoiding the + construction, and specifically by not using
the universal property. We could indeed avoid the + construction altogether. But
the effort would be in vain. For the stable range arguments that we have to use

later on, would re-introduce the ambiguity.

Proof of lemma 1.1. This is a corollary of Segal's proof of the homotopy equivalence

of infinite loop spaces

® @ - 0 1
QS IX, | = QIFG(X)(S .

In [11, proofs of propositions 3.5 and 3.6] Segal does in fact exhibit a specific map
of spectra from the suspension spectrum of [X,| to the spectrum m#r QIFg(X)(Sm+1)|
which he then shows is a weak homotopy equivalence of spectra. Since the receiving

spectrum is a loop spectrum this map is characterized by the map of first terms which

is the composite map

BSIGO |, — 1| , BHL(@®) = IFQ(S™) 1 —— alF3(shH ]
BSIG(x) | —— BHY(C)
+ ——= 5 BHO(G)

It is immediate from this that there is a version of lemma 1.1 in which 2 x BHg(G)+



has been replaced by Qng(Sl)l. To translate into the form stated, one has to take
into account the way the homotopy equivalence between these two spaces arises [11,
section 4] and particularly the way that 2 X BHg(G) arises as the telescope of
ll—kBHz(G) and a shift map. o
(1.3). Pairings. Smash product induces a pairing HZ(G) x HZ:(G')v—a HZTZ:(GXG')

and therefore also a pairing of I'-spaces (resp. of their extensions described above)

FIOD A FR (1) —— Fart (IAY")

xG'

The pairing is compatible with the natural transformation Y" A FZ(Y) ——9FZ(Y"AY).

Taking Y and Y' to be spheres, we have in particular

FLE™ A FL ™) — Pl (@™ ™)

which defines a pairing of spectra because of the compatibility with the structure
map s' A Fg(Sm) ——;Fg(Sm+1) .

Using that, for m > O, we have A(X) = leFg(X)(Sm)l, and using that the weak
homotopy equivalence G(XxX') - G(X)xG(X') 1induces one

n

n ~ -
Fo ) — FG(X)xG(X')(Y) ,

xxx) &

we thus obtain a pairing, well defined up to (weak) homotopy,

AX) A AX'") —— A(XxX")

Note that the pairing could also have been defined more directly in terms of
the definition of A(X) by the + construction (similarly to the pairing in K-theory
in [6]); with the present definition any desired naturality properties of the pairing

are essentially obvious.
The pairing formally implies others. Let Z(X) be the reduced part of A(X),
A(X) = fibre( A(X) » A(x) ) .

Taking the difference (with respect to the H-space structure) of the identity map on
A(X) and the composite map A(X) -» A(x) » A(X), one obtains the required map in a

splitting
AR) = AG) x AX) .
There is a pairing
AX) A AQY) —> A(XAY)
which is definable as the composite map
AX) A AQY) — AX) A A(Y) —— AXXY) ——> AXXY/¥xY) ;

it satisfies that the following diagram is (weakly) homotopy commutative



AX) A AQY) — A(XXY)

J l

AX) A AQY) —— A(XAY,) .
Similarly there is a pairing
AX) A AQY) — A(XAY)

There are analogous pairings involving (reduced and/or unreduced) stable homo-

topy, resp. stable homotopy and A(X). For uniformity of notation we let

(Q7S7IX, | =) Q) = zx (1lim B H (&))"
p

Lemma 1.4. There is a map 4(X) - QZ(SIAX+) so that the diagram

Q) —=— QQ(S'AX,)

|

A(X) —> QA(S'AX,) -

commutes up to homotopy.

Proof. Let S1 - Q(Sl) - Q(Sl) be the Hurewicz map from homotopy to stable homotopy

(the first map is that of lemma 1.1). Using the above pairings we have a diagram

S A Q) — Q) A QX) — Q(S'AX,)

| | l

S A AK) — Q(5Y) A A(X) ———> A(S'AX,)

and the adjoint of the composite map on the bottom will have the required property

if we can show that the adjoint map
Q(X) — 9Q(S'AX,)
is a homotopy equivalence.

We note here that in treating this @(X) the necessity of having X connected

and pointed is of course an illusion. For

z

N(zkfc(x)) ~ Ezkxk

NG(X)k ~ EI, X X

so that we are in the situation of [11] and the term on the right is quite generally
defined. Furthermore the pairing extends to this more general situation. Therefore

Q(X) —— Q(S'AX,)

is in fact a natural transformation from stable homotopy theory to itself, and it



suffices to show it is a homotopy equivalence in the case X = x .

Since (%) - QQ(Sl) extends to a map of spectra it suffices in fact to show
that it induces an isomorphism on Tos equivalently, that its adjoint is surjective

on . But from the explicit description of the Hurewicz map (lemma 1.1) we see

that the composite map

'A% ——5 8t A Q) — Q8N A Q(x) — @8

l l

2SN A Q(x) — Q(sh)

is itself the Hurewicz map, and we are done.

§2. Simplicial tools.

(2.1). The realization lemma. This asserts that a map of simplicial objects which

is a weak homotopy equivalence locally (i.e., the partial map in every degree is a
weak homotopy equivalence) is also one globally. We need a version of this for

finite connectivity.

We say a map is k-comnected (or is a k-equivalence, by abuse of language) if it

induces an isomorphism on ms for j < k, and an epimorphism on e

Lemma 2.1.1. Let X.. = Y.. be a map of bisimplicial sets. Suppose that for every
n the map of simplicial sets X., » Y., is k-connected. Then the map X.. = Y..

is also k-connected.

Indeed, recall the argument in the case k = =, cf. e.g. [16]. One considers

10

the 'skeleton filtration' X(n) of IX..| induced from the second simplicial direc-

tion, that 1is, X(n) is the geometric realization of the bisimplicial subset of X..

generated by X., . Then one proves inductively that X(n) - Y(n) is a k—-equivalence

using the gluing lemma. The same argument works in the case of finite k in view of

the following version of the gluing lemma.

Lemma 2.1.2. In the commutative diagram

X 6——= Xy —— X,

L

Y, ¢ <Yy > Y,

let the two left horizontal maps be cofibrations, and suppose that all the vertical

maps are k—connected. Then the map of pushouts Xlux X, = Y1UY Y, 1is also k-connec-
0 0

ted. o



(2.2). Partial monoids. This notion, due to Segal [12], allows a concise descrip-

tion of certain simplicial objects. By definition, a partial monoid is a set E

together with a partially defined composition law

ExE D Ez———————’E

which is associative in the sense that if one of (elez)e3 and el(e2e3) is defined
then so is the other and the two are equal. Further there must be a two-sided iden-

tity element * and multiplication by * must be everywhere defined, that is,
EvE c E2

The simplicial set associated to the partial monoid (we refer to it as the nerve

of E, notation NE ) 1is given by
[n] +—— E = set of composable n-tuples

with face and degeneracy maps given in the usual way by composition, resp. by inser-—

tion of the identity.

Similarly one has the notion of a simplicial partial monoid; its nerve is a

bisimplicial set.

For example [12] a pointed simplicial set X can be considered as a simplicial
partial monoid in a trivial way, with X2 = XvX . The nerve in this case is the
simplicial object

[n] ——5 Xv...vX

«——n—
whose diagonal simplicial set is a suspension of X .

Other examples arise in the following way. Let M be a monoid and A a sub-
monoid of M. Then we can manufacture a partial monoid by declaring that two elements
of M shall be composable if and only if at least one of them belongs to the submo-

noid. Thus M, = MxAUAxM, and M, is what we will refer to as a generalized wedge,

Vn(M,A) = set of n-tuples of elements in M ,

with at least (n-1) elements in A
Similarly this construction can be made with a simplicial monoid M and a simplicial

submonoid A of M .

Lemma 2.2.1. In this situation, if A - M 1is (k-1)-connected then the inclusion of
simplicial objects

[n] —— (VOQL,A) —— M)
is (2k-1)-connected.

Proof. 1In view of the realization lemma (2.1.1.) it suffices to show that for every

n the inclusion Vn(M,A) > MY s (2k-1)-connected. This is certainly true if n



is either O or 1 as the inclusion is an isomorphism in those cases. The case

n =2 follows from the following remark.

A map of simplicial sets is (k-1)-conneéted if and only if its geometric reali-
zation is homotopy equivalent to an inclusion of CW complexes K - X so that X ™K
has no cells of dimension < k. Let similarly Y N~ L have no cells of dimension
< 1. Then XxY N~ XxLUKxY has no cells of dimension < k+l, and therefore the map

XxLUKxY - XxY is (k+1-1)-connected.

The general case follows inductively by factoring the inclusion suitably and

using the same remark and the gluing lemma. o

Finally we will need to consider, in this framework of partial monoids, the no-

tion of semi-direct product.

Suppose first that F 1is a monoid (which we think of as multiplicative) and
that E is another (which we think of as additive). Let F act from both sides,
and compatibly, on E (in other words, if F°P  denotes the opposite monoid of F
then F x F°P acts on E from the left, say). In this situation, the semi-direct

product
F x E
is the monoid of pairs (f,e) with multiplication given by the formula

(f,e)(f',e"') = (ff', ef' + fe')

Remark. 1In case this looks unfamiliar, consider the case where F 1is a group. Here

one can rewrite in the usual form, as follows. Write

(f,e) = (£, £&)

where & = f_le. Then

(Ff£', fef' + ff'e')
1

(£,£8) (f',£'8")

= (£f', (F£M)f' ‘& £' + (ff')&")
and hence with [f,&] = (f,f8) the multiplication is.given by the formula
[£,8)(£',8'] = [££', £' 'af' + ')
This ends the remark. u]

Suppose now that E 1is a partial monoid on which the monoid F acts compatibly
from both sides. We need to assume that E is saturated with respect to the action
in the sense that the following condition is satisfied: for every pair (e,e') whose

sum is defined, and for every f, the sums of the four pairs
(fese') s (ef,e') s (eafe') ) (e9e'f)

must also be defined (they need not however be related in any particular way). Under

this assumption the formula (f,e)(f',e') = (ff',ef'+fe') carries over to define a
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partial monoid F kX E with underlying set F x E and with (Fx E), =~ F xF x E,.

We will be especially concerned with the particular case where E is a pointed
set X considered as a partial monoid in a trivial way. In this case (F X E)_ is

the generalized wedge
(FxX)_ = VO (FxX,Fx*) ~ F° x (XV...vX)

In particular (F K X)2 ~ FxFx(XvX), and the partial composition law is given by the

case distinction

(£,3) (£',%) (££', x£')

(ff', fx) .

(£,%) (£',%)

All of the above extends to (and will be used in) a simplicial framework.

(2.3). The cyclic bar construction. Let F be a monoid which acts on a set X

both from the left and the right, and compatibly. The cyeclic bar construction is

defined to be the simplicial set

Ncy(F,X) s [kK] — F x ... x F x X
e———lc———e:ﬂ B
with face maps
dO(fl”"’fk’ X) = (fz""’fk’ xf])
di(fl""’fk’ x) = (fl""’fifi+l""’fk’ X) if 0<1i<k
dk(fl”“’fk’ X) = (fl""’fk—l’ ka)

Similarly if F is a simplicial monoid and X a simplicial set, the cyclic bar con-

struction is defined in the same way, giving a bisimplicial set.

The cyclic bar construction may be regarded as a generalization of the two-sided
bar construction. Indeed, the latter may be identified to the special case of the
former where X 1is the product of two factors of which the first has a left F-stru-

ture and the second a right F-structure, respectively.

As another example consider the case of a (simplicial) group acting on its under-
lying (simplicial) set from either side by multiplication. Then the map which in
degree k 1is

(8s+++58s 8) > (g8)5...»8,, 8(g;.-.8.) )
defines an isomorphism from N“Y(G,G) to the one-sided bar construction of G acting

on itself by conjugation. The latter represents the free loop space of NG .

The case of main concern to us arises in the situation where a (simplicial) mo-
noid F acts on a (simplicial) partial monoid E in such a way that the semi-direct

product F k E 1is defined. 1In this situation F will also act on the nerve NE in



such a way that the cyclic bar construction Ncy(F,NE) is defined. We denote by
diagNCy(F,NE) the simplicial (resp. bisimplicial) set resulting from diagonalizing

the two N-directions of the latter.

Lemma 2.3.1." There is a natural map

u: diag N°Y(F,NE) —— N(F x E) .

The map u is an isomorphism if F acts invertibly. If moF is a group then u

is a weak homotopy equivalence.

Proof. 1In the formulas to follow we will suppose for simplicity of notation that F

and E are a monoid and partial monoid, respectively, rather than a simplicial monoid
and simplicial partial monoid. In the general case the formulas are exactly the same

except that a dummy index has to be added everywhere.
By definition, diag Ncy(F,NE) is the simplicial set (resp. simplicial object
in the general case)

[n] ——> Fx...xF x En c Fx...xF x Ex.,..xE

—n— «—n— «—n—

with face maps taking (f],...,f 3 el,...,en) to

n
do(..) = (fz,..,fn; erl""enf])

di(") = (fl""fifi+]""fn; e],..,ei+ei+],..,en) , 0<i<n
dn(..) = (fl""fn—l; fnel""fnen—l) ,

while N(F X E) 1is given by

[n] —— (F x E)n c FxE x ... x FxE

€ n >
with face maps taking (f],el;...; fn,en) to
do(..) = (fz,ez;..; fn,en)
di(") = (fl’el;"; fifi+1’ eifi+l+fiei+l;"'; fn’en) , 0<1i<n
dn(..) = (fl,el;..; fn—l’en—l) .

We define un(fl""fn; e],..,en) to be
( fl’ (f]..fn)e](f]) 3 f2, (f2"fn)e2(f]f2) - fn’ (fn)en(fl"fn) ),

then the collection of maps u forms a simplicial map u as one checks. Here is

the situation for face maps: evaluating on (f],..,fn; e .,en) we obtain

1;°
(doun:) ( f2, (f2..fn)e2(f]f2) S e 3 fn’ (fn)en(fl°°fn) )

(un_ldoz) ( f2’ (f2’°fn)(e2fl)(f2) $eees fn’ (fn)(enfl)(f2°'fn) )
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and similarly with d u_ and u__.,d_, further if 0 < i <n then
nn n-1 n

(fi..fn)ei(fl..fi)fi+l+-fi(fi+1..fn)e. (fl"fi+1) HE |

1+1]
((fif )fi+2"fn)(ei+ei+l)(fl"fi-l(f'fi+l)) 3 ee)

1

(diun:) (.. fifi+1’

(u ,d.:) (..; £.f

n-1"1 171+41° i+1

thus the identities for iterated face maps are satisfied.

If the two actions of F on E are invertible then each of the maps u_ is

an isomorphism, therefore u 1is an isomorphism in this case.

Suppose now that m,F is a group. Then any action of F 1is homotopy invertible,

that is, if F acts, from the left say, on X then the shearing map

FxX—>F xX

(f,X) — > (f:fx)

is a weak homotopy equivalence. Therefore in order to show the map u_ is a weak
homotopy equivalence it suffices to write it as a composite of maps each of which is

isomorphic to a shearing map. But u is isomorphic to the composite map

u
Fx...xF x E_ ————> (F x E) —=— Fx...XF x E_
and the latter may be factored o
1‘ ces 1n roeee Ty T (composition from right to left)

where r. is the restriction of the map

Fx...x F xEx,..xE —>F x...x FxEx,..xE

(fl""’ f ;e

0 EREEE en) — (f],..., f 3 e, 28y 1> eifi""enfi)

n

and where 1i is similarly defined using the left action.

Thus each of the maps u is a weak homotopy equivalence. In view of the
realization lemma therefore the entire map u 1is a weak homotopy equivalence, too.

The proof is complete. o

§3. Manipulation in a stable range.

In the theorem below we will suppose that X 1is highly connected and, for tech-
nical reasons, that it actually be given as a suspension. While there is no canonical
way to suspend a simplicial set, a choice can of course be made universally. Our
present choice is to be made so that G(SX) 1is the free simplicial group generated
by the non-basepoint simplices of X [4]. The geometric realization of the canonical
map X - G(SX) then represents [X| -» QSIX| and is (2m-1)-connected if X is (m-1)-

connected.



If V, W are pointed topological spaces we denote Map(V,W) the pointed sim-
plicial set (= the singular complex of the topological space) of pointed maps from
V to W, and H(V) the simplicial monoid of pointed (weak) self-homotopy equiva-
lences of V. 1In a context of G-equivariant maps the analogous notions are indicated

by a subscriﬁt G .

The simplicial monoid H(VkSn) acts from the left on the pointed simplicial
set Map(VkSn,VkSnAIXI), by composition of maps. But it also acts from the right
in view of the canonical map

HOVKTYY —— HOKSAIXD
h haid

X1

and the two actions are compatible. Hence the cyclic bar construction, cf. (2.3),
Lk
NSV ¢ HRSYy, Map(VRSE VRS AR )

is defined.

Let

\%
o

Theorem 3.1. Let X be a pointed simplicial set which is m-connected, m

SX be its suspension. Then the two spaces

k
N Hig sy | Y SAIG(SX) 1)

and

N ( HOKSY, MapKS VEST A TS )
are naturally g-equivalent, where
q = min(n-2,2m+l) ;

that is, there is a chain of natural maps connecting these two spaces, and all the

maps in the chain are g-connected.

Naturality here refers to »n and k, and the X variable. We will also need

a further piece of naturality which we record in the following addendum.

Addendum 3.2. There is a chain of (2m+1)-equivalences between NG(SX) and SX, and
a transformation from this chain to the one of the theorem with the property.that the
first map in the transformation is the composite of NG(SX) 3 NH?(IG(SX)|) with the
inclusion NH?(IG(SX)I) - NHZ(IG(SX)I) (cf. lemma 1.1); and the last map in the

transformation is given by the composite map
sXx —= SIsx| —2 Map(vis®, v sPalsxl) — Map(vES? Vi AIsx 1)

together with the identification of the latter space with the term in degree O of
NY( )

The proof of the theorem will occupy this section. The addendum will be noted
as we go along. The chain of maps will consist of five maps; it could be reduced to

four as the first two maps are composable. Each of the maps will be described in its

16



own subsection.

(3.3). The first map. The simplicial monoid of the theorem,

k
sV S ale(sx)y 1)

can be considered as a simplicial partial monoid by declaring that multiplication of

elements in a fixed degree is possible if and only if at most one of them is outside

the simplicial submonoid
HOKSY

Thus the nerve of the simplicial monoid contains as a simplicial subobject the nerve
of that simplicial partial monoid (the situation of lemma 2.2.1). The inclusion map

will be our first map.

To verify the asserted connectivity, and also for its own sake, we do some re-
writing now. As pointed out in section 1, the canonical map 5% - IG(SX) |, induces
an isomorphism from the underlying simplicial set of the simplicial monoid to a union

of connected components of the simplicial set of maps
Map (VST VESTALG(S) 1) 5 -
we denote this union of components by

Map(..) .

Clearly the isomorphism is compatible with the left and right actions of H(VkSn).
Further the inclusion of the underlying simplicial set of the simplicial submonoid

H(VkSn) corresponds, under the isomorphism, to the natural inclusion
HOVKSYy —— Tapvks™ VEs alc(sx) 1,)
induced from S° > IG(sx) 1, .

But it is only those two bits of structure, the latter inclusion and the left
and right actions of H(VkSn), which matter in the structure of the simplicial par-
tial monoid. Therefore its nerve may be described as the simplicial object given by

generalized wedges (cf. (2.2) for this notation),
[p] — VP( Map(vkd* Ve ala(siy 1), HOKES™ ) .
The inclusion into the nerve of the original simplicial monoid is (2m+1)-connected
by lemma 2.2.1, for the inclusion
Hvksy — s Tap vk Vi Al (sx) 1,)
is m-connected since S° - IG(SxX) 1, 1is.

This finishes the account of the first map. Concerning the addendum, the first

map in that chain is given by the analogous inclusion

[p] —— ( VP( G(SX), G(x) ) —> G(SX)P ) |
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(3.4). The second map. The inclusion X = G(SX) induces one

Map (VRS VK AIXI,) ——s Tap(vKs Vi alc(s0) 1)

where we are continuing to denote by Map a suitable union of connected components

of Map, and the latter inclusion is (2m+1)-connected since the former is.

The inclusion is compatible with the left and right actions of H(VkSn). It is
also compatible with the inclusion of the underlying simplicial set of H(VkSn), for

the natural map 50 o IX|, given by the basepoint of X satisfies that

\

1G(SX) |,
commutes.

Therefore the nerve of the simplicial partial monoid considered before, contains

another,
[p] > VP( Tap(vks® Vi aIx1,), HOVES™ )

The inclusion is our second map.

To show the map is (2m+l)-connected it suffices, by the realization lemma, to
show this in each degree p. The case p = 1 was noted before. It implies the ge-

neral case in view of the gluing lemma (2.1.2) and induction.

This finishes the account of the second map. Concerning the addendum, the second

map in that chain is given by a similar inclusion, namely

[p]l —— ( VP(X,%) —— VP(G(SX),6(%)) ) .

(3.5). The third map. The pointed simplicial set Map(VkSn,VkSnAIXI) can be consi-

dered as a simplicial partial monoid in a trivial way, and the simplicial monoid

H(VkSn) acts on it from both sides, and compatibly. Hence the product
HOKSYY x Map (VRS VRS A Ix 1)

can be given the structure of a simplicial partial monoid, namely the semi-direct

product in the sense of (2.2).

The pair of maps [XI| - SO, IXl, » IX| 1induces a map of simplicial partial

monoids whose underlying map of simplicial sets is
Tap (VRS VS AIR],) ——— HOVESY x Map (VK VRS A1)

We show this map is (n—-2)-connected. Indeed, since X 1is connected (we assumed this
in the theorem) this map is the restriction to a union of connected components of the

map

Map(VkSn,VkSnAIXI_,.) s HapVKSy x Map(vVR VRS AL



so it suffices to show the latter map is (n-2)-connected. We treat the case k =1

first.

Lemma. The map QnSn(IXIU*) - ' x Q'MIx| s (n-2)-connected.

Prbof. The iong exact sequence of stable homotopy groups of the cofibration sequence

%) —— FPIXIUx) —— SHIXI

decomposes into split short exact sequences. As niSnY - ﬂ?SnY is an isomorphism

for i < ?2n-2 it follows that S (IXIUx) - " x §"1X| induces an isomorphism on

homotopy groups for i < 2n-2. The assertion results by taking loop spaces. o
The case k = 1 being established, the case of general k now follows from the
isomorphism

Map(vks”,Y) —= 5 ( Map(s, ) K
and the (n-1)-equivalence
Map (St VS ALY ——> ( Map(S™,SAY") yk

induced from the (2n-1)-equivalence

FAYY v el v (AT —— (TIAYY) x o x (SPAYY)

The map of simplicial partial monoids induces a map of their nerves. In the

notation of generalized wedges, this is a map from
[p] —— VP( MoV VRS aIx1,), HOKSY )
to
P k k k k
[p] —— VP HVSTY x Map (Vg VESAIXD), HVESh x * ) .

This map is (n-2)-connected for every p (the gluing lemma reduces the assertion to
the case p = 1 which was verified above) and therefore the entire map is also (n-2)-

connected by the realization lemma. This is our third map.
Concerning the addendum, the third map in that chain is the identity map on

[p]l —— VPUIXI, %

(3.6). The fourth map. Considering the pointed simplicial set Map(VkSn,VkSnAlxl)

as a simplicial partial monoid in a trivial way, and forming the nerve of the latter,
we obtain the simplicial object

[p] — Map(vks”,vks”/\lxl) V oee. v Map(vks”,vks”/\lxl)

< P >

which we denote by

z Map(VkSn,VkSnAIXI)
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It inherits compatible left and right actions of the simplicial monoid H(VkSn), so

we can form the cyclic bar construction
NY ( HOKSYY, £ MapvKSt VRS ALY )

a trisimplicial set. Our fourth map is provided by lemma 2.3.1. It is the weak ho-
motopy equivalence whose source is

diag NV ( HOVKSY, 1 Map(vRs VRS Ix1) )
(diagonal along the N- and I-directions) and whose target is identical to the target

of the third map, namely the nerve of the simplicial partial monoid given by the

semi-direct product of H(VkSn) acting on Map(VkSn,VkSnAIXI).

Concerning the addendum, the fourth map in that chain is again the identity map

on

( [p] —— VPUXI,*) ) (= z Ixl)

(3.7). The fifth map. Partial geometric realization takes the bisimplicial set

) Map(vksn,vksnlexl)
to the simplicial topological space
sl A Map (VRS VKAL)
and the canonical map from the latter to
Hap (VRS VRS ASIAIXD)  ~ Map(vESH VRS AL SR

is (2m+1)-connected. The induced map from (the partiél geometric realization of)

NV HOVRSYY, 5 Map(VRST VRS AIXD) )
to

N HOESY , Mapvks® VK aTsx 1) )
is therefore also (2m+1)-connected, by the realization lemma. This is our fifth map.

Concerning the addendum, the fifth map in that chain is the isomorphism from

(the geometric realization of)
L IXI

to

.4

The proof of the theorem and its addendum are now complete. o
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§4. The stabilization of A(X).

We will need the following elementary properties of the functor A(X). Namely,
it
(i) takes n-equivalences to n-equivalences if n 1is at least 2 ,
(ii) satisfies a version of homotopy excision, namely for m, n=2 , k < m+n-2,
it preserves (m,n)-connected k-homotopy cartesian squares, that is, commutative

squares

V——">W

Lo

X—> Y

in which the horizontal (resp. vertical) arrows are m-connected (resp. n-connected)
and the map fibre(V - X) -» fibre(W » Y), or equivalently the map fibre(V -» W) -

fibre(X » Y), 1is (k+1)-connected.

These properties are propositions 2.3 and 2.4 of [14]. Their proofs are actually

easiest with the definition of A(X) wused here.

We note here that A(X) can be a functor on the nose, not just up to homotopy.
In our present context we may simply point to the possibility of performing the + con-
struction uniformly (for example by attaching a single 2-cell and 3-cell to BH(VSSO) ).

In particular the above maps of homotopy fibres are well defined.
Let S™ denote a suitable simplicial set representing the m-sphere, and let
m m R m
D1 USm 1 D2 —> S
be a decomposition into hemispheres. Then for any X the diagram

m-1 m
ST A, —>D AKX,

|

DyAX, ——>S"AX,
being (m-1,m-1)-connected, is (2m-4)-homotopy cartesian by the homotopy excision the-
orem. In view of the above therefore the map

fibre( A(Sm—]AX+) - A(D?AX+) ) ——— 5 fibre( A(DTAX+) - A(S"AX,) )
~ Q fibre( A(S™AX,) = A(¥) )

is (2m—3)-connected. Thus we have a spectrum
m ——» fibre( A(STAX,) » A(x) ) ,
and we define AS(X) to be its telescope,

AS(x) = 1im " fibre( A(S™AX,) - A% ) .

The map |X| » A(X) (lemma 1.1) is a natural transformation if we write it in
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the form ING(X)| » A(X), therefore it is compatible with the stabilization process

and induces a map

Q"s"Ix, | — A°(X) .

Theorem 4.1. There is a map
S — 2757I%, 1,
well defined up to weak homotopy, so that the composite map
Q°s7IX, | —— 4°(X) —— 2757 IX, |
is weakly homotopic to the identity map.

The proof of the theorem will occupy this section. The first step is to rewrite

AS(X) in terms of the cyclic bar construction. We abbreviate

CZ(X) - N HKSY, Map(VkSn,VkSnAIXI) )

CX) = 1lim Cp(X)
n, k
Lemma 4.2. The chain of maps of theorem 3.1 induces a homotopy equivalence between
45 )

and

. m .. m

lim Q fibre( C(S AX;) = C(¥) )

m
where the maps in the latter direct system are, up to homotopy, given by Qm_] ap-

plied to the vertical homotopy fibres of the stabilization diagram

m—1 + m +
AX) T —— 1C(DAX) |

|

|C(DHAX) 1" s lc(s™ax ) 1T

Ic(s

The homotopy equivalence itself is well defined up to weak homotopy.

Proof. In order to get theorem 3.1 to apply to all the terms in the stabilization
. . . . m
diagram, we replace the variables SmAX+, D?AX+, etc., by their suspensions S(S AXy),

S(DTAX+), ‘etc. This can be accounted for in the end by passing to loop spaces.

In view of the naturality with respect to #n, k, and the X variable, theorem
3.1 induces, for every m, a chain of natural transformations of stabilization dia-
grams before the + construction. By performing the + construction uniformly (for
example, by attaching a 2-cell and 3-cell to IN H(VSSO)I which is contained in every-
thing in sight) we obtain from this another chain of natural transformations of stabi-
lization diagrams, and all the diagrams involved are still strictly commutative. So
the requisite maps of homotopy fibres are well defined, and we obtain a chain of
transformations connecting the m-th map of the original direct system to the m-th map

of the new direct system.



23

By splicing these, for varying m, we obtain a chain of transformations between
the original direct system and the new one. As the connectivity of the transformations
increases with m, we obtain in the limit a chain of weak homotopy equivalences. To
show the latter is well defined up to weak homotopy, it suffices to show that the chain
of maps is well defined up to homotopy if everything in sight is replaced by a term in
its Postnikov tower. But if we replace by the m-th terms in the Postnikov towers then
our original direct system becomes essentially constant (the maps are weak homotopy
equivalences from number m+3 on). Consequently, in view of the connectivity of the
transformations, the other direct systems also become essentially constant. So the
chain of maps between those terms in the Postnikov towers comes from a chain of maps

at some finite stage, and this is well defined up to homotopy. o
We note that the addendum 3.2 provides a description of the map QmSm|X+| - AS(X)
in terms of our new definition of AS(X).

Before proceeding we state a lemma which will be needed presently.

Lemma 4.3. Suppose that Y 1is (m~1)-connected. Then the map
Map(VkSn,Sn+m) A Map(Sn+m,Sn+mAY) _ Map(yksﬂ,sn+mAY)

given by composition, is (3m-1)-connected. Similarly, in the case k =1, we obtain

a (3m-1)-connected map if we compose the other way, that is, consider the map
Map (ST ™, 97 TAY) A Map(s?,s" ™) ——s Map (™, 5 2PAy)
obtained by stabilizing the second factor to Map(Sn+mAY,Sn+2mAY), and composing.

Proof. The first map is isomorphic to the upper horizontal map in the commutative

diagram

Map(Sn,Sn+m)k A Map(Sn+m,Sn+mAY) _ Map(Sn,Sn+mAY)k

A
VkSOASm A Map(Sn+m,Sn+mAY)

VkSOASm A Map(Sm,SmAY) —> VkSOA(SmAY)

. A
I

(VKO AS™y AY

The arrow on the right is (4m—1)-connected. Each of the two arrows on the left and
the diagonal arrow on the bottom is the smash product of a (2m-1)-connected map with
the identity on an (m-1)-connected space, hence (3m-1)-connected. So we must have

the asserted connectivity of the first map.

The second map is part of the commutative diagram



MaP(Sn+m,Sn+mAY) A Map(sn,s"“'“‘)._______> MaP(Sn+m,Sn+2mAy)
MaP(Sn+m,Sn+mAY) A Map(so,sm)

Map(SO,Y) A Map(SO,Sm) — = Map(SO,SmAY)
and the same kind of connectivity considerations apply as before. o

Returning to the proof of the theorem, we will proceed in two steps. In the
first step (4.4 below) we represent, in a stable range, the asserted map by a chain
of two maps of which one is highly connected and has to be inverted. By taking into
account some more data it will be immediate that the map is a retraction up to homo-
topy in that range. In the second step (4.5 below) we discuss the stabilization pro-

cedure.

(4.4). The representative in the stable range. The relevant data are displayed on

the following diagram. The diagram shows the part in degree p of a commutative
diagram of simplicial objects. Two of these simplicial objects are given by the
cyclic bar construction (the upper and middle terms in the left column), the four

others are trivial simplicial objects.

Map(Sn,Sn+2mAIX+I)

.

HOVKSHP x Map VKt VRS 2mA 1%, 1)

)

Map(s”,s”+m) A Map(sn+m,sn+2mA|X+l)

e

HOVKTHP x ( Map(vEs?, 55 ™) A HMap( ™ VRS20 1%, 1) )

\ 4

Map(sn+m,sn+3mAIX+l)

=
v

Map(Sn+m,Sn+3mAIX+l)

Two of the maps require comment, these are the lower vertical maps in the diagram.
The one on the right is given by composition of maps after switch of factors. The

one on the left similarly involves a switch of factors. It is the unique map of
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quotient spaces induced by the following sequence of maps,

HOVESY x ... x HOKSY x MapvRs?, 97y Map (S VRSN 1R, 1)

(switch of factors)

v

Map (& VKT 2IA 1%, 1) x HOKSY x ... x HOESY x Map(vRg?, ™)
(smash product with identity maps)
\ 4

Map(§ VKT IIA IR, 1) x HOVESEAIR 1) x ... « Map(VESPmA1x, 1,57 A 1%, 1)

(composition of maps)

N
Map(™™, 3"A 1%, 1)

The map is compatible with the structure maps of the cyclic bar construction. This

fact, indeed, is the reason why we are using the cyclic bar construction.

Remark. The left column of the diagram really describes nothing else but a homotopy
theoretic version of the trace map, at least in the case p = 0. Indeed, let R be

a commutative ring and P a projective of finite type over R. Then the trace map
HomR(P,P) ——> R
is given by the diagram
Hom (P,P) «—— Hom(P,R) ® Hom(R,P) ——> Hom(R,P) ® Hom(P,R) —> Hom(R,R) ~ R

in which the first arrow has to be inverted, and the last arrow is given by composi-
tion of maps. In the case of general p, the left column is a version of the map

trace of the product matrix
(Is(P))? x Hom(P,P) —> R

which is given by the diagram

(1s(®))P x Hom(P,P) ¢———— (Is(P))P x Hom(P,R) ® Hom(R,P) ———> Hom(R,R)

(gl,...,g f) < — (gl,...,gp, fl®f2) t > fzg]...gpfl

p’

This ends the remark.

Concerning the relevance of the diagram of simplicial objects described, we will
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eventually have to pass to loop spaces, namely the (2m)-th loop spaces. Thus any
required connectivities must increase faster than 2m. This is indeed the case. The
map on the upper left is (3m-1)-connected: The realization lemma reduces us to show-—
ing this in every degree p 1in which case it is the content of the first part of
lémma 4.3, Thus the left column does represent a map, defined in a stable range, from
top to bottom. This map is a retraction up to homotopy, in that range. This infor-
mation is provided by the rest of the diagram since the two vertical maps on the right
are (3m-1)-connected by lemma 4.3 again. The coretraction involved (the upper hori-
zontal map) is a representative (before the + construction, in a stable range) of the

map QmSmlszmAX+| - A(SzmAX+). " As noted before, this is the content of the addendum

3.2.

Passing to geometric realization and performing the + construction to the terms

on the left, we obtain the diagram

IMap(Sn,Sn+2mA|X+I)I

INSY ( HOKSY, Map (VR VRS 2RA IR, 1) ) 1T

A

Map(SH, ™) A Map (™, 2 A1x, 1) |

/

INCY ( HOKSY, MapvKS®, 8™ A Map T VRS Az, ) ) It

\ 4
IMap (ST, 30 1%, 1) 1

/

IMa)o(Sn+m,Sn+3mA|X+I)I+

The + construction is possible if k 1is at least 5 and it can be done uniformly
with regard to the upper and middle space on the the 1ef£ by attaching a pair of cells
to the common subspace IN(H(VSSO))I. It preserves the connectivity of the upper

map on the left (by the gluing lemma). The + construction on the bottom term on the
left refers to the induced attaching of the pair of cells (a pushout). As the origi-
nal term had abelian fundamental group, the + construction does not change the homo-

topy type. Its sole purpose is to keep the whole diagram strictly commutative.

Everything we have done so far is natural with respect to »n and k, so we may
pass to the direct limit in those variables (recall that stabilizing with respect to

k involves wedge with an identity map on the H(..) part, but wedge with a trivial



map on the Map(..) part).

(4.5). The stabilization procedure. This must be adjusted to the needs of the pre-

ceding subsection. Namely the two factors S in SmASmA|X+| play rather different
roles, so we must stabilize in both of these factors. To do this we just alternate

in stabilizing either the first or the second.

In order to stabilize in the first Sm, say, we must write down (or better,

contemplate) a large diagram involving four versions of the diagram of (4.4), one for
m m

I il

m m

D, S

Nothing new appears in this diagram except for fancy notations of contractible spaces

each of the terms in
-1

—_
——
as for example the factor in

HOVESHP x ( Map(vKs™,S"AD) A Map (S ADT, VRS ADTAS™ 1%, 1) )

These fancy terms simply ensure that the whole diagram is strictly commutative.

Taking homotopy fibres we thus do obtain from the diagram a well defined map

representing

fibre( 1652 TAx) 1 » 4(x) ) — @ fibre( 1c(s™™Ax) 1" » 4(%) )

27

(where C(..) 1is the short hand notation used before for the cyclic bar construction),

namely
fibre( lc(sm_'/\sm/\x,,)l+ - ]C(DTASmAX+)|+ ) —
+
fibre( 1C(DHASTAX,) 1T > 1C(s"As™AX 1T ),

together with a chain of two transformations (one of these in the wrong direction but

highly connected) to a map representing the homotopy equivalence

2

275”18 Ak, | —— 0 2757187 A%, | .

We apply sz_l to all this. Then we may splice, for varying m, to obtain

a chain of transformations of direct systems. Passing to the limit we obtain what
we are after; the appropriate concluding remarks here are similar to the proof of

lemma 4.2. This completes the argument.



§5. The splitting of A(X).

Let Qwa|X+| -+ A(X) be the map given by the Barratt-Priddy-Quillen-Segal theo-
rem (section 1), and let A(X) - AS(X) be the stabilization map (it will be defined

in lemma 5.2 below).
Theorem 5.1. There is a map AS(X) »_QmSm|X+| so that the diagram

Q7" 1%, 1

|

AX) — 45(x) —— a"s™Ix, |
is weakly homotopy commutative.

Proof. This results from theorem 4.1 in view of the following lemma. o

Lemma 5.2. There is a natural stabilization map A(X) - AS(X). Its composition

with QwSm|X+I -» A(X) 1is weakly homotopic to the map used in theorem 4.1.

Proof. Letting Z(X) denote the factor in the natural splitting (section 1)

AX) = AX) x A(¥)
we define a direct system
AX) — @ Z(SIAX.,_) —_— 92 Z(SZAX+) _

in which the first map is provided by lemma 1.4, and the other maps are given by the
maps of vertical homotopy fibres in the appropriate stabilization diagrams (as de-
scribed in the beginning of section 4). The map from the initial term of the system

to its telescope gives the required map A(X) - AS(X).

To make the asserted comparison we consider the map of direct systems

Q751X 1 — 0 2757Is'Ax, 1 —— 0% 757Is%A%, | —

l l |

A(X) ——— @ A(S'AX,) ——> % A(S%AX,) ————>

where the vertical maps are the natural ones (the weak homotopy commutativity of the
first square is due to lemma 1.4). The maps in the upper direct system are homotopy
equivalences: the first map by lemma 1.4, and the other maps by the excision property
of stable homotopy. The maps in the direct system defining AS(X) are eventually
highly connected (cf. the beginning of section 4). So it will suffice to compare the
vertical maps in the diagram with the map used in theorem 4.1, and to show these

coincide in a stable range.
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The diagram of inclusions (section 1)

HI @) — HI()

|

He (G)

with G = IG(SmAX+)|, induces the left part of the following diagram.

1STAX, | —— Q7871 (S"AX,) 4| —— @757 18™AX, |

T~ | |

A(S"AX,) ———— A(S"AX,)

The vertical map on the right is, up to de-looping, the same as the m-th vertical map
in the diagram above, and the composite map on the bottom is an approximation to the

map used in theorem 4.1. The composite map on top is the Hurewicz map from homotopy

to stable homotopy (lemma 1.1), hence it is (2m-1)-connected. So the two maps in

question do agree in a stable range, and the proof is complete. a

Remark 5.3. The maps in theorem 5.1 are maps of infinite loop spaces, and the diagram

is weakly homotopy commutative as a diagram of infinite loop spaces.

Here is an indication of proof for the first assertion, the second involves simi-
lar considerations. Two of the maps are clearly infinite loop maps, namely the map
QwSm|X+| -+ A(X) as it is the map of underlying spaces of a map of T'-spaces, and the
map AS(X) - Qwa|X+| of theorem 4.1 as it was defined as the telescope of a map of

spectra.

The remaining map A(X) - AS(X) is also a map of infinite loop spaces provided
that we use a possibly different infinite loop structure on AS(X). For the stabili-
zation diagram

A™ T Ax,) — 4 (DTAX,)

A(DIAXy) — 4 (s"AX,)

is in fact the diagram of underlying spaces of a diagram of T'-spaces. Therefore there

is a I'-space of which AS(X) is the underlying space, and the map
Q fibre( A(S'AX,) = A(¥) ) — A°(X)

is a map of underlying spaces of TI'-spaces. The map
A(X) —> @ fibre( A(S'AX,) » A(x) )

of lemma 1.4, too, is a map of underlying spaces of T'-spaces. Hence so is the compo-

site map A(X) - AS(X).

~

It remains to be seen that the two infinite loop structures on AS(X) are equi-
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valent. In view of their definitions these infinite loop structures are compatible
in the following sense. They are definable in terms of spectra (obtainable from the
I-structure, resp. from stabilization in the X-variable) and the two spectra can be
combined into a double spectrum. Further both spectra are connective. But this im-—
piies they afe equivalent (the argument is probably well known; cf. [13, section 16]

for a detailed account in a particular case).

Remark 5.4. The maps in theorem 5.1 are compatible with pairings.

Here is an indication of why this is so. 1In the case of QmSw|X+l - A(X) it 1is

immediate from the definition of the pairings.
To treat the case of the map A(X) - AS(X) one shows that the stabilization map
. m . m+]
fibre( A(S AX,) = A(x) ) —— Q fibre( A(S AXy) = A(x) )
is the same, up to homotopy, as the adjoint of the composite map (cf. section 1)
s' A A(STAX,) —— 2(SY) A A(sTAR,) —— A(s™ ' Axy)

where &' - 5(51) is the Hurewicz map (to prove this one has to use that A(X) is
definable in a more general context than we are using hergBAi.e., for X which are

not necessarily pointed nor connected - cf. a similar point in the proof of lemma 1.4).
Thus stabilization itself is definable in terms of the pairing, and so the pairing

on A 1induces one on AS and the required compatibility holds.

To treat the case of the map AS(X) - QmSm|X+I one redefines AS(X) in terms
of the cyclic bar construction (section 4). One notes that the smash product also
induces a pairing in terms of the cyclic bar construction, and that this pairing is
(obviously) compatible with the one on stable homotopy via the two maps of theorem 4.1
of which the map in question is one. To finish one has to chase the pairing through
the chain of maps of theorem 3.1 in order to compare with the pairing formerly used.

This ends the indication.
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§6. Appendix: The stabilization of K-theory.

The stabilization of A(X) to AS(X) may be mimicked with K-theory provided
that one works with a suitably extended notion of K-theory in the framework of sim-
plicial rings [14, section 1]. The extended notion of K-theory is needed even in

the treatment of the stabilized K-theory of an ordinary ring.

We need some notation. If A is an abelian group and X a set we denote A[X]
the direct sum of A with itself indexed by the elements of X. Similarly A[X] is
defined if A is a simplicial abelian group and X a simplicial set, and is a bi-
simplicial abelian group (which we may diagonalize if we wish to a simplicial abelian
group). If R is a (simplicial) ring and G a (simplicial) group then R[G] may
be equipped with a multiplication in the usual way so that it is a 'group ring'.

For pointed X we let A[X] = A[X]/A[*]. If A has an R-module structure then so

have A[X] and K[X], respectively.

The set of connected components m,R is a ring in a natural way (the exotic
case 1 =0 1in TR may be ignored, for in this case R 1is contractible (multiply
by a path from 1 to O ) and such an R 1is without interest to us); we let

KO(rOR) denote its projective class group, as usual.

If A 1is a simplicial abelian group we denote Mk(A) the simplicial abelian
group of,\ka matrices in A. If R is a simplicial ring then so is Mk(R) and we
denote GLk(R) the multiplicative simplicial monoid of homotopy units in Mk(R) (the
matrices in the connected components indexed by the elements of GLk(woR) c Mk(noR) ).

The K-theory of the simplicial ring R 1is, by definition,
LA +
K@R) = Ko(nOR) x 1£m BGLk(R)
(in [14] the factor Ky(myR) was replaced by Z in order to simplify the comparison

with AX) ).

The functor R+ K(R) 1is a homotopy functor in a suitable sense (cf. the proper-
ties of A(X) stated in the beginning of section 4). In particular if R - R' is
a weak homotopy equivalence then so is K(R) = K(R'). It extends the K-theory of
Quillen in the sense that it reduces to the latter in the case of a ring considered

as a simplicial ring in a trivial way.

The stabilized K-theory of R 1is defined to be

K°® = 1im o™ fibre( K(RIG(S™]) » K(R) )
m
where ST denotes a simplicial set representing the m-sphere and G(..) is Kan's
loop group functor; the maps in the direct system are defined as in section 4. It is
natural, in fact, to consider a slight generalization, the functor of two variables

R and X (a simplicial set)
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&R = lim Q" fibre( KRIG(S"AX)D) » K(R) )
m
In detail, the terms in the direct system are defined for m > O, and the maps are
(loops of) the maps of vertical homotopy fibres of K(R[G( ? )]) applied to the sta-
bilization diagram

s Tax, — DTAX,

L

DYAX, —— STAX,
This KS(X,R) is a homology theory in the X variable [14], the coefficients of the
homology theory are given by KS(*,R) R KS(R).

Here are some remarks about the numerical significance of stabilized K-theory.
Let R be a ring (not simplicial ring), let K?(R) = wiKS(R). There is a spectral

2

sequence (with trivial action in the E“ term)

S
HP(GL(R),Kq(R)) = Hp+q(GL(R),M(R)) )

with abutment the homology of GL(R) acting by conjugatiom on --M(R), the essentially
finite matrices in R. This is proved by the method of [14, lemma 1.5]: to deduce
the existence of the spectral sequence in a stable range, one compares the spectral
sequence for stable homotopy of the map Béz(R[G(Sm)]) - BGL(R) with that of the
corresponding map after the + construction. After a suitable dimension shift the
latter spectral sequence has the desired E2 term, while the former one collapses and

gives the desired abutment (everything in a stable range).

Stabilized K-theory may be 'computed' in the following way. Let again R be a

ring (not simplicial ring). Let F(R) be the homotopy fibre
F(R) = fibre( BGL(R) -» BGL(R)' )

Then F(R)  1is an acyclic space with ﬂlF(R) ~ St(R) (the Steinberg group), and
wiF(R) N.Ki+](R) if i>1.

Denoting the homotopy fibre of the map Béz(R[G(Sm)]) - BGL(R)+ by U, one
shows that after the + construction one obtains a homotopy equivalence
v" =~ fivbre( BELRIGES™MD T » BGL®RT ) .
On the other hand U may be identified to the homotopy pullback of the diagram
F(R) ——> BGL(R) <—— BGL(RIG(S™ 1) .

As U - U is an acyclic map, the spectral sequence of a generalized homology

theory h, for the map U - F(R) therefore gives a spectral sequence

. A m . P m + +
Hp(F(R), hqflbre( BGL(RI[G(S)]) » BGL(R))) = hp+qf1bre( BGL(R[G(S)]) - BGL(R) ) .
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The fibre involved in the E2 term may be identified, in a stable range, with the
Eilenberg-Mac Lane space BM(E[Sm_l]). Taking h, to be the stable homotopy groups
one obtains hence that, in a stable range, the stable groups can be identified to the

actual ones and the spectral sequence collapses. Whence the isomorphism
KR o~ HE®, MER)

where, as one checks, the homology involves the action of wlF(R) on M(R) pulled

back from the conjugation action of GL(R). In particular,

K§(R) ~ H (St(R), MR)) =~ R/IR,R], K?(R) ~ H (St(R), M(R)) .

It will be indicated now how the results on A(X) described in the earlier

sections can be adapted to K-theory.

The heart of the matter is to recast the definition of stabilized K-theory in
terms of the cyclic bar construction. Let Y be an m-connected simplicial set,
m =0, and let SY be its suspension. As in section 3 one constructs a natural
chain of maps (five of them, just as in theorem 3.1) between Néik(R[G(SY)]) and
Ncy( ézk(R), Mk(E[SY]) ) satisfying that each of the maps .in the chain is (Zm+1)-

connected. One deduces from this a homotopy equivalence

KR~ 1im 2" fibre( INY( G’Zk(R), M, RIS™AX,D) )17 » lNé‘Lk(R)l+ )
k,m
Let us insert here as a parenthesis how to go from this homotopy equivalence to
an interesting new definition of stabilized K-theory which we do not have occasion to
use, though. If R 1is a ring and A an R-bimodule (resp. simplicial ring and sim-
plicial bimodule) then R @ A can be considered as a ring (resp. simplicial ring) by
giving A trivial multiplication. Now suppose that A 1is connected. Then there is

where the term on the right is the semi-direct product in the sense of (2.2). Hence

lemma 3.1 gives a homotopy equivalence

diag NV ( CL, (®), WL () ) —— Né\Lk(ReA) X

On the other hand, NMk(A) ksMk(NA) RﬁMkéK[Sl]), and so we can conclude

S . . oy -
K°(X,R) =~ 1im Q" fibre( K(ReR[S™ 'AX,]) » K(R) ) .
m

Notice in particular that R[Sm_l] is just an Eilenberg-Mac Lane group, and

SR) =~ 1im " fibre( K(ReR[S™ ']) » k(R) ) .
m

This ends the parenthesis. o
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Let A4(X,R) denote the (unreduced) homology of X with coefficients in R, it
is represented by |IR[X]|. There is a natural map h(X,R) - KS(X,R). It arises from
the homotopy equivalence k(X,R) o 1im Q" IE[SmAX+]I together with the identifica-
tion of E[SmAX+] with the part in degree O of Ncy( ézl(R), MI(E[SmAX+]) ).

Proposition 6.1. If R 1is commutative then #A(X,R) - KS(X,R) is a coretraction,

up to weak homotopy.

This is the analogue of theorem 4.1. Concerning the proof, if A is an R-mo-
dule (resp. simplicial R-module) considered as a bimodule in a trivial way (both the

left and the right structure are given by the original module structure) then the

trace map
6L, (R)P x M, (A) A
—_—

R ()T X My

(gl,..gp, a) ——— tr(gl..gpa)
is insensitive to cyclic rearrangement of the factors. Therefore it is compatible
with the face maps of the cyclic bar construction and defines a map

cy, A

N~ ( GLk(R), Mk(A) ) —— A .
which is a retraction with section as described. To complete the proof one has to

check naturality with regard to stabilization, as in section 4.

One constructs a natural transformation K(R[G(X)]) - KS(X,R) by producing
artificially a map K(R[G(X)]) - @ fibre( K(R[G(SIAX+)]) - K(R) ) as in lemma 1.4,

using pairings.

A\
The inclusion of the 'monomial matrices', Zka(X) - GLk(R[G(X)]), induces a map,
as usual, QS I1X,1 » KRIGX)]).

Let QmSm|X+I -» h(X,R) be the Hurewicz map from stable homotopy to R-homology.
Proposition 6.2. The diagram of the above maps commutes up to weak homotopy,

Q75" 1%, | —— K(X,R)

| 1

KRIG(X)]) — K> (X,R)

Putting this together with the preceding result we obtain for commutative R

an analogue of the splitting theorem 5.1, a diagram

Q8" I1X, | ————— A (X,R)

l | o=

K(RIG(X)]) ——— K5 (X,R) ——> K(X,R)
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that commutes up to weak homotopy and whose maps have the naturality properties in-

dicated in section 5: they are infinite loop maps and compatible with the respective
pairings.

Proposition 6.2 is the analogue of lemma 5.2, and the proof of the latter may be
adapted. One can also deduce it from lemma 5.2 because of the following naturality

property: there is a natural transformation
A(X) — KRl ,

it induces a corresponding transformation of the stabilized theories, and

S ©
- ””/",a AX) ———————— A7 (X) «—— 9 5 IX,|
QS5 1X,1 J l l

\ K(R[G(X)]) _—> KS(X’R) — h(XaR)
commutes up to (weak) homotopy, and finally in the case of commutative R so does

45x) — 27571, |

N

K5 (X,R) ——— A(X,R) .

Using the notion of 'Hochschild homology' one can give a variant of the map
KS(X,R) - h(X,R) which is more generally defined. We no longer assume that R is
commutative, but we do assume that R 1is given as an algebra (resp. simplicial alge-
bra) over some commutative ring (resp. simplicial ring) k, and that it is flat
over k (resp. degreewise flat).

Let A be a (simplicial) R-bimodule, over k. Following K. Dennis, one defines

the Hochschild homology
H(R/K,A)
as the additive version of the cyclic bar construction, the simplicial object

[p] ————— R e ... ® Re A
¢ P '

¥

(degreewise tensor product) with face and degeneracy maps as in the cyclic bar con-
struction. We will need the fact, due to Dennis [talk at Evanston conference, Janu-

ary 1976, unpublished], that the Hochschild homology is Morita Znvariant in the sense
of the following lemma.
Recall that two rings are called Morita equivalent if their module categories

are equivalent categories. This relation is equivalent [2, chapter II] to the follow-—

ing property which in our present more general situation we will take as the defini-

tion.



We say that R is Morita equivalent over k with a (simplicial) k-algebra R'
if there exist (simplicial) bimodules RER" R'FR over k which are (degreewise)

projective both from the left and the right, so that

EenF = R, Fe E = R'

as (simplicial) R-bimodules, resp. R'-bimodules.

Lemma (K. Dennis). In this situation there is a natural homotopy equivalence

H(R/k, A) =~ H(R'/k, F@RAaRE) .

Proof. Letting B = FeRA we may reformulate the assertion as a homotopy equivalence
H(R/k, E@R.B) ~ H(R'/k, B@RE)

To prove this it suffices to consider the case of rings rather than simplicial rings
and establish the homotopy equivalence by a chain of two natural maps. The general

case then follows in view of the realization lemma. So we assume R, R' are rings,
not simplicial rings.
The common source of the two maps to be constructed will be the following bi-

simplicial object. The object in bidegree (p,q) is given by ~

¢ P —
Re ..... ® R
®
E B H
( )P,q
® ®

R'"® ... ® R'

e——q—

(tensor products over k ), and the way this has been written as a circle is to
suggest in which way the various face maps are given by multiplication at the appro-

priate tensor product signs.
Let H(E,R'/k,B) be the simplicial object
[q]—>E®R'"® ... ®R' ® B

——q——

(a 'two-sided bar construction'). It maps to the trivial simplicial object E®R'B
by the map which in degree q multiplies together all the factors. This map is a
homotopy equivalence. Indeed, using the right projectivity of E over R' we can

reduce the assertion to the case where E = R'. But this case is clear (the simpli-
cial object is a 'cone').
The bisimplicial object (H) may be identified to one

H(R/k, H(E,R'/k,B) )



(a combination of the cyclic bar construction and the two-sided bar construction)
and the map described just before, induces a map from this bisimplicial object to
the simplicial object H(R/k, E®R,B). The latter map is a homotopy equivalence de-
greewise in the p-direction. Indeed this follows from the homotopy equivalence
established just before in view of the flatness of R over k. In view of the rea-
lization lemma it therefore follows that (#) maps by homotopy equivalence to

H(R/k, E@R,B).

By identifying (H) to a bisimplicial object HR'/k, H(B,R/k,E) ) one simi-
larly sees that (H) maps by homotopy equivalence to H(R'/k, BERE). This completes

the proof of the lemma. o

The lemma applies to the case where R' = Mk(R)’ the kxk matrices in R. The

required (simplicial) bimodules are given in this case by the 'row vectors' and 'co-

lumn vectors', respectively. Hence we have a homotopy equivalence
H®R/k, A) = H(Mk(R)/k, FeRAeRE) o H(Mk(R)/k, Mk(A)) .

This homotopy equivalence is compatible with stabilization (stabilization is given
on Mk(R)’ resp. Mk(A), by adding 1, resp. O, in the lower right co;ner), one

sees this by comparing stabilization with the maps involved in the lemma.
The map from Ncy(éik(R), Mk(A)) to H(Mk(R)/k, Mk(A)) given by

é}:k(R) X ve. X G’?;k(R) x My (8) ———— M, (R) ®, ... & M (R) & My (A)

&

€ P > <€ P = d

therefore induces a map

KS(X,R) -————->' H(R/k, R[X]) .

This map is the promised generalization of the map KS(X,R) - h(X,R) constructed
earlier. For, as one may check, it reduces to the latter in the case where R is

commutative and k = R.

Remark. Maps like the ones here, from (unstabilized) K-theory to group homology,
resp. Hochschild homology, have been constructed earlier by K. Dennis [talk at
Evanston conference, January 1976, unpublished]. Dennis' constructions are somewhat

different from the ones here. It remains to be seen if the maps are equivalent.
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Concluding remark. It has been stressed that the material on K-theory described in

this appendix is an analogue of the splitting theorem for A(X). However the connec-
tion is more than just an analogy, both of these results may be considered as special
cases of one and the same general result. To formulate this result one needs a com-—

mon framework for A(X) and K-theory.

One such common framework is a K-theory of 'rings up to homotopy'. This was
indicated in [14] as a means of how to think about A(X) in terms of what one is
accustomed to from K-theory. 1In fact, it is a useful way to think about A(X), oc-
casionally: the splitting theorem for A(X) was found that way (and for a while it
even required the K-theory of rings up to homotopy in its proof - the only result
about A(X) so far which ever did that). 1In the long run the K-theory of rings up

to homotopy may hopefully turn out to be useful as a computational tool.

The K-theory of rings up to homotopy does involve serious technical problems.
The prime one is to give sense to the classifying space of the homotopy monoid of
homotopy invertible matrices. May [8] has made a start in dealing with these prob-
lems, in particular he has given a definition and verified a few of the elementary
properties. However as May states, there is difficulty in showing his definition is
the correct one in the sense that it produces A(X) fromléke aépropriate ring up to
homotopy. (There is an alternative framework in which to handle those technical
problems, a notion of ring up to homotopy elaborating on one proposed by Segal [11,

section 5]. Here that particular difficulty does not arise).

In this framework of rings up to homotopy and their K-theory, the general result
referred to is simply propositions 6.1 and 6.2, with the abuse of allowing R to be
a 'ring up to homotopy', resp. 'commutative ring up to homotopy'. Note how this ex-
plains the difference of why we get a splitting theorem in the case of A(X) but not
in the case of K-theory. We get a splitting theorem only if the map QwSm|X+| - h(X,R)
is a homotopy equivalence. For this to hold, 'R-homology' must be stable homotopy,

so R must be 98 and we must be dealing with A(X).
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